For instance, it's pointless to keep copy-from-other-stores running if
there are no other stores, or download-using-manifests if there are no
manifests. This also speeds things up because we don't send queries
to those substituters.
I.e.
Subroutine Nix::Store::isValidPath redefined at /nix/store/clfzsf6gi7qh5i9c0vks1ifjam47rijn-perl-5.16.2/lib/perl5/5.16.2/XSLoader.pm line 92.
and so on.
To implement binary caches efficiently, Hydra needs to be able to map
the hash part of a store path (e.g. "gbg...zr7") to the full store
path (e.g. "/nix/store/gbg...kzr7-subversion-1.7.5"). (The binary
cache mechanism uses hash parts as a key for looking up store paths to
ensure privacy.) However, doing a search in the Nix store for
/nix/store/<hash>* is expensive since it requires reading the entire
directory. queryPathFromHashPart() prevents this by doing a cheap
database lookup.
XZ compresses significantly better than bzip2. Here are the
compression ratios and execution times (using 4 cores in parallel) on
my /var/run/current-system (3.1 GiB):
bzip2: total compressed size 849.56 MiB, 30.8% [2m08]
xz -6: total compressed size 641.84 MiB, 23.4% [6m53]
xz -7: total compressed size 621.82 MiB, 22.6% [7m19]
xz -8: total compressed size 599.33 MiB, 21.8% [7m18]
xz -9: total compressed size 588.18 MiB, 21.4% [7m40]
Note that compression takes much longer. More importantly, however,
decompression is much faster:
bzip2: 1m47.274s
xz -6: 0m55.446s
xz -7: 0m54.119s
xz -8: 0m52.388s
xz -9: 0m51.842s
The only downside to using -9 is that decompression takes a fair
amount (~65 MB) of memory.
This command builds or fetches all dependencies of the given
derivation, then starts a shell with the environment variables from
the derivation. This shell also sources $stdenv/setup to initialise
the environment further.
The current directory is not changed. Thus this is a convenient way
to reproduce a build environment in an existing working tree.
Existing environment variables are left untouched (unless the
derivation overrides them). As a special hack, the original value of
$PATH is appended to the $PATH produced by $stdenv/setup.
Example session:
$ nix-build --run-env '<nixpkgs>' -A xterm
(the dependencies of xterm are built/fetched...)
$ tar xf $src
$ ./configure
$ make
$ emacs
(... hack source ...)
$ make
$ ./xterm
‘nix-store --export’.
* Add a Perl module that provides the functionality of
‘nix-copy-closure --to’. This is used by build-remote.pl so it no
longer needs to start a separate nix-copy-closure process. Also, it
uses the Perl API to do the export, so it doesn't need to start a
separate nix-store process either. As a result, nix-copy-closure
and build-remote.pl should no longer fail on very large closures due
to an "Argument list too long" error. (Note that having very many
dependencies in a single derivation can still fail because the
environment can become too large. Can't be helped though.)
libstore so that the Perl bindings can use it as well. It's vital
that the Perl bindings use the configuration file, because otherwise
nix-copy-closure will fail with a ‘database locked’ message if the
value of ‘use-sqlite-wal’ is changed from the default.
read the manifest just to check the version and print the number of
paths. This makes nix-pull very fast for the cached cache (speeding
up nixos-rebuild without the ‘--no-pull’ or ‘--fast’ options).
bindings to be used in Nix's own Perl scripts.
The only downside is that Perl XS and Automake/libtool don't really
like each other, so building is a bit tricky.