Export of internal Abseil changes
-- 2dd5008c7b4176859e320c7c337078adb173b662 by Tom Manshreck <shreck@google.com>: Internal change PiperOrigin-RevId: 304022549 -- 6442abd78697b03cfe698b0d0dac7f1eb4b5cb38 by Andy Getzendanner <durandal@google.com>: Internal change PiperOrigin-RevId: 303890410 -- eb8b37b468b0f23da09d3de714272928ef61f942 by Gennadiy Rozental <rogeeff@google.com>: Roll changes forward with ChunkIterator templatized. This should facilitate usage of "small" chunk iterator for a regular usage and proper "big" iterator internally in Cord implementation. This way Cord users are not exposed to stack size overhead if they have a lot of chunk iterators or recursive implementation which relies on chunk iterators. PiperOrigin-RevId: 303877118 -- 9623c569e7c55b45254e95f2d14c5badf9c901aa by Gennadiy Rozental <rogeeff@google.com>: Switch Flags implementation of fast type id to use absl/base/internal/fast_type_id.h PiperOrigin-RevId: 303861019 -- e2931e8d53c86d0816da6bbc8ba58cf5a3a443bb by Matthew Brown <matthewbr@google.com>: Internal Change PiperOrigin-RevId: 303832407 -- b549ed6e441e920b8ad6f02a80b9fd543820ef86 by Tom Manshreck <shreck@google.com>: Update Cord header file comments to Abseil standards PiperOrigin-RevId: 303823232 -- fc633d4f31a2d058f2b6a7029fc7c9820cd71c92 by Evan Brown <ezb@google.com>: Remove top-level const from K/V in map_slot_type::mutable_value and map_slot_type::key. This allows us to move between `map_slot_type::mutable_value`s internally even when the key_type and/or mapped_type specified by the user are const. PiperOrigin-RevId: 303811694 -- 909b3ce7cb3583ee9c374d36ff5f82bba02a1b64 by Derek Mauro <dmauro@google.com>: Add hardening assertions to the preconditions of absl::Cord PiperOrigin-RevId: 303419537 -- 9d32f79eabd54e6cb17bcc28b53e9bcfeb3cf6f4 by Greg Falcon <gfalcon@google.com>: Don't use MSVC-specific bit manipulations when using Clang on Windows. This fixes a compiler warning. Note that we do not have continuous testing for this configuration; this CL is best-effort support. PiperOrigin-RevId: 303322582 -- f6e0a35a2b9081d2a9eef73789b7bc1b5e46e5ad by Gennadiy Rozental <rogeeff@google.com>: Introduce standlone FastTypeId utility to represent compile time unique type id. PiperOrigin-RevId: 303180545 -- 99120e9fbdb5b2d327139ab8f617533d7bc3345b by Abseil Team <absl-team@google.com>: Changed absl's import of std::string_view to using string_view = std::string_view. This should help tools (e.g. include-what-you-use) discover where absl::string_view is defined. PiperOrigin-RevId: 303169095 GitOrigin-RevId: 2dd5008c7b4176859e320c7c337078adb173b662 Change-Id: I1e18ae08e23686ac963e7ea5e5bd499e18d51048
This commit is contained in:
parent
79e0dc1151
commit
fba8a316c3
24 changed files with 1068 additions and 486 deletions
|
@ -19,6 +19,7 @@ set(ABSL_INTERNAL_DLL_FILES
|
|||
"base/internal/errno_saver.h"
|
||||
"base/internal/exponential_biased.cc"
|
||||
"base/internal/exponential_biased.h"
|
||||
"base/internal/fast_type_id.h"
|
||||
"base/internal/hide_ptr.h"
|
||||
"base/internal/identity.h"
|
||||
"base/internal/invoke.h"
|
||||
|
@ -130,7 +131,6 @@ set(ABSL_INTERNAL_DLL_FILES
|
|||
"random/bit_gen_ref.h"
|
||||
"random/discrete_distribution.cc"
|
||||
"random/discrete_distribution.h"
|
||||
"random/distribution_format_traits.h"
|
||||
"random/distributions.h"
|
||||
"random/exponential_distribution.h"
|
||||
"random/gaussian_distribution.cc"
|
||||
|
|
|
@ -750,3 +750,28 @@ cc_binary(
|
|||
"@com_github_google_benchmark//:benchmark_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "fast_type_id",
|
||||
hdrs = ["internal/fast_type_id.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
linkopts = ABSL_DEFAULT_LINKOPTS,
|
||||
visibility = [
|
||||
"//absl:__subpackages__",
|
||||
],
|
||||
deps = [
|
||||
":config",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "fast_type_id_test",
|
||||
size = "small",
|
||||
srcs = ["internal/fast_type_id_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
linkopts = ABSL_DEFAULT_LINKOPTS,
|
||||
deps = [
|
||||
":fast_type_id",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -674,3 +674,28 @@ absl_cc_test(
|
|||
gmock
|
||||
gtest_main
|
||||
)
|
||||
|
||||
absl_cc_library(
|
||||
NAME
|
||||
fast_type_id
|
||||
HDRS
|
||||
"internal/fast_type_id.h"
|
||||
COPTS
|
||||
${ABSL_DEFAULT_COPTS}
|
||||
LINKOPTS
|
||||
${ABSL_DEFAULT_LINKOPTS}
|
||||
DEPS
|
||||
absl::config
|
||||
)
|
||||
|
||||
absl_cc_test(
|
||||
NAME
|
||||
fast_type_id_test
|
||||
SRCS
|
||||
"internal/fast_type_id_test.cc"
|
||||
COPTS
|
||||
${ABSL_TEST_COPTS}
|
||||
DEPS
|
||||
absl::fast_type_id
|
||||
gtest_main
|
||||
)
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
|
||||
// Clang on Windows has __builtin_clzll; otherwise we need to use the
|
||||
// windows intrinsic functions.
|
||||
#if defined(_MSC_VER)
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
#include <intrin.h>
|
||||
#if defined(_M_X64)
|
||||
#pragma intrinsic(_BitScanReverse64)
|
||||
|
@ -36,7 +36,7 @@
|
|||
|
||||
#include "absl/base/attributes.h"
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
// We can achieve something similar to attribute((always_inline)) with MSVC by
|
||||
// using the __forceinline keyword, however this is not perfect. MSVC is
|
||||
// much less aggressive about inlining, and even with the __forceinline keyword.
|
||||
|
@ -73,14 +73,14 @@ ABSL_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros64Slow(uint64_t n) {
|
|||
}
|
||||
|
||||
ABSL_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros64(uint64_t n) {
|
||||
#if defined(_MSC_VER) && defined(_M_X64)
|
||||
#if defined(_MSC_VER) && !defined(__clang__) && defined(_M_X64)
|
||||
// MSVC does not have __buitin_clzll. Use _BitScanReverse64.
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if (_BitScanReverse64(&result, n)) {
|
||||
return 63 - result;
|
||||
}
|
||||
return 64;
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && !defined(__clang__)
|
||||
// MSVC does not have __buitin_clzll. Compose two calls to _BitScanReverse
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if ((n >> 32) && _BitScanReverse(&result, n >> 32)) {
|
||||
|
@ -90,7 +90,7 @@ ABSL_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros64(uint64_t n) {
|
|||
return 63 - result;
|
||||
}
|
||||
return 64;
|
||||
#elif defined(__GNUC__)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
// Use __builtin_clzll, which uses the following instructions:
|
||||
// x86: bsr
|
||||
// ARM64: clz
|
||||
|
@ -126,13 +126,13 @@ ABSL_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros32Slow(uint64_t n) {
|
|||
}
|
||||
|
||||
ABSL_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros32(uint32_t n) {
|
||||
#if defined(_MSC_VER)
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if (_BitScanReverse(&result, n)) {
|
||||
return 31 - result;
|
||||
}
|
||||
return 32;
|
||||
#elif defined(__GNUC__)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
// Use __builtin_clz, which uses the following instructions:
|
||||
// x86: bsr
|
||||
// ARM64: clz
|
||||
|
@ -163,11 +163,11 @@ ABSL_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero64Slow(uint64_t n) {
|
|||
}
|
||||
|
||||
ABSL_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero64(uint64_t n) {
|
||||
#if defined(_MSC_VER) && defined(_M_X64)
|
||||
#if defined(_MSC_VER) && !defined(__clang__) && defined(_M_X64)
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
_BitScanForward64(&result, n);
|
||||
return result;
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && !defined(__clang__)
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if (static_cast<uint32_t>(n) == 0) {
|
||||
_BitScanForward(&result, n >> 32);
|
||||
|
@ -175,7 +175,7 @@ ABSL_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero64(uint64_t n) {
|
|||
}
|
||||
_BitScanForward(&result, n);
|
||||
return result;
|
||||
#elif defined(__GNUC__)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
static_assert(sizeof(unsigned long long) == sizeof(n), // NOLINT(runtime/int)
|
||||
"__builtin_ctzll does not take 64-bit arg");
|
||||
return __builtin_ctzll(n);
|
||||
|
@ -196,11 +196,11 @@ ABSL_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero32Slow(uint32_t n) {
|
|||
}
|
||||
|
||||
ABSL_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero32(uint32_t n) {
|
||||
#if defined(_MSC_VER)
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
_BitScanForward(&result, n);
|
||||
return result;
|
||||
#elif defined(__GNUC__)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
static_assert(sizeof(int) == sizeof(n),
|
||||
"__builtin_ctz does not take 32-bit arg");
|
||||
return __builtin_ctz(n);
|
||||
|
|
48
absl/base/internal/fast_type_id.h
Normal file
48
absl/base/internal/fast_type_id.h
Normal file
|
@ -0,0 +1,48 @@
|
|||
//
|
||||
// Copyright 2020 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// https://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
|
||||
#ifndef ABSL_BASE_INTERNAL_FAST_TYPE_ID_H_
|
||||
#define ABSL_BASE_INTERNAL_FAST_TYPE_ID_H_
|
||||
|
||||
#include "absl/base/config.h"
|
||||
|
||||
namespace absl {
|
||||
ABSL_NAMESPACE_BEGIN
|
||||
namespace base_internal {
|
||||
|
||||
template <typename Type>
|
||||
struct FastTypeTag {
|
||||
constexpr static char dummy_var = 0;
|
||||
};
|
||||
|
||||
template <typename Type>
|
||||
constexpr char FastTypeTag<Type>::dummy_var;
|
||||
|
||||
// FastTypeId<Type>() evaluates at compile/link-time to a unique pointer for the
|
||||
// passed-in type. These are meant to be good match for keys into maps or
|
||||
// straight up comparisons.
