feat(third_party/bazel): Check in rules_haskell from Tweag

This commit is contained in:
Vincent Ambo 2019-07-04 11:18:12 +01:00
parent 2eb1dc26e4
commit f723b8b878
479 changed files with 51484 additions and 0 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,655 @@
{-# LANGUAGE CPP, FlexibleInstances, Rank2Types, BangPatterns #-}
-- |
-- Module : Data.Vector.Fusion.Bundle
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Bundles for stream fusion
--
module Data.Vector.Fusion.Bundle (
-- * Types
Step(..), Chunk(..), Bundle, MBundle,
-- * In-place markers
inplace,
-- * Size hints
size, sized,
-- * Length information
length, null,
-- * Construction
empty, singleton, cons, snoc, replicate, generate, (++),
-- * Accessing individual elements
head, last, (!!), (!?),
-- * Substreams
slice, init, tail, take, drop,
-- * Mapping
map, concatMap, flatten, unbox,
-- * Zipping
indexed, indexedR,
zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
zip, zip3, zip4, zip5, zip6,
-- * Filtering
filter, takeWhile, dropWhile,
-- * Searching
elem, notElem, find, findIndex,
-- * Folding
foldl, foldl1, foldl', foldl1', foldr, foldr1,
-- * Specialised folds
and, or,
-- * Unfolding
unfoldr, unfoldrN, iterateN,
-- * Scans
prescanl, prescanl',
postscanl, postscanl',
scanl, scanl',
scanl1, scanl1',
-- * Enumerations
enumFromStepN, enumFromTo, enumFromThenTo,
-- * Conversions
toList, fromList, fromListN, unsafeFromList, lift,
fromVector, reVector, fromVectors, concatVectors,
-- * Monadic combinators
mapM, mapM_, zipWithM, zipWithM_, filterM, foldM, fold1M, foldM', fold1M',
eq, cmp, eqBy, cmpBy
) where
import Data.Vector.Generic.Base ( Vector )
import Data.Vector.Fusion.Bundle.Size
import Data.Vector.Fusion.Util
import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
import Data.Vector.Fusion.Bundle.Monadic ( Chunk(..) )
import qualified Data.Vector.Fusion.Bundle.Monadic as M
import qualified Data.Vector.Fusion.Stream.Monadic as S
import Prelude hiding ( length, null,
replicate, (++),
head, last, (!!),
init, tail, take, drop,
map, concatMap,
zipWith, zipWith3, zip, zip3,
filter, takeWhile, dropWhile,
elem, notElem,
foldl, foldl1, foldr, foldr1,
and, or,
scanl, scanl1,
enumFromTo, enumFromThenTo,
mapM, mapM_ )
#if MIN_VERSION_base(4,9,0)
import Data.Functor.Classes (Eq1 (..), Ord1 (..))
#endif
import GHC.Base ( build )
-- Data.Vector.Internal.Check is unused
#define NOT_VECTOR_MODULE
#include "vector.h"
-- | The type of pure streams
type Bundle = M.Bundle Id
-- | Alternative name for monadic streams
type MBundle = M.Bundle
inplace :: (forall m. Monad m => S.Stream m a -> S.Stream m b)
-> (Size -> Size) -> Bundle v a -> Bundle v b
{-# INLINE_FUSED inplace #-}
inplace f g b = b `seq` M.fromStream (f (M.elements b)) (g (M.size b))
{-# RULES
"inplace/inplace [Vector]"
forall (f1 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
(f2 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
g1 g2 s.