|
||||
using FastTypeIdType = const void*;
|
||||
|
||||
template <typename Type>
|
||||
constexpr inline FastTypeIdType FastTypeId() {
|
||||
return &FastTypeTag<Type>::dummy_var;
|
||||
}
|
||||
|
||||
} // namespace base_internal
|
||||
ABSL_NAMESPACE_END
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_BASE_INTERNAL_FAST_TYPE_ID_H_
|
123
absl/base/internal/fast_type_id_test.cc
Normal file
123
absl/base/internal/fast_type_id_test.cc
Normal file
|
@ -0,0 +1,123 @@
|
|||
// Copyright 2020 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// https://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/base/internal/fast_type_id.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace {
|
||||
namespace bi = absl::base_internal;
|
||||
|
||||
// NOLINTNEXTLINE
|
||||
#define PRIM_TYPES(A) \
|
||||
A(bool) \
|
||||
A(short) \
|
||||
A(unsigned short) \
|
||||
A(int) \
|
||||
A(unsigned int) \
|
||||
A(long) \
|
||||
A(unsigned long) \
|
||||
A(long long) \
|
||||
A(unsigned long long) \
|
||||
A(float) \
|
||||
A(double) \
|
||||
A(long double)
|
||||
|
||||
TEST(FastTypeIdTest, PrimitiveTypes) {
|
||||
bi::FastTypeIdType type_ids[] = {
|
||||
#define A(T) bi::FastTypeId<T>(),
|
||||
PRIM_TYPES(A)
|
||||
#undef A
|
||||
#define A(T) bi::FastTypeId<const T>(),
|
||||
PRIM_TYPES(A)
|
||||
#undef A
|
||||
#define A(T) bi::FastTypeId<volatile T>(),
|
||||
PRIM_TYPES(A)
|
||||
#undef A
|
||||
#define A(T) bi::FastTypeId<const volatile T>(),
|
||||
PRIM_TYPES(A)
|
||||
#undef A
|
||||
};
|
||||
size_t total_type_ids = sizeof(type_ids) / sizeof(bi::FastTypeIdType);
|
||||
|
||||
for (int i = 0; i < total_type_ids; ++i) {
|
||||
EXPECT_EQ(type_ids[i], type_ids[i]);
|
||||
for (int j = 0; j < i; ++j) {
|
||||
EXPECT_NE(type_ids[i], type_ids[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define FIXED_WIDTH_TYPES(A) \
|
||||
A(int8_t) \
|
||||
A(uint8_t) \
|
||||
A(int16_t) \
|
||||
A(uint16_t) \
|
||||
A(int32_t) \
|
||||
A(uint32_t) \
|
||||
A(int64_t) \
|
||||
A(uint64_t)
|
||||
|
||||
TEST(FastTypeIdTest, FixedWidthTypes) {
|
||||
bi::FastTypeIdType type_ids[] = {
|
||||
#define A(T) bi::FastTypeId<T>(),
|
||||
FIXED_WIDTH_TYPES(A)
|
||||
#undef A
|
||||
#define A(T) bi::FastTypeId<const T>(),
|
||||
FIXED_WIDTH_TYPES(A)
|
||||
#undef A
|
||||
#define A(T) bi::FastTypeId<volatile T>(),
|
||||
FIXED_WIDTH_TYPES(A)
|
||||
#undef A
|
||||
#define A(T) bi::FastTypeId<const volatile T>(),
|
||||
FIXED_WIDTH_TYPES(A)
|
||||
#undef A
|
||||
};
|
||||
size_t total_type_ids = sizeof(type_ids) / sizeof(bi::FastTypeIdType);
|
||||
|
||||
for (int i = 0; i < total_type_ids; ++i) {
|
||||
EXPECT_EQ(type_ids[i], type_ids[i]);
|
||||
for (int j = 0; j < i; ++j) {
|
||||
EXPECT_NE(type_ids[i], type_ids[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(FastTypeIdTest, AliasTypes) {
|
||||
using int_alias = int;
|
||||
EXPECT_EQ(bi::FastTypeId<int_alias>(), bi::FastTypeId<int>());
|
||||
}
|
||||
|
||||
TEST(FastTypeIdTest, TemplateSpecializations) {
|
||||
EXPECT_NE(bi::FastTypeId<std::vector<int>>(),
|
||||
bi::FastTypeId<std::vector<long>>());
|
||||
|
||||
EXPECT_NE((bi::FastTypeId<std::map<int, float>>()),
|
||||
(bi::FastTypeId<std::map<int, double>>()));
|
||||
}
|
||||
|
||||
struct Base {};
|
||||
struct Derived : Base {};
|
||||
struct PDerived : private Base {};
|
||||
|
||||
TEST(FastTypeIdTest, Inheritance) {
|
||||
EXPECT_NE(bi::FastTypeId<Base>(), bi::FastTypeId<Derived>());
|
||||
EXPECT_NE(bi::FastTypeId<Base>(), bi::FastTypeId<PDerived>());
|
||||
}
|
||||
|
||||
} // namespace
|
|
@ -366,6 +366,7 @@ cc_library(
|
|||
linkopts = ABSL_DEFAULT_LINKOPTS,
|
||||
deps = [
|
||||
"//absl/memory",
|
||||
"//absl/meta:type_traits",
|
||||
"//absl/utility",
|
||||
],
|
||||
)
|
||||
|
@ -378,6 +379,7 @@ cc_test(
|
|||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":test_instance_tracker",
|
||||
"//absl/strings",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
|
|
|
@ -421,6 +421,7 @@ absl_cc_library(
|
|||
${ABSL_DEFAULT_COPTS}
|
||||
DEPS
|
||||
absl::memory
|
||||
absl::type_traits
|
||||
absl::utility
|
||||
PUBLIC
|
||||
)
|
||||
|
@ -435,6 +436,7 @@ absl_cc_test(
|
|||
DEPS
|
||||
absl::container_memory
|
||||
absl::strings
|
||||
absl::test_instance_tracker
|
||||
gmock_main
|
||||
)
|
||||
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
#include <utility>
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/utility/utility.h"
|
||||
|
||||
namespace absl {
|
||||
|
@ -319,11 +320,12 @@ union map_slot_type {
|
|||
map_slot_type() {}
|
||||
~map_slot_type() = delete;
|
||||
using value_type = std::pair<const K, V>;
|
||||
using mutable_value_type = std::pair<K, V>;
|
||||
using mutable_value_type =
|
||||
std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
|
||||
|
||||
value_type value;
|
||||
mutable_value_type mutable_value;
|
||||
K key;
|
||||
absl::remove_const_t<K> key;
|
||||
};
|
||||
|
||||
template <class K, class V>
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/test_instance_tracker.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
|
@ -29,9 +30,11 @@ ABSL_NAMESPACE_BEGIN
|
|||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::testing::Gt;
|
||||
using ::absl::test_internal::CopyableMovableInstance;
|
||||
using ::absl::test_internal::InstanceTracker;
|
||||
using ::testing::_;
|
||||
using ::testing::ElementsAre;
|
||||
using ::testing::Gt;
|
||||
using ::testing::Pair;
|
||||
|
||||
TEST(Memory, AlignmentLargerThanBase) {
|
||||
|
@ -222,6 +225,31 @@ TEST(DecomposePair, NotDecomposable) {
|
|||
std::make_tuple(0.5)));
|
||||
}
|
||||
|
||||
TEST(MapSlotPolicy, ConstKeyAndValue) {
|
||||
using slot_policy = map_slot_policy<const CopyableMovableInstance,
|
||||
const CopyableMovableInstance>;
|
||||
using slot_type = typename slot_policy::slot_type;
|
||||
|
||||
union Slots {
|
||||
Slots() {}
|
||||
~Slots() {}
|
||||
slot_type slots[100];
|
||||
} slots;
|
||||
|
||||
std::allocator<
|
||||
std::pair<const CopyableMovableInstance, const CopyableMovableInstance>>
|
||||
alloc;
|
||||
InstanceTracker tracker;
|
||||
slot_policy::construct(&alloc, &slots.slots[0], CopyableMovableInstance(1),
|
||||
CopyableMovableInstance(1));
|
||||
for (int i = 0; i < 99; ++i) {
|
||||
slot_policy::transfer(&alloc, &slots.slots[i + 1], &slots.slots[i]);
|
||||
}
|
||||
slot_policy::destroy(&alloc, &slots.slots[99]);
|
||||
|
||||
EXPECT_EQ(tracker.copies(), 0);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
ABSL_NAMESPACE_END
|
||||
|
|
|
@ -147,6 +147,7 @@ cc_library(
|
|||
":marshalling",
|
||||
"//absl/base:config",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/base:fast_type_id",
|
||||
"//absl/strings",
|
||||
"//absl/types:optional",
|
||||
],
|
||||
|
|
|
@ -128,6 +128,7 @@ absl_cc_library(
|
|||
${ABSL_DEFAULT_LINKOPTS}
|
||||
DEPS
|
||||
absl::config
|
||||
absl::fast_type_id
|
||||
absl::flags_config
|
||||
absl::flags_marshalling
|
||||
absl::core_headers
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include <typeinfo>
|
||||
|
||||
#include "absl/base/config.h"
|
||||
#include "absl/base/internal/fast_type_id.h"
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/flags/config.h"
|
||||
#include "absl/flags/marshalling.h"
|
||||
|
@ -34,23 +35,12 @@ namespace absl {
|
|||
ABSL_NAMESPACE_BEGIN
|
||||
namespace flags_internal {
|
||||
|
||||
// An alias for flag static type id. Values of type identify the flag value type
|
||||
// simialarly to typeid(T), but without relying on RTTI being available. In most
|
||||
// An alias for flag fast type id. This value identifies the flag value type
|
||||
// simialarly to typeid(T), without relying on RTTI being available. In most
|
||||
// cases this id is enough to uniquely identify the flag's value type. In a few
|
||||
// cases we'll have to resort to using actual RTTI implementation if it is
|
||||
// available.
|
||||
using FlagStaticTypeId = void* (*)();
|
||||
|
||||
// Address of this function template is used in current implementation as a flag
|
||||
// static type id.
|
||||
template <typename T>
|
||||
void* FlagStaticTypeIdGen() {
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
return const_cast<std::type_info*>(&typeid(T));
|
||||
#else
|
||||
return nullptr;
|
||||
#endif
|
||||
}
|
||||
using FlagFastTypeId = base_internal::FastTypeIdType;
|
||||
|
||||
// Options that control SetCommandLineOptionWithMode.
|
||||
enum FlagSettingMode {
|
||||
|
@ -97,7 +87,7 @@ class CommandLineFlag {
|
|||
// Return true iff flag has type T.
|
||||
template <typename T>
|
||||
inline bool IsOfType() const {
|
||||
return TypeId() == &flags_internal::FlagStaticTypeIdGen<T>;
|
||||
return TypeId() == base_internal::FastTypeId<T>();
|
||||
}
|
||||
|
||||
// Attempts to retrieve the flag value. Returns value on success,
|
||||
|
@ -150,7 +140,7 @@ class CommandLineFlag {
|
|||
// Returns true iff this is a handle to an Abseil Flag.
|
||||
virtual bool IsAbseilFlag() const;
|
||||
// Returns id of the flag's value type.
|
||||
virtual FlagStaticTypeId TypeId() const = 0;
|
||||
virtual FlagFastTypeId TypeId() const = 0;
|
||||
virtual bool IsModified() const = 0;
|
||||
virtual bool IsSpecifiedOnCommandLine() const = 0;
|
||||
virtual std::string DefaultValue() const = 0;
|
||||
|
|
|
@ -48,9 +48,9 @@ const char kStrippedFlagHelp[] = "\001\002\003\004 (unknown) \004\003\002\001";
|
|||
namespace {
|
||||
|
||||
// Currently we only validate flag values for user-defined flag types.
|
||||
bool ShouldValidateFlagValue(FlagStaticTypeId flag_type_id) {
|
||||
bool ShouldValidateFlagValue(FlagFastTypeId flag_type_id) {
|
||||
#define DONT_VALIDATE(T) \
|
||||
if (flag_type_id == &FlagStaticTypeIdGen<T>) return false;
|
||||
if (flag_type_id == base_internal::FastTypeId<T>()) return false;
|
||||
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(DONT_VALIDATE)
|
||||
#undef DONT_VALIDATE
|
||||
|
||||
|
@ -161,24 +161,24 @@ absl::Mutex* FlagImpl::DataGuard() const {
|
|||
return reinterpret_cast<absl::Mutex*>(&data_guard_);
|
||||
}
|
||||
|
||||
void FlagImpl::AssertValidType(FlagStaticTypeId type_id) const {
|
||||
FlagStaticTypeId this_type_id = flags_internal::StaticTypeId(op_);
|
||||
void FlagImpl::AssertValidType(FlagFastTypeId rhs_type_id,
|
||||
const std::type_info* (*gen_rtti)()) const {
|
||||
FlagFastTypeId lhs_type_id = flags_internal::FastTypeId(op_);
|
||||
|
||||
// `type_id` is the type id corresponding to the declaration visibile at the
|
||||
// call site. `this_type_id` is the type id corresponding to the type stored
|
||||
// during flag definition. They must match for this operation to be
|
||||
// well-defined.
|
||||
if (ABSL_PREDICT_TRUE(type_id == this_type_id)) return;
|
||||
// `rhs_type_id` is the fast type id corresponding to the declaration
|
||||
// visibile at the call site. `lhs_type_id` is the fast type id
|
||||
// corresponding to the type specified in flag definition. They must match
|
||||
// for this operation to be well-defined.
|
||||
if (ABSL_PREDICT_TRUE(lhs_type_id == rhs_type_id)) return;
|
||||
|
||||
void* lhs_runtime_type_id = type_id();
|
||||
void* rhs_runtime_type_id = this_type_id();
|
||||
const std::type_info* lhs_runtime_type_id =
|
||||
flags_internal::RuntimeTypeId(op_);
|
||||
const std::type_info* rhs_runtime_type_id = (*gen_rtti)();
|
||||
|
||||
if (lhs_runtime_type_id == rhs_runtime_type_id) return;
|
||||
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
if (*reinterpret_cast<std::type_info*>(lhs_runtime_type_id) ==
|
||||
*reinterpret_cast<std::type_info*>(rhs_runtime_type_id))
|
||||
return;
|
||||
if (*lhs_runtime_type_id == *rhs_runtime_type_id) return;
|
||||
#endif
|
||||
|
||||
ABSL_INTERNAL_LOG(
|
||||
|
@ -233,8 +233,8 @@ std::string FlagImpl::Help() const {
|
|||
: help_.gen_func();
|
||||
}
|
||||
|
||||
FlagStaticTypeId FlagImpl::TypeId() const {
|
||||
return flags_internal::StaticTypeId(op_);
|
||||
FlagFastTypeId FlagImpl::TypeId() const {
|
||||
return flags_internal::FastTypeId(op_);
|
||||
}
|
||||
|
||||
bool FlagImpl::IsModified() const {
|
||||
|
@ -429,7 +429,7 @@ void FlagImpl::Read(void* dst) const {
|
|||
void FlagImpl::Write(const void* src) {
|
||||
absl::MutexLock l(DataGuard());
|
||||
|
||||
if (ShouldValidateFlagValue(flags_internal::StaticTypeId(op_))) {
|
||||
if (ShouldValidateFlagValue(flags_internal::FastTypeId(op_))) {
|
||||
std::unique_ptr<void, DynValueDeleter> obj{flags_internal::Clone(op_, src),
|
||||
DynValueDeleter{op_}};
|
||||
std::string ignored_error;
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <typeinfo>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/base/config.h"
|
||||
|
@ -50,7 +51,8 @@ enum class FlagOp {
|
|||
kCopy,
|
||||
kCopyConstruct,
|
||||
kSizeof,
|
||||
kStaticTypeId,
|
||||
kFastTypeId,
|
||||
kRuntimeTypeId,
|
||||
kParse,
|
||||
kUnparse,
|
||||
kValueOffset,
|
||||
|
@ -96,10 +98,15 @@ inline size_t Sizeof(FlagOpFn op) {
|
|||
return static_cast<size_t>(reinterpret_cast<intptr_t>(
|
||||
op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
|
||||
}
|
||||
// Returns static type id coresponding to the value type.
|
||||
inline FlagStaticTypeId StaticTypeId(FlagOpFn op) {
|
||||
return reinterpret_cast<FlagStaticTypeId>(
|
||||
op(FlagOp::kStaticTypeId, nullptr, nullptr, nullptr));
|
||||
// Returns fast type id coresponding to the value type.
|
||||
inline FlagFastTypeId FastTypeId(FlagOpFn op) {
|
||||
return reinterpret_cast<FlagFastTypeId>(
|
||||
op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
|
||||
}
|
||||
// Returns fast type id coresponding to the value type.
|
||||
inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
|
||||
return reinterpret_cast<const std::type_info*>(
|
||||
op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
|
||||
}
|
||||
// Returns offset of the field value_ from the field impl_ inside of
|
||||
// absl::Flag<T> data. Given FlagImpl pointer p you can get the
|
||||
|
@ -112,6 +119,16 @@ inline ptrdiff_t ValueOffset(FlagOpFn op) {
|
|||
op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
|
||||
}
|
||||
|
||||
// Returns an address of RTTI's typeid(T).
|
||||
template <typename T>
|
||||
inline const std::type_info* GenRuntimeTypeId() {
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
return &typeid(T);
|
||||
#else
|
||||
return nullptr;
|
||||
#endif
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Flag help auxiliary structs.
|
||||
|
||||
|
@ -374,9 +391,10 @@ class FlagImpl final : public flags_internal::CommandLineFlag {
|
|||
// For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
|
||||
// absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
|
||||
// int. To do that we pass the "assumed" type id (which is deduced from type
|
||||
// int) as an argument `op`, which is in turn is validated against the type id
|
||||
// stored in flag object by flag definition statement.
|
||||
void AssertValidType(FlagStaticTypeId type_id) const;
|
||||
// int) as an argument `type_id`, which is in turn is validated against the
|
||||
// type id stored in flag object by flag definition statement.
|
||||
void AssertValidType(FlagFastTypeId type_id,
|
||||
const std::type_info* (*gen_rtti)()) const;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
|
@ -433,7 +451,7 @@ class FlagImpl final : public flags_internal::CommandLineFlag {
|
|||
std::string Filename() const override;
|
||||
absl::string_view Typename() const override;
|
||||
std::string Help() const override;
|
||||
FlagStaticTypeId TypeId() const override;
|
||||
FlagFastTypeId TypeId() const override;
|
||||
bool IsModified() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
bool IsSpecifiedOnCommandLine() const override
|
||||
ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
|
@ -539,14 +557,14 @@ class Flag {
|
|||
U u;
|
||||
|
||||
#if !defined(NDEBUG)
|
||||
impl_.AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
|
||||
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
|
||||
#endif
|
||||
|
||||
if (!value_.Get(&u.value)) impl_.Read(&u.value);
|
||||
return std::move(u.value);
|
||||
}
|
||||
void Set(const T& v) {
|
||||
impl_.AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
|
||||
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
|
||||
impl_.Write(&v);
|
||||
}
|
||||
void SetCallback(const FlagCallbackFunc mutation_callback) {
|
||||
|
@ -595,8 +613,10 @@ void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
|
|||
return nullptr;
|
||||
case FlagOp::kSizeof:
|
||||
return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
|
||||
case FlagOp::kStaticTypeId:
|
||||
return reinterpret_cast<void*>(&FlagStaticTypeIdGen<T>);
|
||||
case FlagOp::kFastTypeId:
|
||||
return const_cast<void*>(base_internal::FastTypeId<T>());
|
||||
case FlagOp::kRuntimeTypeId:
|
||||
return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
|
||||
case FlagOp::kParse: {
|
||||
// Initialize the temporary instance of type T based on current value in
|
||||
// destination (which is going to be flag's default value).
|
||||
|
|
|
@ -284,14 +284,14 @@ namespace {
|
|||
|
||||
class RetiredFlagObj final : public flags_internal::CommandLineFlag {
|
||||
public:
|
||||
constexpr RetiredFlagObj(const char* name, FlagStaticTypeId type_id)
|
||||
constexpr RetiredFlagObj(const char* name, FlagFastTypeId type_id)
|
||||
: name_(name), type_id_(type_id) {}
|
||||
|
||||
private:
|
||||
absl::string_view Name() const override { return name_; }
|
||||
std::string Filename() const override { return "RETIRED"; }
|
||||
absl::string_view Typename() const override { return ""; }
|
||||
FlagStaticTypeId TypeId() const override { return type_id_; }
|
||||
FlagFastTypeId TypeId() const override { return type_id_; }
|
||||
std::string Help() const override { return ""; }
|
||||
bool IsRetired() const override { return true; }
|
||||
bool IsModified() const override { return false; }
|
||||
|
@ -317,7 +317,7 @@ class RetiredFlagObj final : public flags_internal::CommandLineFlag {
|
|||
|
||||
// Data members
|
||||
const char* const name_;
|
||||
const FlagStaticTypeId type_id_;
|
||||
const FlagFastTypeId type_id_;
|
||||
};
|
||||
|
||||
void DestroyRetiredFlag(flags_internal::CommandLineFlag* flag) {
|
||||
|
@ -327,7 +327,7 @@ void DestroyRetiredFlag(flags_internal::CommandLineFlag* flag) {
|
|||
|
||||
} // namespace
|
||||
|
||||
bool Retire(const char* name, FlagStaticTypeId type_id) {
|
||||
bool Retire(const char* name, FlagFastTypeId type_id) {
|
||||
auto* flag = new flags_internal::RetiredFlagObj(name, type_id);
|
||||
FlagRegistry::GlobalRegistry()->RegisterFlag(flag);
|
||||
return true;
|
||||
|
|
|
@ -79,12 +79,12 @@ bool RegisterCommandLineFlag(CommandLineFlag*);
|
|||
//
|
||||
|
||||
// Retire flag with name "name" and type indicated by ops.
|
||||
bool Retire(const char* name, FlagStaticTypeId type_id);
|
||||
bool Retire(const char* name, FlagFastTypeId type_id);
|
||||
|
||||
// Registered a retired flag with name 'flag_name' and type 'T'.
|
||||
template <typename T>
|
||||
inline bool RetiredFlag(const char* flag_name) {
|
||||
return flags_internal::Retire(flag_name, &FlagStaticTypeIdGen<T>);
|
||||
return flags_internal::Retire(flag_name, base_internal::FastTypeId<T>());
|
||||
}
|
||||
|
||||
// If the flag is retired, returns true and indicates in |*type_is_bool|
|
||||
|
|
|
@ -313,6 +313,7 @@ cc_test(
|
|||
":strings",
|
||||
"//absl/base",
|
||||
"//absl/base:config",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/base:endian",
|
||||
"//absl/base:raw_logging_internal",
|
||||
"//absl/container:fixed_array",
|
||||
|
|
|
@ -578,6 +578,7 @@ absl_cc_test(
|
|||
absl::strings
|
||||
absl::base
|
||||
absl::config
|
||||
absl::core_headers
|
||||
absl::endian
|
||||
absl::raw_logging_internal
|
||||
absl::fixed_array
|
||||
|
|
|
@ -28,9 +28,9 @@
|
|||
|
||||
#include "absl/base/casts.h"
|
||||
#include "absl/base/internal/raw_logging.h"
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/base/port.h"
|
||||
#include "absl/container/fixed_array.h"
|
||||
#include "absl/container/inlined_vector.h"
|
||||
#include "absl/strings/escaping.h"
|
||||
#include "absl/strings/internal/cord_internal.h"
|
||||
#include "absl/strings/internal/resize_uninitialized.h"
|
||||
|
@ -132,6 +132,14 @@ inline const CordRepExternal* CordRep::external() const {
|
|||
return static_cast<const CordRepExternal*>(this);
|
||||
}
|
||||
|
||||
using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>;
|
||||
|
||||
// This type is used to store the list of pending nodes during re-balancing.
|
||||
// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum
|
||||
// possible depth of MaxCordDepth() and every concat node along a tree path
|
||||
// could theoretically be split during rebalancing.
|
||||
using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>;
|
||||
|
||||
} // namespace cord_internal
|
||||
|
||||
static const size_t kFlatOverhead = offsetof(CordRep, data);
|
||||
|
@ -180,98 +188,78 @@ static constexpr size_t TagToLength(uint8_t tag) {
|
|||
// Enforce that kMaxFlatSize maps to a well-known exact tag value.
|
||||
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");
|
||||
|
||||
constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
|
||||
return n == 0 ? a : Fibonacci(n - 1, b, a + b);
|
||||
constexpr size_t Fibonacci(uint8_t n, const size_t a = 0, const size_t b = 1) {
|
||||
return n == 0
|
||||
? a
|
||||
: n == 1 ? b
|
||||
: Fibonacci(n - 1, b,
|
||||
(a > (size_t(-1) - b)) ? size_t(-1) : a + b);
|
||||
}
|
||||
|
||||
static_assert(Fibonacci(63) == 6557470319842,
|
||||
"Fibonacci values computed incorrectly");
|
||||
|
||||
// Minimum length required for a given depth tree -- a tree is considered
|
||||
// balanced if
|
||||
// length(t) >= min_length[depth(t)]
|
||||
// The root node depth is allowed to become twice as large to reduce rebalancing
|
||||
// for larger strings (see IsRootBalanced).
|
||||
static constexpr uint64_t min_length[] = {
|
||||
Fibonacci(2),
|
||||
Fibonacci(3),
|
||||
Fibonacci(4),
|
||||
Fibonacci(5),
|
||||
Fibonacci(6),
|
||||
Fibonacci(7),
|
||||
Fibonacci(8),
|
||||
Fibonacci(9),
|
||||
Fibonacci(10),
|
||||
Fibonacci(11),
|
||||
Fibonacci(12),
|
||||
Fibonacci(13),
|
||||
Fibonacci(14),
|
||||
Fibonacci(15),
|
||||
Fibonacci(16),
|
||||
Fibonacci(17),
|
||||
Fibonacci(18),
|
||||
Fibonacci(19),
|
||||
Fibonacci(20),
|
||||
Fibonacci(21),
|
||||
Fibonacci(22),
|
||||
Fibonacci(23),
|
||||
Fibonacci(24),
|
||||
Fibonacci(25),
|
||||
Fibonacci(26),
|
||||
Fibonacci(27),
|
||||
Fibonacci(28),
|
||||
Fibonacci(29),
|
||||
Fibonacci(30),
|
||||
Fibonacci(31),
|
||||
Fibonacci(32),
|
||||
Fibonacci(33),
|
||||
Fibonacci(34),
|
||||
Fibonacci(35),
|
||||
Fibonacci(36),
|
||||
Fibonacci(37),
|
||||
Fibonacci(38),
|
||||
Fibonacci(39),
|
||||
Fibonacci(40),
|
||||
Fibonacci(41),
|
||||
Fibonacci(42),
|
||||
Fibonacci(43),
|
||||
Fibonacci(44),
|
||||
Fibonacci(45),
|
||||
Fibonacci(46),
|
||||
Fibonacci(47),
|
||||
0xffffffffffffffffull, // Avoid overflow
|
||||
};
|
||||
// length(t) >= kMinLength[depth(t)]
|
||||
// The node depth is allowed to become larger to reduce rebalancing
|
||||
// for larger strings (see ShouldRebalance).
|
||||
constexpr size_t kMinLength[] = {
|
||||
Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), Fibonacci(6),
|
||||
Fibonacci(7), Fibonacci(8), Fibonacci(9), Fibonacci(10), Fibonacci(11),
|
||||
Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16),
|
||||
Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21),
|
||||
Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26),
|
||||
Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31),
|
||||
Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36),
|
||||
Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41),
|
||||
Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46),
|
||||
Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51),
|
||||
Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56),
|
||||
Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61),
|
||||
Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66),
|
||||
Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71),
|
||||
Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76),
|
||||
Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81),
|
||||
Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86),
|
||||
Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91),
|
||||
Fibonacci(92), Fibonacci(93), Fibonacci(94), Fibonacci(95)};
|
||||
|
||||
static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);
|
||||
static_assert(sizeof(kMinLength) / sizeof(size_t) >=
|
||||
(cord_internal::MaxCordDepth() + 1),
|
||||
"Not enough elements in kMinLength array to cover all the "
|
||||
"supported Cord depth(s)");
|
||||
|
||||
// The inlined size to use with absl::InlinedVector.
|
||||
//
|
||||
// Note: The InlinedVectors in this file (and in cord.h) do not need to use
|
||||
// the same value for their inlined size. The fact that they do is historical.
|
||||
// It may be desirable for each to use a different inlined size optimized for
|
||||
// that InlinedVector's usage.
|
||||
//
|
||||
// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
|
||||
// the inlined vector size (47 exists for backward compatibility).