inplace f1 g1 (inplace f2 g2 s) = inplace (f1 . f2) (g1 . g2) s #-}
-- | Convert a pure stream to a monadic stream
lift :: Monad m => Bundle v a -> M.Bundle m v a
{-# INLINE_FUSED lift #-}
lift (M.Bundle (Stream step s) (Stream vstep t) v sz)
= M.Bundle (Stream (return . unId . step) s)
(Stream (return . unId . vstep) t) v sz
-- | 'Size' hint of a 'Bundle'
size :: Bundle v a -> Size
{-# INLINE size #-}
size = M.size
-- | Attach a 'Size' hint to a 'Bundle'
sized :: Bundle v a -> Size -> Bundle v a
{-# INLINE sized #-}
sized = M.sized
-- Length
-- ------
-- | Length of a 'Bundle'
length :: Bundle v a -> Int
{-# INLINE length #-}
length = unId . M.length
-- | Check if a 'Bundle' is empty
null :: Bundle v a -> Bool
{-# INLINE null #-}
null = unId . M.null
-- Construction
-- ------------
-- | Empty 'Bundle'
empty :: Bundle v a
{-# INLINE empty #-}
empty = M.empty
-- | Singleton 'Bundle'
singleton :: a -> Bundle v a
{-# INLINE singleton #-}
singleton = M.singleton
-- | Replicate a value to a given length
replicate :: Int -> a -> Bundle v a
{-# INLINE replicate #-}
replicate = M.replicate
-- | Generate a stream from its indices
generate :: Int -> (Int -> a) -> Bundle v a
{-# INLINE generate #-}
generate = M.generate
-- | Prepend an element
cons :: a -> Bundle v a -> Bundle v a
{-# INLINE cons #-}
cons = M.cons
-- | Append an element
snoc :: Bundle v a -> a -> Bundle v a
{-# INLINE snoc #-}
snoc = M.snoc
infixr 5 ++
-- | Concatenate two 'Bundle's
(++) :: Bundle v a -> Bundle v a -> Bundle v a
{-# INLINE (++) #-}
(++) = (M.++)
-- Accessing elements
-- ------------------
-- | First element of the 'Bundle' or error if empty
head :: Bundle v a -> a
{-# INLINE head #-}
head = unId . M.head
-- | Last element of the 'Bundle' or error if empty
last :: Bundle v a -> a
{-# INLINE last #-}
last = unId . M.last
infixl 9 !!
-- | Element at the given position
(!!) :: Bundle v a -> Int -> a
{-# INLINE (!!) #-}
s !! i = unId (s M.!! i)
infixl 9 !?
-- | Element at the given position or 'Nothing' if out of bounds
(!?) :: Bundle v a -> Int -> Maybe a
{-# INLINE (!?) #-}
s !? i = unId (s M.!? i)
-- Substreams
-- ----------
-- | Extract a substream of the given length starting at the given position.
slice :: Int -- ^ starting index
-> Int -- ^ length
-> Bundle v a
-> Bundle v a
{-# INLINE slice #-}
slice = M.slice
-- | All but the last element
init :: Bundle v a -> Bundle v a
{-# INLINE init #-}
init = M.init
-- | All but the first element
tail :: Bundle v a -> Bundle v a
{-# INLINE tail #-}
tail = M.tail
-- | The first @n@ elements
take :: Int -> Bundle v a -> Bundle v a
{-# INLINE take #-}
take = M.take
-- | All but the first @n@ elements
drop :: Int -> Bundle v a -> Bundle v a
{-# INLINE drop #-}
drop = M.drop
-- Mapping
-- ---------------
-- | Map a function over a 'Bundle'
map :: (a -> b) -> Bundle v a -> Bundle v b
{-# INLINE map #-}
map = M.map
unbox :: Bundle v (Box a) -> Bundle v a
{-# INLINE unbox #-}
unbox = M.unbox
concatMap :: (a -> Bundle v b) -> Bundle v a -> Bundle v b
{-# INLINE concatMap #-}
concatMap = M.concatMap
-- Zipping
-- -------
-- | Pair each element in a 'Bundle' with its index
indexed :: Bundle v a -> Bundle v (Int,a)
{-# INLINE indexed #-}
indexed = M.indexed
-- | Pair each element in a 'Bundle' with its index, starting from the right
-- and counting down
indexedR :: Int -> Bundle v a -> Bundle v (Int,a)
{-# INLINE_FUSED indexedR #-}
indexedR = M.indexedR
-- | Zip two 'Bundle's with the given function
zipWith :: (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c
{-# INLINE zipWith #-}
zipWith = M.zipWith
-- | Zip three 'Bundle's with the given function
zipWith3 :: (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