|
||||
static const int kInlinedVectorSize = 47;
|
||||
inline bool ShouldRebalance(const CordRep* node) {
|
||||
if (node->tag != CONCAT) return false;
|
||||
|
||||
static inline bool IsRootBalanced(CordRep* node) {
|
||||
if (node->tag != CONCAT) {
|
||||
return true;
|
||||
} else if (node->concat()->depth() <= 15) {
|
||||
return true;
|
||||
} else if (node->concat()->depth() > kMinLengthSize) {
|
||||
return false;
|
||||
} else {
|
||||
// Allow depth to become twice as large as implied by fibonacci rule to
|
||||
// reduce rebalancing for larger strings.
|
||||
return (node->length >= min_length[node->concat()->depth() / 2]);
|
||||
}
|
||||
size_t node_depth = node->concat()->depth();
|
||||
|
||||
if (node_depth <= 15) return false;
|
||||
|
||||
// Rebalancing Cords is expensive, so we reduce how often rebalancing occurs
|
||||
// by allowing shallow Cords to have twice the depth that the Fibonacci rule
|
||||
// would otherwise imply. Deep Cords need to follow the rule more closely,
|
||||
// however to ensure algorithm correctness. We implement this with linear
|
||||
// interpolation. Cords of depth 16 are treated as though they have a depth
|
||||
// of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to
|
||||
// MaxCordDepth() * 1.
|
||||
return node->length <
|
||||
kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) /
|
||||
(2 * cord_internal::MaxCordDepth() - 16 - node_depth)];
|
||||
}
|
||||
|
||||
// Unlike root balancing condition this one is part of the re-balancing
|
||||
// algorithm and has to be always matching against right depth for
|
||||
// algorithm to be correct.
|
||||
inline bool IsNodeBalanced(const CordRep* node) {
|
||||
if (node->tag != CONCAT) return true;
|
||||
|
||||
size_t node_depth = node->concat()->depth();
|
||||
|
||||
return node->length >= kMinLength[node_depth];
|
||||
}
|
||||
|
||||
static CordRep* Rebalance(CordRep* node);
|
||||
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
|
||||
static bool VerifyNode(CordRep* root, CordRep* start_node,
|
||||
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os);
|
||||
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
|
||||
bool full_validation);
|
||||
|
||||
static inline CordRep* VerifyTree(CordRep* node) {
|
||||
|
@ -318,7 +306,8 @@ __attribute__((preserve_most))
|
|||
static void UnrefInternal(CordRep* rep) {
|
||||
assert(rep != nullptr);
|
||||
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
|
||||
cord_internal::RebalancingStack pending;
|
||||
|
||||
while (true) {
|
||||
if (rep->tag == CONCAT) {
|
||||
CordRepConcat* rep_concat = rep->concat();
|
||||
|
@ -400,6 +389,11 @@ static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
|
|||
|
||||
concat->length = left->length + right->length;
|
||||
concat->set_depth(1 + std::max(Depth(left), Depth(right)));
|
||||
|
||||
ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(),
|
||||
"Cord depth exceeds max");
|
||||
ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long");
|
||||
ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long");
|
||||
}
|
||||
|
||||
// Create a concatenation of the specified nodes.
|
||||
|
@ -425,7 +419,7 @@ static CordRep* RawConcat(CordRep* left, CordRep* right) {
|
|||
|
||||
static CordRep* Concat(CordRep* left, CordRep* right) {
|
||||
CordRep* rep = RawConcat(left, right);
|
||||
if (rep != nullptr && !IsRootBalanced(rep)) {
|
||||
if (rep != nullptr && ShouldRebalance(rep)) {
|
||||
rep = Rebalance(rep);
|
||||
}
|
||||
return VerifyTree(rep);
|
||||
|
@ -720,6 +714,14 @@ void Cord::InlineRep::ClearSlow() {
|
|||
memset(data_, 0, sizeof(data_));
|
||||
}
|
||||
|
||||
inline Cord::InternalChunkIterator Cord::internal_chunk_begin() const {
|
||||
return InternalChunkIterator(this);
|
||||
}
|
||||
|
||||
inline Cord::InternalChunkRange Cord::InternalChunks() const {
|
||||
return InternalChunkRange(this);
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Constructors and destructors
|
||||
|
||||
|
@ -916,7 +918,7 @@ void Cord::Prepend(absl::string_view src) {
|
|||
static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
|
||||
if (n >= node->length) return nullptr;
|
||||
if (n == 0) return Ref(node);
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
|
||||
cord_internal::CordTreeMutablePath rhs_stack;
|
||||
|
||||
while (node->tag == CONCAT) {
|
||||
assert(n <= node->length);
|
||||
|
@ -957,7 +959,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
|
|||
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
|
||||
if (n >= node->length) return nullptr;
|
||||
if (n == 0) return Ref(node);
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
|
||||
absl::cord_internal::CordTreeMutablePath lhs_stack;
|
||||
bool inplace_ok = node->refcount.IsOne();
|
||||
|
||||
while (node->tag == CONCAT) {
|
||||
|
@ -1028,6 +1030,7 @@ void Cord::RemoveSuffix(size_t n) {
|
|||
|
||||
// Work item for NewSubRange().
|
||||
struct SubRange {
|
||||
SubRange() = default;
|
||||
SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
|
||||
: node(a_node), pos(a_pos), n(a_n) {}
|
||||
CordRep* node; // nullptr means concat last 2 results.
|
||||
|
@ -1036,8 +1039,11 @@ struct SubRange {
|
|||
};
|
||||
|
||||
static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
|
||||
absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
|
||||
cord_internal::CordTreeMutablePath results;
|
||||
// The algorithm below in worst case scenario adds up to 3 nodes to the `todo`
|
||||
// list, but we also pop one out on every cycle. If original tree has depth d
|
||||
// todo list can grew up to 2*d in size.
|
||||
cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo;
|
||||
todo.push_back(SubRange(node, pos, n));
|
||||
do {
|
||||
const SubRange& sr = todo.back();
|
||||
|
@ -1074,7 +1080,7 @@ static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
|
|||
}
|
||||
} while (!todo.empty());
|
||||
assert(results.size() == 1);
|
||||
return results[0];
|
||||
return results.back();
|
||||
}
|
||||
|
||||
Cord Cord::Subcord(size_t pos, size_t new_size) const {
|
||||
|
@ -1090,7 +1096,7 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
|
|||
} else if (new_size == 0) {
|
||||
// We want to return empty subcord, so nothing to do.
|
||||
} else if (new_size <= InlineRep::kMaxInline) {
|
||||
Cord::ChunkIterator it = chunk_begin();
|
||||
Cord::InternalChunkIterator it = internal_chunk_begin();
|
||||
it.AdvanceBytes(pos);
|
||||
char* dest = sub_cord.contents_.data_;
|
||||
size_t remaining_size = new_size;
|
||||
|
@ -1113,11 +1119,12 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
|
|||
|
||||
class CordForest {
|
||||
public:
|
||||
explicit CordForest(size_t length)
|
||||
: root_length_(length), trees_(kMinLengthSize, nullptr) {}
|
||||
explicit CordForest(size_t length) : root_length_(length), trees_({}) {}
|
||||
|
||||
void Build(CordRep* cord_root) {
|
||||
std::vector<CordRep*> pending = {cord_root};
|
||||
// We are adding up to two nodes to the `pending` list, but we also popping
|
||||
// one, so the size of `pending` will never exceed `MaxCordDepth()`.
|
||||
cord_internal::CordTreeMutablePath pending(cord_root);
|
||||
|
||||
while (!pending.empty()) {
|
||||
CordRep* node = pending.back();
|
||||
|
@ -1129,21 +1136,20 @@ class CordForest {
|
|||
}
|
||||
|
||||
CordRepConcat* concat_node = node->concat();
|
||||
if (concat_node->depth() >= kMinLengthSize ||
|
||||
concat_node->length < min_length[concat_node->depth()]) {
|
||||
pending.push_back(concat_node->right);
|
||||
pending.push_back(concat_node->left);
|
||||
|
||||
if (concat_node->refcount.IsOne()) {
|
||||
concat_node->left = concat_freelist_;
|
||||
concat_freelist_ = concat_node;
|
||||
} else {
|
||||
Ref(concat_node->right);
|
||||
Ref(concat_node->left);
|
||||
Unref(concat_node);
|
||||
}
|
||||
} else {
|
||||
if (IsNodeBalanced(concat_node)) {
|
||||
AddNode(node);
|
||||
continue;
|
||||
}
|
||||
pending.push_back(concat_node->right);
|
||||
pending.push_back(concat_node->left);
|
||||
|
||||
if (concat_node->refcount.IsOne()) {
|
||||
concat_node->left = concat_freelist_;
|
||||
concat_freelist_ = concat_node;
|
||||
} else {
|
||||
Ref(concat_node->right);
|
||||
Ref(concat_node->left);
|
||||
Unref(concat_node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1175,7 +1181,7 @@ class CordForest {
|
|||
|
||||
// Collect together everything with which we will merge with node
|
||||
int i = 0;
|
||||
for (; node->length > min_length[i + 1]; ++i) {
|
||||
for (; node->length >= kMinLength[i + 1]; ++i) {
|
||||
auto& tree_at_i = trees_[i];
|
||||
|
||||
if (tree_at_i == nullptr) continue;
|
||||
|
@ -1186,7 +1192,7 @@ class CordForest {
|
|||
sum = AppendNode(node, sum);
|
||||
|
||||
// Insert sum into appropriate place in the forest
|
||||
for (; sum->length >= min_length[i]; ++i) {
|
||||
for (; sum->length >= kMinLength[i]; ++i) {
|
||||
auto& tree_at_i = trees_[i];
|
||||
if (tree_at_i == nullptr) continue;
|
||||
|
||||
|
@ -1194,7 +1200,7 @@ class CordForest {
|
|||
tree_at_i = nullptr;
|
||||
}
|
||||
|
||||
// min_length[0] == 1, which means sum->length >= min_length[0]
|
||||
// kMinLength[0] == 1, which means sum->length >= kMinLength[0]
|
||||
assert(i > 0);
|
||||
trees_[i - 1] = sum;
|
||||
}
|
||||
|
@ -1227,9 +1233,7 @@ class CordForest {
|
|||
}
|
||||
|
||||
size_t root_length_;
|
||||
|
||||
// use an inlined vector instead of a flat array to get bounds checking
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;
|
||||
std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_;
|
||||
|
||||
// List of concat nodes we can re-use for Cord balancing.
|
||||
CordRepConcat* concat_freelist_ = nullptr;
|
||||
|
@ -1330,7 +1334,7 @@ inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
|
|||
|
||||
inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
|
||||
size_t size_to_compare) const {
|
||||
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
|
||||
auto advance = [](Cord::InternalChunkIterator* it, absl::string_view* chunk) {
|
||||
if (!chunk->empty()) return true;
|
||||
++*it;
|
||||
if (it->bytes_remaining_ == 0) return false;
|
||||
|
@ -1338,7 +1342,7 @@ inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
|
|||
return true;
|
||||
};
|
||||
|
||||
Cord::ChunkIterator lhs_it = chunk_begin();
|
||||
Cord::InternalChunkIterator lhs_it = internal_chunk_begin();
|
||||
|
||||
// compared_size is inside first chunk.
|
||||
absl::string_view lhs_chunk =
|
||||
|
@ -1360,7 +1364,7 @@ inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
|
|||
|
||||
inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
|
||||
size_t size_to_compare) const {
|
||||
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
|
||||
auto advance = [](Cord::InternalChunkIterator* it, absl::string_view* chunk) {
|
||||
if (!chunk->empty()) return true;
|
||||
++*it;
|
||||
if (it->bytes_remaining_ == 0) return false;
|
||||
|
@ -1368,8 +1372,8 @@ inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
|
|||
return true;
|
||||
};
|
||||
|
||||
Cord::ChunkIterator lhs_it = chunk_begin();
|
||||
Cord::ChunkIterator rhs_it = rhs.chunk_begin();
|
||||
Cord::InternalChunkIterator lhs_it = internal_chunk_begin();
|
||||
Cord::InternalChunkIterator rhs_it = rhs.internal_chunk_begin();
|
||||
|
||||
// compared_size is inside both first chunks.
|
||||
absl::string_view lhs_chunk =
|
||||
|
@ -1503,8 +1507,11 @@ void Cord::CopyToArraySlowPath(char* dst) const {
|
|||
}
|
||||
}
|
||||
|
||||
Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
|
||||
assert(bytes_remaining_ > 0 && "Attempted to iterate past `end()`");
|
||||
template <typename StorageType>
|
||||
Cord::GenericChunkIterator<StorageType>&
|
||||
Cord::GenericChunkIterator<StorageType>::operator++() {
|
||||
ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 &&
|
||||
"Attempted to iterate past `end()`");
|
||||
assert(bytes_remaining_ >= current_chunk_.size());
|
||||
bytes_remaining_ -= current_chunk_.size();
|
||||
|
||||
|
@ -1542,8 +1549,10 @@ Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
|
|||
return *this;
|
||||
}
|
||||
|
||||
Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
|
||||
assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
|
||||
template <typename StorageType>
|
||||
Cord Cord::GenericChunkIterator<StorageType>::AdvanceAndReadBytes(size_t n) {
|
||||
ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
|
||||
"Attempted to iterate past `end()`");
|
||||
Cord subcord;
|
||||
|
||||
if (n <= InlineRep::kMaxInline) {
|
||||
|
@ -1655,7 +1664,8 @@ Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
|
|||
return subcord;
|
||||
}
|
||||
|
||||
void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
|
||||
template <typename StorageType>
|
||||
void Cord::GenericChunkIterator<StorageType>::AdvanceBytesSlowPath(size_t n) {
|
||||
assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
|
||||
assert(n >= current_chunk_.size()); // This should only be called when
|
||||
// iterating to a new node.
|
||||
|
@ -1714,7 +1724,7 @@ void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
|
|||
}
|
||||
|
||||
char Cord::operator[](size_t i) const {
|
||||
assert(i < size());
|
||||
ABSL_HARDENING_ASSERT(i < size());
|
||||
size_t offset = i;
|
||||
const CordRep* rep = contents_.tree();
|
||||
if (rep == nullptr) {
|
||||
|
@ -1841,18 +1851,18 @@ absl::string_view Cord::FlattenSlowPath() {
|
|||
}
|
||||
}
|
||||
|
||||
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
|
||||
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) {
|
||||
const int kIndentStep = 1;
|
||||
int indent = 0;
|
||||
absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
|
||||
absl::InlinedVector<int, kInlinedVectorSize> indents;
|
||||
cord_internal::CordTreeConstPath stack;
|
||||
cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents;
|
||||
for (;;) {
|
||||
*os << std::setw(3) << rep->refcount.Get();
|
||||
*os << " " << std::setw(7) << rep->length;
|
||||
*os << " [";
|
||||
if (include_data) *os << static_cast<void*>(rep);
|
||||
if (include_data) *os << static_cast<const void*>(rep);
|
||||
*os << "]";
|
||||
*os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
|
||||
*os << " " << (IsNodeBalanced(rep) ? 'b' : 'u');
|
||||
*os << " " << std::setw(indent) << "";
|
||||
if (rep->tag == CONCAT) {
|
||||
*os << "CONCAT depth=" << Depth(rep) << "\n";
|
||||
|
@ -1873,7 +1883,7 @@ static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
|
|||
} else {
|
||||
*os << "FLAT cap=" << TagToLength(rep->tag) << " [";
|
||||
if (include_data)
|
||||
*os << absl::CEscape(std::string(rep->data, rep->length));
|
||||
*os << absl::CEscape(absl::string_view(rep->data, rep->length));
|
||||
*os << "]\n";
|
||||
}
|
||||
if (stack.empty()) break;
|
||||
|
@ -1886,19 +1896,19 @@ static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
|
|||
ABSL_INTERNAL_CHECK(indents.empty(), "");
|
||||
}
|
||||
|
||||
static std::string ReportError(CordRep* root, CordRep* node) {
|
||||
static std::string ReportError(const CordRep* root, const CordRep* node) {
|
||||
std::ostringstream buf;
|
||||
buf << "Error at node " << node << " in:";
|
||||
DumpNode(root, true, &buf);
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
static bool VerifyNode(CordRep* root, CordRep* start_node,
|
||||
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
|
||||
bool full_validation) {
|
||||
absl::InlinedVector<CordRep*, 2> worklist;
|
||||
cord_internal::CordTreeConstPath worklist;
|
||||
worklist.push_back(start_node);
|
||||
do {
|
||||
CordRep* node = worklist.back();
|
||||
const CordRep* node = worklist.back();
|
||||
worklist.pop_back();
|
||||
|
||||
ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
|
||||
|
@ -1948,7 +1958,7 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
|
|||
// Iterate over the tree. cur_node is never a leaf node and leaf nodes will
|
||||
// never be appended to tree_stack. This reduces overhead from manipulating
|
||||
// tree_stack.
|
||||
absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
|
||||
cord_internal::CordTreeConstPath tree_stack;
|
||||
const CordRep* cur_node = rep;
|
||||
while (true) {
|
||||
const CordRep* next_node = nullptr;
|
||||
|
@ -1995,6 +2005,9 @@ std::ostream& operator<<(std::ostream& out, const Cord& cord) {
|
|||
return out;
|
||||
}
|
||||
|
||||
template class Cord::GenericChunkIterator<cord_internal::CordTreeMutablePath>;
|
||||
template class Cord::GenericChunkIterator<cord_internal::CordTreeDynamicPath>;
|
||||
|
||||
namespace strings_internal {
|
||||
size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; }
|
||||
size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; }
|
||||
|
|
|
@ -11,25 +11,52 @@
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// A Cord is a sequence of characters with some unusual access propreties.
|
||||
// A Cord supports efficient insertions and deletions at the start and end of
|
||||
// the byte sequence, but random access reads are slower, and random access
|
||||
// modifications are not supported by the API. Cord also provides cheap copies
|
||||
// (using a copy-on-write strategy) and cheap substring operations.
|
||||
//
|
||||
// Thread safety
|
||||
// -------------
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: cord.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// This file defines the `absl::Cord` data structure and operations on that data
|
||||
// structure. A Cord is a string-like sequence of characters optimized for
|
||||
// specific use cases. Unlike a `std::string`, which stores an array of
|
||||
// contiguous characters, Cord data is stored in a structure consisting of
|
||||
// separate, reference-counted "chunks." (Currently, this implementation is a
|
||||
// tree structure, though that implementation may change.)
|
||||
//
|
||||
// Because a Cord consists of these chunks, data can be added to or removed from
|
||||
// a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a
|
||||
// `std::string`, a Cord can therefore accomodate data that changes over its
|
||||
// lifetime, though it's not quite "mutable"; it can change only in the
|
||||
// attachment, detachment, or rearrangement of chunks of its constituent data.
|
||||
//
|
||||
// A Cord provides some benefit over `std::string` under the following (albeit
|
||||
// narrow) circumstances:
|
||||
//
|
||||
// * Cord data is designed to grow and shrink over a Cord's lifetime. Cord
|
||||
// provides efficient insertions and deletions at the start and end of the
|
||||
// character sequences, avoiding copies in those cases. Static data should
|
||||
// generally be stored as strings.
|
||||
// * External memory consisting of string-like data can be directly added to
|
||||
// a Cord without requiring copies or allocations.
|
||||
// * Cord data may be shared and copied cheaply. Cord provides a copy-on-write
|
||||
// implementation and cheap sub-Cord operations. Copying a Cord is an O(1)
|
||||
// operation.
|
||||
//
|
||||
// As a consequence to the above, Cord data is generally large. Small data
|
||||
// should generally use strings, as construction of a Cord requires some
|
||||
// overhead. Small Cords (<= 15 bytes) are represented inline, but most small
|
||||
// Cords are expected to grow over their lifetimes.
|
||||
//
|
||||
// Note that because a Cord is made up of separate chunked data, random access
|
||||
// to character data within a Cord is slower than within a `std::string`.
|
||||
//
|
||||
// Thread Safety
|
||||
//
|
||||
// Cord has the same thread-safety properties as many other types like
|
||||
// std::string, std::vector<>, int, etc -- it is thread-compatible. In
|
||||
// particular, if no thread may call a non-const method, then it is safe to
|
||||
// concurrently call const methods. Copying a Cord produces a new instance that
|
||||
// can be used concurrently with the original in arbitrary ways.
|
||||
//
|
||||
// Implementation is similar to the "Ropes" described in:
|
||||
// Ropes: An alternative to strings
|
||||
// Hans J. Boehm, Russ Atkinson, Michael Plass
|
||||
// Software Practice and Experience, December 1995
|
||||
// particular, if threads do not call non-const methods, then it is safe to call
|
||||
// const methods without synchronization. Copying a Cord produces a new instance
|
||||
// that can be used concurrently with the original in arbitrary ways.
|
||||
|
||||
#ifndef ABSL_STRINGS_CORD_H_
|
||||
#define ABSL_STRINGS_CORD_H_
|
||||
|
@ -68,6 +95,90 @@ template <typename H>
|
|||
H HashFragmentedCord(H, const Cord&);
|
||||
}
|
||||
|
||||
// Cord
|
||||
//
|
||||
// A Cord is a sequence of characters, designed to be more efficient than a
|
||||
// `std::string` in certain circumstances: namely, large string data that needs
|
||||
// to change over its lifetime or shared, especially when such data is shared
|
||||
// across API boundaries.
|
||||
//
|
||||
// A Cord stores its character data in a structure that allows efficient prepend
|
||||
// and append operations. This makes a Cord useful for large string data sent
|
||||
// over in a wire format that may need to be prepended or appended at some point
|
||||
// during the data exchange (e.g. HTTP, protocol buffers). For example, a
|
||||
// Cord is useful for storing an HTTP request, and prepending an HTTP header to
|
||||
// such a request.
|
||||
//
|
||||
// Cords should not be used for storing general string data, however. They
|
||||
// require overhead to construct and are slower than strings for random access.
|
||||
//
|
||||
// The Cord API provides the following common API operations:
|
||||
//
|
||||
// * Create or assign Cords out of existing string data, memory, or other Cords
|
||||
// * Append and prepend data to an existing Cord
|
||||
// * Create new Sub-Cords from existing Cord data
|
||||
// * Swap Cord data and compare Cord equality
|
||||
// * Write out Cord data by constructing a `std::string`
|
||||
//
|
||||
// Additionally, the API provides iterator utilities to iterate through Cord
|
||||
// data via chunks or character bytes.
|
||||
//
|
||||
|
||||
namespace cord_internal {
|
||||
|
||||
// It's expensive to keep a Cord's tree perfectly balanced, so instead we keep
|
||||
// trees approximately balanced. A tree node N of depth D(N) that contains a
|
||||
// string of L(N) characters is considered balanced if L >= Fibonacci(D + 2).
|
||||
// The "+ 2" is used to ensure that every balanced leaf node contains at least
|
||||
// one character. Here we presume that
|
||||
// Fibonacci(0) = 0
|
||||
// Fibonacci(1) = 1
|
||||
// Fibonacci(2) = 1
|
||||
// Fibonacci(3) = 2
|
||||
// ...
|
||||
// The algorithm is based on paper by Hans Boehm et al:
|
||||
// https://www.cs.rit.edu/usr/local/pub/jeh/courses/QUARTERS/FP/Labs/CedarRope/rope-paper.pdf
|
||||
// In this paper authors shows that rebalancing based on cord forest of already
|
||||
// balanced subtrees can be proven to never produce tree of depth larger than
|
||||
// largest Fibonacci number representable in the same integral type as cord size
|
||||
// For 64 bit integers this is the 93rd Fibonacci number. For 32 bit integrals
|
||||
// this is 47th Fibonacci number.
|
||||
constexpr size_t MaxCordDepth() { return sizeof(size_t) == 8 ? 93 : 47; }
|
||||
|
||||
// This class models fixed max size stack of CordRep pointers.
|
||||
// The elements are being pushed back and popped from the back.
|
||||
template <typename CordRepPtr, size_t N>
|
||||
class CordTreePath {
|
||||
public:
|
||||
CordTreePath() {}
|
||||
explicit CordTreePath(CordRepPtr root) { push_back(root); }
|
||||
|
||||
bool empty() const { return size_ == 0; }
|
||||
size_t size() const { return size_; }
|
||||
void clear() { size_ = 0; }
|
||||
|
||||
CordRepPtr back() { return data_[size_ - 1]; }
|
||||
|
||||
void pop_back() {
|
||||
--size_;
|
||||
assert(size_ < N);
|
||||
}
|
||||
void push_back(CordRepPtr elem) { data_[size_++] = elem; }
|
||||
|
||||
private:
|
||||
CordRepPtr data_[N];
|
||||
size_t size_ = 0;
|
||||
};
|
||||
|
||||
// Fixed length container for mutable "path" in cord tree, which can hold any
|
||||
// possible valid path in cord tree.
|
||||
using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>;
|
||||
// Variable length container for mutable "path" in cord tree. It starts with
|
||||
// capacity for 15 elements and grow if necessary.
|
||||
using CordTreeDynamicPath =
|
||||
absl::InlinedVector<absl::cord_internal::CordRep*, 15>;
|
||||
} // namespace cord_internal
|
||||
|
||||
// A Cord is a sequence of characters.
|
||||
class Cord {
|
||||
private:
|
||||
|
@ -75,175 +186,14 @@ class Cord {
|
|||
using EnableIfString =
|
||||
absl::enable_if_t<std::is_same<T, std::string>::value, int>;
|
||||
|
||||
public:
|
||||
// --------------------------------------------------------------------
|
||||
// Constructors, destructors and helper factories
|
||||
|
||||
// Create an empty cord
|
||||
constexpr Cord() noexcept;
|
||||
|
||||
// Cord is copyable and efficiently movable.
|
||||
// The moved-from state is valid but unspecified.
|
||||
Cord(const Cord& src);
|
||||
Cord(Cord&& src) noexcept;
|
||||
Cord& operator=(const Cord& x);
|
||||
Cord& operator=(Cord&& x) noexcept;
|
||||
|
||||
// Create a cord out of "src". This constructor is explicit on
|
||||
// purpose so that people do not get automatic type conversions.
|
||||
explicit Cord(absl::string_view src);
|
||||
Cord& operator=(absl::string_view src);
|
||||
|
||||
// These are templated to avoid ambiguities for types that are convertible to
|
||||
// both `absl::string_view` and `std::string`, such as `const char*`.
|
||||
//----------------------------------------------------------------------------
|
||||
// Cord::GenericChunkIterator
|
||||
//----------------------------------------------------------------------------
|
||||
//
|
||||
// Note that these functions reserve the right to reuse the `string&&`'s
|
||||
// memory and that they will do so in the future.