{-# INLINE zipWith3 #-}
zipWith3 = M.zipWith3
zipWith4 :: (a -> b -> c -> d -> e)
-> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-> Bundle v e
{-# INLINE zipWith4 #-}
zipWith4 = M.zipWith4
zipWith5 :: (a -> b -> c -> d -> e -> f)
-> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-> Bundle v e -> Bundle v f
{-# INLINE zipWith5 #-}
zipWith5 = M.zipWith5
zipWith6 :: (a -> b -> c -> d -> e -> f -> g)
-> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-> Bundle v e -> Bundle v f -> Bundle v g
{-# INLINE zipWith6 #-}
zipWith6 = M.zipWith6
zip :: Bundle v a -> Bundle v b -> Bundle v (a,b)
{-# INLINE zip #-}
zip = M.zip
zip3 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a,b,c)
{-# INLINE zip3 #-}
zip3 = M.zip3
zip4 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-> Bundle v (a,b,c,d)
{-# INLINE zip4 #-}
zip4 = M.zip4
zip5 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-> Bundle v e -> Bundle v (a,b,c,d,e)
{-# INLINE zip5 #-}
zip5 = M.zip5
zip6 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-> Bundle v e -> Bundle v f -> Bundle v (a,b,c,d,e,f)
{-# INLINE zip6 #-}
zip6 = M.zip6
-- Filtering
-- ---------
-- | Drop elements which do not satisfy the predicate
filter :: (a -> Bool) -> Bundle v a -> Bundle v a
{-# INLINE filter #-}
filter = M.filter
-- | Longest prefix of elements that satisfy the predicate
takeWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
{-# INLINE takeWhile #-}
takeWhile = M.takeWhile
-- | Drop the longest prefix of elements that satisfy the predicate
dropWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
{-# INLINE dropWhile #-}
dropWhile = M.dropWhile
-- Searching
-- ---------
infix 4 `elem`
-- | Check whether the 'Bundle' contains an element
elem :: Eq a => a -> Bundle v a -> Bool
{-# INLINE elem #-}
elem x = unId . M.elem x
infix 4 `notElem`
-- | Inverse of `elem`
notElem :: Eq a => a -> Bundle v a -> Bool
{-# INLINE notElem #-}
notElem x = unId . M.notElem x
-- | Yield 'Just' the first element matching the predicate or 'Nothing' if no
-- such element exists.
find :: (a -> Bool) -> Bundle v a -> Maybe a
{-# INLINE find #-}
find f = unId . M.find f
-- | Yield 'Just' the index of the first element matching the predicate or
-- 'Nothing' if no such element exists.
findIndex :: (a -> Bool) -> Bundle v a -> Maybe Int
{-# INLINE findIndex #-}
findIndex f = unId . M.findIndex f
-- Folding
-- -------
-- | Left fold
foldl :: (a -> b -> a) -> a -> Bundle v b -> a
{-# INLINE foldl #-}
foldl f z = unId . M.foldl f z
-- | Left fold on non-empty 'Bundle's
foldl1 :: (a -> a -> a) -> Bundle v a -> a
{-# INLINE foldl1 #-}
foldl1 f = unId . M.foldl1 f
-- | Left fold with strict accumulator
foldl' :: (a -> b -> a) -> a -> Bundle v b -> a
{-# INLINE foldl' #-}
foldl' f z = unId . M.foldl' f z
-- | Left fold on non-empty 'Bundle's with strict accumulator
foldl1' :: (a -> a -> a) -> Bundle v a -> a
{-# INLINE foldl1' #-}
foldl1' f = unId . M.foldl1' f
-- | Right fold
foldr :: (a -> b -> b) -> b -> Bundle v a -> b
{-# INLINE foldr #-}
foldr f z = unId . M.foldr f z
-- | Right fold on non-empty 'Bundle's
foldr1 :: (a -> a -> a) -> Bundle v a -> a
{-# INLINE foldr1 #-}
foldr1 f = unId . M.foldr1 f
-- Specialised folds
-- -----------------
and :: Bundle v Bool -> Bool
{-# INLINE and #-}
and = unId . M.and
or :: Bundle v Bool -> Bool
{-# INLINE or #-}
or = unId . M.or
-- Unfolding
-- ---------
-- | Unfold
unfoldr :: (s -> Maybe (a, s)) -> s -> Bundle v a
{-# INLINE unfoldr #-}
unfoldr = M.unfoldr
-- | Unfold at most @n@ elements
unfoldrN :: Int -> (s -> Maybe (a, s)) -> s -> Bundle v a
{-# INLINE unfoldrN #-}
unfoldrN = M.unfoldrN
-- | Apply function n-1 times to value. Zeroth element is original value.