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
explicit Cord(T&& src) : Cord(absl::string_view(src)) {}
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
Cord& operator=(T&& src);
|
||||
|
||||
// Destroy the cord
|
||||
~Cord() {
|
||||
if (contents_.is_tree()) DestroyCordSlow();
|
||||
}
|
||||
|
||||
// Creates a Cord that takes ownership of external memory. The contents of
|
||||
// `data` are not copied.
|
||||
//
|
||||
// This function takes a callable that is invoked when all Cords are
|
||||
// finished with `data`. The data must remain live and unchanging until the
|
||||
// releaser is called. The requirements for the releaser are that it:
|
||||
// * is move constructible,
|
||||
// * supports `void operator()(absl::string_view) const` or
|
||||
// `void operator()() const`,
|
||||
// * does not have alignment requirement greater than what is guaranteed by
|
||||
// ::operator new. This is dictated by alignof(std::max_align_t) before
|
||||
// C++17 and __STDCPP_DEFAULT_NEW_ALIGNMENT__ if compiling with C++17 or
|
||||
// it is supported by the implementation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// Cord MakeCord(BlockPool* pool) {
|
||||
// Block* block = pool->NewBlock();
|
||||
// FillBlock(block);
|
||||
// return absl::MakeCordFromExternal(
|
||||
// block->ToStringView(),
|
||||
// [pool, block](absl::string_view v) {
|
||||
// pool->FreeBlock(block, v);
|
||||
// });
|
||||
// }
|
||||
//
|
||||
// WARNING: It's likely a bug if your releaser doesn't do anything.
|
||||
// For example, consider the following:
|
||||
//
|
||||
// void Foo(const char* buffer, int len) {
|
||||
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
|
||||
// [](absl::string_view) {});
|
||||
//
|
||||
// // BUG: If Bar() copies its cord for any reason, including keeping a
|
||||
// // substring of it, the lifetime of buffer might be extended beyond
|
||||
// // when Foo() returns.
|
||||
// Bar(c);
|
||||
// }
|
||||
template <typename Releaser>
|
||||
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Mutations
|
||||
|
||||
void Clear();
|
||||
|
||||
void Append(const Cord& src);
|
||||
void Append(Cord&& src);
|
||||
void Append(absl::string_view src);
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
void Append(T&& src);
|
||||
|
||||
void Prepend(const Cord& src);
|
||||
void Prepend(absl::string_view src);
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
void Prepend(T&& src);
|
||||
|
||||
void RemovePrefix(size_t n);
|
||||
void RemoveSuffix(size_t n);
|
||||
|
||||
// Returns a new cord representing the subrange [pos, pos + new_size) of
|
||||
// *this. If pos >= size(), the result is empty(). If
|
||||
// (pos + new_size) >= size(), the result is the subrange [pos, size()).
|
||||
Cord Subcord(size_t pos, size_t new_size) const;
|
||||
|
||||
friend void swap(Cord& x, Cord& y) noexcept;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Accessors
|
||||
|
||||
size_t size() const;
|
||||
bool empty() const;
|
||||
|
||||
// Returns the approximate number of bytes pinned by this Cord. Note that
|
||||
// Cords that share memory could each be "charged" independently for the same
|
||||
// shared memory.
|
||||
size_t EstimatedMemoryUsage() const;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Comparators
|
||||
|
||||
// Compares 'this' Cord with rhs. This function and its relatives
|
||||
// treat Cords as sequences of unsigned bytes. The comparison is a
|
||||
// straightforward lexicographic comparison. Return value:
|
||||
// -1 'this' Cord is smaller
|
||||
// 0 two Cords are equal
|
||||
// 1 'this' Cord is larger
|
||||
int Compare(absl::string_view rhs) const;
|
||||
int Compare(const Cord& rhs) const;
|
||||
|
||||
// Does 'this' cord start/end with rhs
|
||||
bool StartsWith(const Cord& rhs) const;
|
||||
bool StartsWith(absl::string_view rhs) const;
|
||||
bool EndsWith(absl::string_view rhs) const;
|
||||
bool EndsWith(const Cord& rhs) const;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Conversion to other types
|
||||
|
||||
explicit operator std::string() const;
|
||||
|
||||
// Copies the contents from `src` to `*dst`.
|
||||
//
|
||||
// This function optimizes the case of reusing the destination string since it
|
||||
// can reuse previously allocated capacity. However, this function does not
|
||||
// guarantee that pointers previously returned by `dst->data()` remain valid
|
||||
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
|
||||
// object, prefer to simply use the conversion operator to `std::string`.
|
||||
friend void CopyCordToString(const Cord& src, std::string* dst);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Iteration
|
||||
|
||||
class CharIterator;
|
||||
|
||||
// Type for iterating over the chunks of a `Cord`. See comments for
|
||||
// `Cord::chunk_begin()`, `Cord::chunk_end()` and `Cord::Chunks()` below for
|
||||
// preferred usage.
|
||||
//
|
||||
// Additional notes:
|
||||
// * The `string_view` returned by dereferencing a valid, non-`end()`
|
||||
// iterator is guaranteed to be non-empty.
|
||||
// * A `ChunkIterator` object is invalidated after any non-const
|
||||
// operation on the `Cord` object over which it iterates.
|
||||
// * Two `ChunkIterator` objects can be equality compared if and only if
|
||||
// they remain valid and iterate over the same `Cord`.
|
||||
// * This is a proxy iterator. This means the `string_view` returned by the
|
||||
// iterator does not live inside the Cord, and its lifetime is limited to
|
||||
// the lifetime of the iterator itself. To help prevent issues,
|
||||
// `ChunkIterator::reference` is not a true reference type and is
|
||||
// equivalent to `value_type`.
|
||||
// * The iterator keeps state that can grow for `Cord`s that contain many
|
||||
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
||||
// const reference instead of by value.
|
||||
class ChunkIterator {
|
||||
// A `Cord::GenericChunkIterator` provides an interface for the standard
|
||||
// `Cord::ChunkIterator` as well as some private implementations.
|
||||
template <typename StorageType>
|
||||
class GenericChunkIterator {
|
||||
public:
|
||||
using iterator_category = std::input_iterator_tag;
|
||||
using value_type = absl::string_view;
|
||||
|
@ -251,12 +201,12 @@ class Cord {
|
|||
using pointer = const value_type*;
|
||||
using reference = value_type;
|
||||
|
||||
ChunkIterator() = default;
|
||||
GenericChunkIterator() = default;
|
||||
|
||||
ChunkIterator& operator++();
|
||||
ChunkIterator operator++(int);
|
||||
bool operator==(const ChunkIterator& other) const;
|
||||
bool operator!=(const ChunkIterator& other) const;
|
||||
GenericChunkIterator& operator++();
|
||||
GenericChunkIterator operator++(int);
|
||||
bool operator==(const GenericChunkIterator& other) const;
|
||||
bool operator!=(const GenericChunkIterator& other) const;
|
||||
reference operator*() const;
|
||||
pointer operator->() const;
|
||||
|
||||
|
@ -265,7 +215,7 @@ class Cord {
|
|||
|
||||
private:
|
||||
// Constructs a `begin()` iterator from `cord`.
|
||||
explicit ChunkIterator(const Cord* cord);
|
||||
explicit GenericChunkIterator(const Cord* cord);
|
||||
|
||||
// Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than
|
||||
// `current_chunk_.size()`.
|
||||
|
@ -282,17 +232,248 @@ class Cord {
|
|||
// The current leaf, or `nullptr` if the iterator points to short data.
|
||||
// If the current chunk is a substring node, current_leaf_ points to the
|
||||
// underlying flat or external node.
|
||||
absl::cord_internal::CordRep* current_leaf_ = nullptr;
|
||||
cord_internal::CordRep* current_leaf_ = nullptr;
|
||||
// The number of bytes left in the `Cord` over which we are iterating.
|
||||
size_t bytes_remaining_ = 0;
|
||||
absl::InlinedVector<absl::cord_internal::CordRep*, 4>
|
||||
stack_of_right_children_;
|
||||
StorageType stack_of_right_children_;
|
||||
};
|
||||
template <typename IteratorType>
|
||||
class GenericChunkRange {
|
||||
public:
|
||||
explicit GenericChunkRange(const Cord* cord) : cord_(cord) {}
|
||||
|
||||
IteratorType begin() const { return IteratorType(cord_); }
|
||||
IteratorType end() const { return IteratorType(); }
|
||||
|
||||
private:
|
||||
const Cord* cord_;
|
||||
};
|
||||
|
||||
public:
|
||||
// Cord::Cord() Constructors
|
||||
|
||||
// Creates an empty Cord
|
||||
constexpr Cord() noexcept;
|
||||
|
||||
// Creates a Cord from an existing Cord. Cord is copyable and efficiently
|
||||
// movable. The moved-from state is valid but unspecified.
|
||||
Cord(const Cord& src);
|
||||
Cord(Cord&& src) noexcept;
|
||||
Cord& operator=(const Cord& x);
|
||||
Cord& operator=(Cord&& x) noexcept;
|
||||
|
||||
// Creates a Cord from a `src` string. This constructor is marked explicit to
|
||||
// prevent implicit Cord constructions from arguments convertible to an
|
||||
// `absl::string_view`.
|
||||
explicit Cord(absl::string_view src);
|
||||
Cord& operator=(absl::string_view src);
|
||||
|
||||
// Creates a Cord from a `std::string&&` rvalue. These constructors are
|
||||
// templated to avoid ambiguities for types that are convertible to both
|
||||
// `absl::string_view` and `std::string`, such as `const char*`.
|
||||
//
|
||||
// Note that these functions reserve the right to use the `string&&`'s
|
||||
// memory and that they will do so in the future.
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
explicit Cord(T&& src) : Cord(absl::string_view(src)) {}
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
Cord& operator=(T&& src);
|
||||
|
||||
// Cord::~Cord()
|
||||
//
|
||||
// Destructs the Cord
|
||||
~Cord() {
|
||||
if (contents_.is_tree()) DestroyCordSlow();
|
||||
}
|
||||
|
||||
// Cord::MakeCordFromExternal(data, callable)
|
||||
//
|
||||
// Creates a Cord that takes ownership of external string memory. The
|
||||
// contents of `data` are not copied to the Cord; instead, the external
|
||||
// memory is added to the Cord and reference-counted. This data may not be
|
||||
// changed for the life of the Cord, though it may be prepended or appended
|
||||
// to.
|
||||
//
|
||||
// `MakeCordFromExternal()` takes a callable "releaser" that is invoked when
|
||||
// the reference count for `data` reaches zero. As noted above, this data must
|
||||
// remain live until the releaser is invoked. The callable releaser also must:
|
||||
//
|
||||
// * be move constructible
|
||||
// * support `void operator()(absl::string_view) const` or `void operator()`
|
||||
// * not have alignment requirement greater than what is guaranteed by
|
||||
// `::operator new`. This alignment is dictated by
|
||||
// `alignof(std::max_align_t)` (pre-C++17 code) or
|
||||
// `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code).