iterateN :: Int -> (a -> a) -> a -> Bundle v a
{-# INLINE iterateN #-}
iterateN = M.iterateN
-- Scans
-- -----
-- | Prefix scan
prescanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
{-# INLINE prescanl #-}
prescanl = M.prescanl
-- | Prefix scan with strict accumulator
prescanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
{-# INLINE prescanl' #-}
prescanl' = M.prescanl'
-- | Suffix scan
postscanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
{-# INLINE postscanl #-}
postscanl = M.postscanl
-- | Suffix scan with strict accumulator
postscanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
{-# INLINE postscanl' #-}
postscanl' = M.postscanl'
-- | Haskell-style scan
scanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
{-# INLINE scanl #-}
scanl = M.scanl
-- | Haskell-style scan with strict accumulator
scanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
{-# INLINE scanl' #-}
scanl' = M.scanl'
-- | Scan over a non-empty 'Bundle'
scanl1 :: (a -> a -> a) -> Bundle v a -> Bundle v a
{-# INLINE scanl1 #-}
scanl1 = M.scanl1
-- | Scan over a non-empty 'Bundle' with a strict accumulator
scanl1' :: (a -> a -> a) -> Bundle v a -> Bundle v a
{-# INLINE scanl1' #-}
scanl1' = M.scanl1'
-- Comparisons
-- -----------
-- | Check if two 'Bundle's are equal
eq :: (Eq a) => Bundle v a -> Bundle v a -> Bool
{-# INLINE eq #-}
eq = eqBy (==)
eqBy :: (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool
{-# INLINE eqBy #-}
eqBy e x y = unId (M.eqBy e x y)
-- | Lexicographically compare two 'Bundle's
cmp :: (Ord a) => Bundle v a -> Bundle v a -> Ordering
{-# INLINE cmp #-}
cmp = cmpBy compare
cmpBy :: (a -> b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering
{-# INLINE cmpBy #-}
cmpBy c x y = unId (M.cmpBy c x y)
instance Eq a => Eq (M.Bundle Id v a) where
{-# INLINE (==) #-}
(==) = eq
instance Ord a => Ord (M.Bundle Id v a) where
{-# INLINE compare #-}
compare = cmp
#if MIN_VERSION_base(4,9,0)
instance Eq1 (M.Bundle Id v) where
{-# INLINE liftEq #-}
liftEq = eqBy
instance Ord1 (M.Bundle Id v) where
{-# INLINE liftCompare #-}
liftCompare = cmpBy
#endif
-- Monadic combinators
-- -------------------
-- | Apply a monadic action to each element of the stream, producing a monadic
-- stream of results
mapM :: Monad m => (a -> m b) -> Bundle v a -> M.Bundle m v b
{-# INLINE mapM #-}
mapM f = M.mapM f . lift
-- | Apply a monadic action to each element of the stream
mapM_ :: Monad m => (a -> m b) -> Bundle v a -> m ()
{-# INLINE mapM_ #-}
mapM_ f = M.mapM_ f . lift
zipWithM :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> M.Bundle m v c
{-# INLINE zipWithM #-}
zipWithM f as bs = M.zipWithM f (lift as) (lift bs)
zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m ()
{-# INLINE zipWithM_ #-}
zipWithM_ f as bs = M.zipWithM_ f (lift as) (lift bs)
-- | Yield a monadic stream of elements that satisfy the monadic predicate
filterM :: Monad m => (a -> m Bool) -> Bundle v a -> M.Bundle m v a
{-# INLINE filterM #-}
filterM f = M.filterM f . lift
-- | Monadic fold
foldM :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
{-# INLINE foldM #-}
foldM m z = M.foldM m z . lift
-- | Monadic fold over non-empty stream
fold1M :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
{-# INLINE fold1M #-}
fold1M m = M.fold1M m . lift
-- | Monadic fold with strict accumulator
foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
{-# INLINE foldM' #-}
foldM' m z = M.foldM' m z . lift
-- | Monad fold over non-empty stream with strict accumulator
fold1M' :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
{-# INLINE fold1M' #-}
fold1M' m = M.fold1M' m . lift
-- Enumerations
-- ------------
-- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
-- @x+y+y@ etc.
enumFromStepN :: Num a => a -> a -> Int -> Bundle v a
{-# INLINE enumFromStepN #-}
enumFromStepN = M.enumFromStepN
-- | Enumerate values
--
-- /WARNING:/ This operations can be very inefficient. If at all possible, use
-- 'enumFromStepN' instead.
enumFromTo :: Enum a => a -> a -> Bundle v a
{-# INLINE enumFromTo #-}
enumFromTo = M.enumFromTo
-- | Enumerate values with a given step.