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// Cord MakeCord(BlockPool* pool) {
|
||||
// Block* block = pool->NewBlock();
|
||||
// FillBlock(block);
|
||||
// return absl::MakeCordFromExternal(
|
||||
// block->ToStringView(),
|
||||
// [pool, block](absl::string_view v) {
|
||||
// pool->FreeBlock(block, v);
|
||||
// });
|
||||
// }
|
||||
//
|
||||
// WARNING: Because a Cord can be reference-counted, it's likely a bug if your
|
||||
// releaser doesn't do anything. For example, consider the following:
|
||||
//
|
||||
// void Foo(const char* buffer, int len) {
|
||||
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
|
||||
// [](absl::string_view) {});
|
||||
//
|
||||
// // BUG: If Bar() copies its cord for any reason, including keeping a
|
||||
// // substring of it, the lifetime of buffer might be extended beyond
|
||||
// // when Foo() returns.
|
||||
// Bar(c);
|
||||
// }
|
||||
template <typename Releaser>
|
||||
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
|
||||
|
||||
// Cord::Clear()
|
||||
//
|
||||
// Releases the Cord data. Any nodes that share data with other Cords, if
|
||||
// applicable, will have their reference counts reduced by 1.
|
||||
void Clear();
|
||||
|
||||
// Cord::Append()
|
||||
//
|
||||
// Appends data to the Cord, which may come from another Cord or other string
|
||||
// data.
|
||||
void Append(const Cord& src);
|
||||
void Append(Cord&& src);
|
||||
void Append(absl::string_view src);
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
void Append(T&& src);
|
||||
|
||||
// Cord::Prepend()
|
||||
//
|
||||
// Prepends data to the Cord, which may come from another Cord or other string
|
||||
// data.
|
||||
void Prepend(const Cord& src);
|
||||
void Prepend(absl::string_view src);
|
||||
template <typename T, EnableIfString<T> = 0>
|
||||
void Prepend(T&& src);
|
||||
|
||||
// Cord::RemovePrefix()
|
||||
//
|
||||
// Removes the first `n` bytes of a Cord.
|
||||
void RemovePrefix(size_t n);
|
||||
void RemoveSuffix(size_t n);
|
||||
|
||||
// Cord::Subcord()
|
||||
//
|
||||
// Returns a new Cord representing the subrange [pos, pos + new_size) of
|
||||
// *this. If pos >= size(), the result is empty(). If
|
||||
// (pos + new_size) >= size(), the result is the subrange [pos, size()).
|
||||
Cord Subcord(size_t pos, size_t new_size) const;
|
||||
|
||||
// swap()
|
||||
//
|
||||
// Swaps the data of Cord `x` with Cord `y`.
|
||||
friend void swap(Cord& x, Cord& y) noexcept;
|
||||
|
||||
// Cord::size()
|
||||
//
|
||||
// Returns the size of the Cord.
|
||||
size_t size() const;
|
||||
|
||||
// Cord::empty()
|
||||
//
|
||||
// Determines whether the given Cord is empty, returning `true` is so.
|
||||
bool empty() const;
|
||||
|
||||
// Cord:EstimatedMemoryUsage()
|
||||
//
|
||||
// Returns the *approximate* number of bytes held in full or in part by this
|
||||
// Cord (which may not remain the same between invocations). Note that Cords
|
||||
// that share memory could each be "charged" independently for the same shared
|
||||
// memory.
|
||||
size_t EstimatedMemoryUsage() const;
|
||||
|
||||
// Cord::Compare()
|
||||
//
|
||||
// Compares 'this' Cord with rhs. This function and its relatives treat Cords
|
||||
// as sequences of unsigned bytes. The comparison is a straightforward
|
||||
// lexicographic comparison. `Cord::Compare()` returns values as follows:
|
||||
//
|
||||
// -1 'this' Cord is smaller
|
||||
// 0 two Cords are equal
|
||||
// 1 'this' Cord is larger
|
||||
int Compare(absl::string_view rhs) const;
|
||||
int Compare(const Cord& rhs) const;
|
||||
|
||||
// Cord::StartsWith()
|
||||
//
|
||||
// Determines whether the Cord starts with the passed string data `rhs`.
|
||||
bool StartsWith(const Cord& rhs) const;
|
||||
bool StartsWith(absl::string_view rhs) const;
|
||||
|
||||
// Cord::EndsWidth()
|
||||
//
|
||||
// Determines whether the Cord ends with the passed string data `rhs`.
|
||||
bool EndsWith(absl::string_view rhs) const;
|
||||
bool EndsWith(const Cord& rhs) const;
|
||||
|
||||
// Cord::operator std::string()
|
||||
//
|
||||
// Converts a Cord into a `std::string()`. This operator is marked explicit to
|
||||
// prevent unintended Cord usage in functions that take a string.
|
||||
explicit operator std::string() const;
|
||||
|
||||
// CopyCordToString()
|
||||
//
|
||||
// Copies the contents of a `src` Cord into a `*dst` string.
|
||||
//
|
||||
// This function optimizes the case of reusing the destination string since it
|
||||
// can reuse previously allocated capacity. However, this function does not
|
||||
// guarantee that pointers previously returned by `dst->data()` remain valid
|
||||
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
|
||||
// object, prefer to simply use the conversion operator to `std::string`.
|
||||
friend void CopyCordToString(const Cord& src, std::string* dst);
|
||||
|
||||
class CharIterator;
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Cord::ChunkIterator
|
||||
//----------------------------------------------------------------------------
|
||||
//
|
||||
// A `Cord::ChunkIterator` allows iteration over the constituent chunks of its
|
||||
// Cord. Such iteration allows you to perform non-const operatons on the data
|
||||
// of a Cord without modifying it.
|
||||
//
|
||||
// Generally, you do not instantiate a `Cord::ChunkIterator` directly;
|
||||
// instead, you create one implicitly through use of the `Cord::Chunks()`
|
||||
// member function.
|
||||
//
|
||||
// The `Cord::ChunkIterator` has the following properties:
|
||||
//
|
||||
// * The iterator is invalidated after any non-const operation on the
|
||||
// Cord object over which it iterates.
|
||||
// * The `string_view` returned by dereferencing a valid, non-`end()`
|
||||
// iterator is guaranteed to be non-empty.
|
||||
// * Two `ChunkIterator` objects can be compared equal if and only if they
|
||||
// remain valid and iterate over the same Cord.
|
||||
// * The iterator in this case is a proxy iterator; the `string_view`
|
||||
// returned by the iterator does not live inside the Cord, and its
|
||||
// lifetime is limited to the lifetime of the iterator itself. To help
|
||||
// prevent lifetime issues, `ChunkIterator::reference` is not a true
|
||||
// reference type and is equivalent to `value_type`.
|
||||
// * The iterator keeps state that can grow for Cords that contain many
|
||||
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
||||
// const reference instead of by value.
|
||||
using ChunkIterator =
|
||||
GenericChunkIterator<cord_internal::CordTreeDynamicPath>;
|
||||
|
||||
// Cord::ChunkIterator::chunk_begin()
|
||||
//
|
||||
// Returns an iterator to the first chunk of the `Cord`.
|
||||
//
|
||||
// This is useful for getting a `ChunkIterator` outside the context of a
|
||||
// range-based for-loop (in which case see `Cord::Chunks()` below).
|
||||
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for
|
||||
// iterating over the chunks of a Cord. This method may be useful for getting
|
||||
// a `ChunkIterator` where range-based for-loops are not useful.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
|
@ -301,26 +482,35 @@ class Cord {
|
|||
// return std::find(c.chunk_begin(), c.chunk_end(), s);
|
||||
// }
|
||||
ChunkIterator chunk_begin() const;
|
||||
|
||||
// Cord::ChunkItertator::chunk_end()
|
||||
//
|
||||
// Returns an iterator one increment past the last chunk of the `Cord`.
|
||||
//
|
||||
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for
|
||||
// iterating over the chunks of a Cord. This method may be useful for getting
|
||||
// a `ChunkIterator` where range-based for-loops may not be available.
|
||||
ChunkIterator chunk_end() const;
|
||||
|
||||
// Convenience wrapper over `Cord::chunk_begin()` and `Cord::chunk_end()` to
|
||||
// enable range-based for-loop iteration over `Cord` chunks.
|
||||
//----------------------------------------------------------------------------
|
||||
// Cord::ChunkIterator::ChunkRange
|
||||
//----------------------------------------------------------------------------
|
||||
//
|
||||
// Prefer to use `Cord::Chunks()` below instead of constructing this directly.
|
||||
class ChunkRange {
|
||||
public:
|
||||
explicit ChunkRange(const Cord* cord) : cord_(cord) {}
|
||||
// `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,
|
||||
// producing an iterator which can be used within a range-based for loop.
|
||||
// Construction of a `ChunkRange` will return an iterator pointing to the
|
||||
// first chunk of the Cord. Generally, do not construct a `ChunkRange`
|
||||
// directly; instead, prefer to use the `Cord::Chunks()` method.
|
||||
//
|
||||
// Implementation note: `ChunkRange` is simply a convenience wrapper over
|
||||
// `Cord::chunk_begin()` and `Cord::chunk_end()`.
|
||||
using ChunkRange = GenericChunkRange<ChunkIterator>;
|
||||
|
||||
ChunkIterator begin() const;
|
||||
ChunkIterator end() const;
|
||||
|
||||
private:
|
||||
const Cord* cord_;
|
||||
};
|
||||
|
||||
// Returns a range for iterating over the chunks of a `Cord` with a
|
||||
// range-based for-loop.
|
||||
// Cord::Chunks()
|
||||
//
|
||||
// Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks
|
||||
// of a `Cord` with a range-based for-loop. For most iteration tasks on a
|
||||
// Cord, use `Cord::Chunks()` to retrieve this iterator.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
|
@ -337,22 +527,30 @@ class Cord {
|
|||
// }
|
||||
ChunkRange Chunks() const;
|
||||
|
||||
// Type for iterating over the characters of a `Cord`. See comments for
|
||||
// `Cord::char_begin()`, `Cord::char_end()` and `Cord::Chars()` below for
|
||||
// preferred usage.
|
||||
//----------------------------------------------------------------------------
|
||||
// Cord::CharIterator
|
||||
//----------------------------------------------------------------------------
|
||||
//
|
||||
// Additional notes:
|
||||
// * A `CharIterator` object is invalidated after any non-const
|
||||
// operation on the `Cord` object over which it iterates.
|
||||
// * Two `CharIterator` objects can be equality compared if and only if
|
||||
// they remain valid and iterate over the same `Cord`.
|
||||
// * The iterator keeps state that can grow for `Cord`s that contain many
|
||||
// A `Cord::CharIterator` allows iteration over the constituent characters of
|
||||
// a `Cord`.
|
||||
//
|
||||
// Generally, you do not instantiate a `Cord::CharIterator` directly; instead,
|
||||
// you create one implicitly through use of the `Cord::Chars()` member
|
||||
// function.
|
||||
//
|
||||
// A `Cord::CharIterator` has the following properties:
|
||||
//
|
||||
// * The iterator is invalidated after any non-const operation on the
|
||||
// Cord object over which it iterates.
|
||||
// * Two `CharIterator` objects can be compared equal if and only if they
|
||||
// remain valid and iterate over the same Cord.
|
||||
// * The iterator keeps state that can grow for Cords that contain many
|
||||
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
||||
// const reference instead of by value.
|
||||
// * This type cannot be a forward iterator because a `Cord` can reuse
|
||||
// sections of memory. This violates the requirement that if dereferencing
|
||||
// two iterators returns the same object, the iterators must compare
|
||||
// equal.
|
||||
// * This type cannot act as a forward iterator because a `Cord` can reuse
|
||||
// sections of memory. This fact violates the requirement for forward
|
||||
// iterators to compare equal if dereferencing them returns the same
|
||||
// object.
|
||||
class CharIterator {
|
||||
public:
|
||||
using iterator_category = std::input_iterator_tag;
|
||||
|
@ -378,34 +576,56 @@ class Cord {
|
|||
ChunkIterator chunk_iterator_;
|
||||
};
|
||||
|
||||
// Advances `*it` by `n_bytes` and returns the bytes passed as a `Cord`.
|
||||
// Cord::CharIterator::AdvanceAndRead()
|
||||
//
|
||||
// `n_bytes` must be less than or equal to the number of bytes remaining for
|
||||
// iteration. Otherwise the behavior is undefined. It is valid to pass
|
||||
// `char_end()` and 0.
|
||||
// Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes
|
||||
// advanced as a separate `Cord`. `n_bytes` must be less than or equal to the
|
||||
// number of bytes within the Cord; otherwise, behavior is undefined. It is
|
||||
// valid to pass `char_end()` and `0`.
|
||||
static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);
|
||||
|
||||
// Advances `*it` by `n_bytes`.
|
||||
// Cord::CharIterator::Advance()
|
||||
//
|
||||
// `n_bytes` must be less than or equal to the number of bytes remaining for
|
||||
// iteration. Otherwise the behavior is undefined. It is valid to pass
|
||||
// `char_end()` and 0.
|
||||
// Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than
|
||||
// or equal to the number of bytes remaining within the Cord; otherwise,
|
||||
// behavior is undefined. It is valid to pass `char_end()` and `0`.
|
||||
static void Advance(CharIterator* it, size_t n_bytes);
|
||||
|
||||
// Cord::CharIterator::ChunkRemaining()
|
||||
//
|
||||
// Returns the longest contiguous view starting at the iterator's position.
|
||||
//
|
||||
// `it` must be dereferenceable.
|
||||
static absl::string_view ChunkRemaining(const CharIterator& it);
|
||||
|
||||
// Cord::CharIterator::char_begin()
|
||||
//
|
||||
// Returns an iterator to the first character of the `Cord`.
|
||||
//
|
||||
// Generally, prefer using `Cord::Chars()` within a range-based for loop for
|
||||
// iterating over the chunks of a Cord. This method may be useful for getting
|
||||
// a `CharIterator` where range-based for-loops may not be available.
|
||||
CharIterator char_begin() const;
|
||||
|
||||
// Cord::CharIterator::char_end()
|
||||
//
|
||||
// Returns an iterator to one past the last character of the `Cord`.
|
||||
//
|
||||
// Generally, prefer using `Cord::Chars()` within a range-based for loop for
|
||||
// iterating over the chunks of a Cord. This method may be useful for getting
|
||||
// a `CharIterator` where range-based for-loops are not useful.
|
||||
CharIterator char_end() const;
|
||||
|
||||
// Convenience wrapper over `Cord::char_begin()` and `Cord::char_end()` to
|
||||
// enable range-based for-loop iterator over the characters of a `Cord`.
|
||||
// Cord::CharIterator::CharRange
|
||||
//
|
||||
// Prefer to use `Cord::Chars()` below instead of constructing this directly.
|
||||
// `CharRange` is a helper class for iterating over the characters of a
|
||||
// producing an iterator which can be used within a range-based for loop.
|
||||
// Construction of a `CharRange` will return an iterator pointing to the first
|
||||
// character of the Cord. Generally, do not construct a `CharRange` directly;
|
||||
// instead, prefer to use the `Cord::Chars()` method show below.
|
||||
//
|
||||
// Implementation note: `CharRange` is simply a convenience wrapper over
|
||||
// `Cord::char_begin()` and `Cord::char_end()`.
|
||||
class CharRange {
|
||||
public:
|
||||
explicit CharRange(const Cord* cord) : cord_(cord) {}
|
||||
|
@ -417,8 +637,11 @@ class Cord {
|
|||
const Cord* cord_;
|
||||
};
|
||||
|
||||
// Returns a range for iterating over the characters of a `Cord` with a
|
||||
// range-based for-loop.
|
||||
// Cord::CharIterator::Chars()
|
||||
//
|
||||
// Returns a `Cord::CharIterator` for iterating over the characters of a
|
||||
// `Cord` with a range-based for-loop. For most character-based iteration
|
||||
// tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
|
@ -435,23 +658,26 @@ class Cord {
|
|||
// }
|
||||
CharRange Chars() const;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Miscellaneous
|
||||
|
||||
// Get the "i"th character of 'this' and return it.
|
||||
// NOTE: This routine is reasonably efficient. It is roughly
|
||||
// logarithmic in the number of nodes that make up the cord. Still,
|
||||
// if you need to iterate over the contents of a cord, you should
|
||||
// use a CharIterator/CordIterator rather than call operator[] or Get()
|
||||
// repeatedly in a loop.
|
||||
// Cord::operator[]
|
||||
//
|
||||
// REQUIRES: 0 <= i < size()
|
||||
// Get the "i"th character of the Cord and returns it, provided that
|
||||
// 0 <= i < Cord.size().
|
||||
//
|
||||
// NOTE: This routine is reasonably efficient. It is roughly
|
||||
// logarithmic based on the number of chunks that make up the cord. Still,
|
||||
// if you need to iterate over the contents of a cord, you should
|
||||
// use a CharIterator/ChunkIterator rather than call operator[] or Get()
|
||||
// repeatedly in a loop.
|
||||
char operator[](size_t i) const;
|
||||
|
||||
// Cord::TryFlat()
|
||||
//
|
||||
// If this cord's representation is a single flat array, return a
|
||||
// string_view referencing that array. Otherwise return nullopt.
|
||||
absl::optional<absl::string_view> TryFlat() const;
|
||||
|
||||
// Cord::Flatten()
|
||||
//
|
||||
// Flattens the cord into a single array and returns a view of the data.
|
||||
//
|
||||
// If the cord was already flat, the contents are not modified.
|
||||
|
@ -574,6 +800,14 @@ class Cord {
|
|||
static bool GetFlatAux(absl::cord_internal::CordRep* rep,
|
||||
absl::string_view* fragment);
|
||||
|
||||
// Iterators for use inside Cord implementation
|
||||
using InternalChunkIterator =
|
||||
GenericChunkIterator<cord_internal::CordTreeMutablePath>;
|
||||
using InternalChunkRange = GenericChunkRange<InternalChunkIterator>;
|
||||
|
||||
InternalChunkIterator internal_chunk_begin() const;
|
||||
InternalChunkRange InternalChunks() const;
|
||||
|
||||
// Helper for ForEachChunk()
|
||||
static void ForEachChunkAux(
|
||||
absl::cord_internal::CordRep* rep,
|
||||
|
@ -608,6 +842,11 @@ class Cord {
|
|||
void AppendImpl(C&& src);
|
||||
};
|
||||
|
||||
extern template class Cord::GenericChunkIterator<
|
||||
cord_internal::CordTreeMutablePath>;
|
||||
extern template class Cord::GenericChunkIterator<
|
||||
cord_internal::CordTreeDynamicPath>;
|
||||
|
||||
ABSL_NAMESPACE_END
|
||||
} // namespace absl
|
||||
|
||||
|
@ -947,7 +1186,9 @@ inline bool Cord::StartsWith(absl::string_view rhs) const {
|
|||
return EqualsImpl(rhs, rhs_size);
|
||||
}
|
||||
|
||||
inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
|
||||
template <typename StorageType>
|
||||
inline Cord::GenericChunkIterator<StorageType>::GenericChunkIterator(
|
||||
const Cord* cord)
|
||||
: bytes_remaining_(cord->size()) {
|
||||
if (cord->empty()) return;
|
||||
if (cord->contents_.is_tree()) {
|
||||
|
@ -958,37 +1199,50 @@ inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
|
|||
}
|
||||
}
|
||||
|
||||
inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {
|
||||
ChunkIterator tmp(*this);
|
||||
template <typename StorageType>
|
||||
inline Cord::GenericChunkIterator<StorageType>
|
||||
Cord::GenericChunkIterator<StorageType>::operator++(int) {
|
||||
GenericChunkIterator tmp(*this);
|
||||
operator++();
|
||||
return tmp;
|
||||
}
|
||||
|
||||
inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {
|
||||
template <typename StorageType>
|
||||
inline bool Cord::GenericChunkIterator<StorageType>::operator==(
|
||||
const GenericChunkIterator<StorageType>& other) const {
|
||||
return bytes_remaining_ == other.bytes_remaining_;
|
||||
}
|
||||
|
||||
inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {
|
||||
template <typename StorageType>
|
||||
inline bool Cord::GenericChunkIterator<StorageType>::operator!=(
|
||||
const GenericChunkIterator<StorageType>& other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
|
||||
inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {
|
||||
assert(bytes_remaining_ != 0);
|
||||
template <typename StorageType>
|
||||
inline typename Cord::GenericChunkIterator<StorageType>::reference
|
||||
Cord::GenericChunkIterator<StorageType>::operator*() const {
|
||||
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
|
||||
return current_chunk_;
|
||||
}
|
||||
|
||||
inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {
|
||||
assert(bytes_remaining_ != 0);
|
||||
template <typename StorageType>
|
||||
inline typename Cord::GenericChunkIterator<StorageType>::pointer
|
||||
Cord::GenericChunkIterator<StorageType>::operator->() const {
|
||||
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
|
||||
return ¤t_chunk_;
|
||||
}
|
||||
|
||||
inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {
|
||||
template <typename StorageType>
|
||||
inline void Cord::GenericChunkIterator<StorageType>::RemoveChunkPrefix(
|
||||
size_t n) {
|
||||
assert(n < current_chunk_.size());
|
||||
current_chunk_.remove_prefix(n);
|
||||
bytes_remaining_ -= n;
|
||||
}
|
||||
|
||||
inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {
|
||||
template <typename StorageType>
|
||||
inline void Cord::GenericChunkIterator<StorageType>::AdvanceBytes(size_t n) {
|
||||
if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {
|
||||
RemoveChunkPrefix(n);
|
||||
} else if (n != 0) {
|
||||
|
@ -1002,14 +1256,6 @@ inline Cord::ChunkIterator Cord::chunk_begin() const {
|
|||
|
||||
inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }
|
||||
|
||||
inline Cord::ChunkIterator Cord::ChunkRange::begin() const {
|
||||
return cord_->chunk_begin();
|
||||
}
|
||||
|
||||
inline Cord::ChunkIterator Cord::ChunkRange::end() const {
|
||||
return cord_->chunk_end();
|
||||
}
|
||||
|
||||
inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }
|
||||
|
||||
inline Cord::CharIterator& Cord::CharIterator::operator++() {
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include "absl/base/config.h"
|
||||
#include "absl/base/internal/endian.h"
|
||||
#include "absl/base/internal/raw_logging.h"
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/container/fixed_array.h"
|
||||
#include "absl/strings/cord_test_helpers.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
|
@ -1402,6 +1403,53 @@ TEST(CordChunkIterator, Operations) {
|
|||
VerifyChunkIterator(subcords, 128);
|
||||
}
|
||||
|
||||
TEST(CordChunkIterator, MaxLengthFullTree) {
|
||||
// Start with a 1-byte cord, and then double its length in a loop. We should
|
||||
// be able to do this until the point where we would overflow size_t.
|
||||
|
||||
absl::Cord cord;
|
||||
size_t size = 1;
|
||||
AddExternalMemory("x", &cord);
|
||||
EXPECT_EQ(cord.size(), size);
|
||||
|
||||
const int kCordLengthDoublingLimit = std::numeric_limits<size_t>::digits - 1;
|
||||
for (int i = 0; i < kCordLengthDoublingLimit; ++i) {
|
||||
cord.Prepend(absl::Cord(cord));
|
||||
size <<= 1;
|
||||
|
||||
EXPECT_EQ(cord.size(), size);
|
||||
|
||||
auto chunk_it = cord.chunk_begin();
|
||||
EXPECT_EQ(*chunk_it, "x");
|
||||
}
|
||||
|
||||
EXPECT_DEATH_IF_SUPPORTED(
|
||||
(cord.Prepend(absl::Cord(cord)), *cord.chunk_begin()),
|
||||
"Cord is too long");
|
||||
}
|
||||
|
||||
TEST(CordChunkIterator, MaxDepth) {
|
||||
// By reusing nodes, it's possible in pathological cases to build a Cord that
|
||||
// exceeds both the maximum permissible length and depth. In this case, the
|
||||
// violation of the maximum depth is reported.
|
||||
absl::Cord left_child;
|
||||
AddExternalMemory("x", &left_child);
|
||||
absl::Cord root = left_child;
|
||||
|
||||
for (int i = 0; i < absl::cord_internal::MaxCordDepth() - 2; ++i) {
|
||||
size_t new_size = left_child.size() + root.size();
|
||||
root.Prepend(left_child);
|
||||
EXPECT_EQ(root.size(), new_size);
|
||||
|
||||
auto chunk_it = root.chunk_begin();
|
||||
EXPECT_EQ(*chunk_it, "x");
|
||||
|
||||
std::swap(left_child, root);
|
||||
}
|
||||
|
||||
EXPECT_DEATH_IF_SUPPORTED(root.Prepend(left_child), "Cord is too long");
|
||||
}
|
||||
|
||||
TEST(CordCharIterator, Traits) {
|
||||
static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value,
|
||||
"");
|
||||
|
@ -1580,3 +1628,23 @@ TEST(Cord, SmallBufferAssignFromOwnData) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(CordDeathTest, Hardening) {
|
||||
absl::Cord cord("hello");
|
||||
// These statement should abort the program in all builds modes.
|
||||
EXPECT_DEATH_IF_SUPPORTED(cord.RemovePrefix(6), "");
|
||||
EXPECT_DEATH_IF_SUPPORTED(cord.RemoveSuffix(6), "");
|
||||
|
||||
bool test_hardening = false;
|
||||
ABSL_HARDENING_ASSERT([&]() {
|
||||
// This only runs when ABSL_HARDENING_ASSERT is active.
|
||||
test_hardening = true;
|
||||
return true;
|
||||
}());
|
||||
if (!test_hardening) return;
|
||||
|
||||
EXPECT_DEATH_IF_SUPPORTED(cord[5], "");
|
||||
EXPECT_DEATH_IF_SUPPORTED(*cord.chunk_end(), "");
|
||||
EXPECT_DEATH_IF_SUPPORTED(static_cast<void>(cord.chunk_end()->empty()), "");
|
||||
EXPECT_DEATH_IF_SUPPORTED(++cord.chunk_end(), "");
|
||||
}
|
||||
|
|
|
@ -155,8 +155,7 @@ enum class FormatConversionChar : uint8_t {
|
|||
d, i, o, u, x, X, // int
|
||||
f, F, e, E, g, G, a, A, // float
|
||||
n, p, // misc
|
||||
kNone,
|
||||
none = kNone
|
||||
kNone
|
||||
};
|
||||
// clang-format on
|
||||
|
||||
|
@ -288,11 +287,6 @@ class FormatConversionSpec {
|
|||
// negative value.
|
||||
int precision() const { return precision_; }
|
||||
|
||||
// Deprecated (use has_x_flag() instead).
|
||||
Flags flags() const { return flags_; }
|
||||
// Deprecated
|
||||
FormatConversionChar conv() const { return conversion_char(); }
|
||||
|
||||
private:
|
||||
friend struct str_format_internal::FormatConversionSpecImplFriend;
|
||||
FormatConversionChar conv_ = FormatConversionChar::kNone;
|
||||
|
@ -344,15 +338,7 @@ enum class FormatConversionCharSet : uint64_t {
|
|||
kFloating = a | e | f | g | A | E | F | G,
|
||||
kNumeric = kIntegral | kFloating,
|
||||
kString = s,
|
||||
kPointer = p,
|
||||
|
||||
// The following are deprecated
|
||||
star = kStar,
|
||||
integral = kIntegral,
|
||||
floating = kFloating,
|
||||
numeric = kNumeric,
|
||||
string = kString,
|
||||
pointer = kPointer
|
||||
kPointer = p
|
||||
};
|
||||
|
||||
// Type safe OR operator.
|
||||
|
|
|
@ -48,7 +48,7 @@
|
|||
|
||||
namespace absl {
|
||||
ABSL_NAMESPACE_BEGIN
|
||||
using std::string_view;
|
||||
using string_view = std::string_view;
|
||||
ABSL_NAMESPACE_END
|
||||
} // namespace absl
|
||||
|
||||
|
|
Loading…
Reference in a new issue