--
-- /WARNING:/ This operations is very inefficient. If at all possible, use
-- 'enumFromStepN' instead.
enumFromThenTo :: Enum a => a -> a -> a -> Bundle v a
{-# INLINE enumFromThenTo #-}
enumFromThenTo = M.enumFromThenTo
-- Conversions
-- -----------
-- | Convert a 'Bundle' to a list
toList :: Bundle v a -> [a]
{-# INLINE toList #-}
-- toList s = unId (M.toList s)
toList s = build (\c n -> toListFB c n s)
-- This supports foldr/build list fusion that GHC implements
toListFB :: (a -> b -> b) -> b -> Bundle v a -> b
{-# INLINE [0] toListFB #-}
toListFB c n M.Bundle{M.sElems = Stream step t} = go t
where
go s = case unId (step s) of
Yield x s' -> x `c` go s'
Skip s' -> go s'
Done -> n
-- | Create a 'Bundle' from a list
fromList :: [a] -> Bundle v a
{-# INLINE fromList #-}
fromList = M.fromList
-- | Create a 'Bundle' from the first @n@ elements of a list
--
-- > fromListN n xs = fromList (take n xs)
fromListN :: Int -> [a] -> Bundle v a
{-# INLINE fromListN #-}
fromListN = M.fromListN
unsafeFromList :: Size -> [a] -> Bundle v a
{-# INLINE unsafeFromList #-}
unsafeFromList = M.unsafeFromList
fromVector :: Vector v a => v a -> Bundle v a
{-# INLINE fromVector #-}
fromVector = M.fromVector
reVector :: Bundle u a -> Bundle v a
{-# INLINE reVector #-}
reVector = M.reVector
fromVectors :: Vector v a => [v a] -> Bundle v a
{-# INLINE fromVectors #-}
fromVectors = M.fromVectors
concatVectors :: Vector v a => Bundle u (v a) -> Bundle v a
{-# INLINE concatVectors #-}
concatVectors = M.concatVectors
-- | Create a 'Bundle' of values from a 'Bundle' of streamable things
flatten :: (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b
{-# INLINE_FUSED flatten #-}
flatten mk istep sz = M.flatten (return . mk) (return . istep) sz . lift

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,121 @@
-- |
-- Module : Data.Vector.Fusion.Bundle.Size
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : portable
--
-- Size hints for streams.
--
module Data.Vector.Fusion.Bundle.Size (
Size(..), clampedSubtract, smaller, larger, toMax, upperBound, lowerBound
) where
import Data.Vector.Fusion.Util ( delay_inline )
-- | Size hint
data Size = Exact Int -- ^ Exact size
| Max Int -- ^ Upper bound on the size
| Unknown -- ^ Unknown size
deriving( Eq, Show )
instance Num Size where
Exact m + Exact n = checkedAdd Exact m n
Exact m + Max n = checkedAdd Max m n
Max m + Exact n = checkedAdd Max m n
Max m + Max n = checkedAdd Max m n
_ + _ = Unknown
Exact m - Exact n = checkedSubtract Exact m n
Exact m - Max _ = Max m
Max m - Exact n = checkedSubtract Max m n
Max m - Max _ = Max m
Max m - Unknown = Max m
_ - _ = Unknown
fromInteger n = Exact (fromInteger n)
(*) = error "vector: internal error * for Bundle.size isn't defined"
abs = error "vector: internal error abs for Bundle.size isn't defined"
signum = error "vector: internal error signum for Bundle.size isn't defined"
{-# INLINE checkedAdd #-}
checkedAdd :: (Int -> Size) -> Int -> Int -> Size
checkedAdd con m n
-- Note: we assume m and n are >= 0.
| r < m || r < n =
error $ "Data.Vector.Fusion.Bundle.Size.checkedAdd: overflow: " ++ show r
| otherwise = con r
where
r = m + n
{-# INLINE checkedSubtract #-}
checkedSubtract :: (Int -> Size) -> Int -> Int -> Size
checkedSubtract con m n
| r < 0 =
error $ "Data.Vector.Fusion.Bundle.Size.checkedSubtract: underflow: " ++ show r
| otherwise = con r
where
r = m - n
-- | Subtract two sizes with clamping to 0, for drop-like things
{-# INLINE clampedSubtract #-}
clampedSubtract :: Size -> Size -> Size
clampedSubtract (Exact m) (Exact n) = Exact (max 0 (m - n))
clampedSubtract (Max m) (Exact n)
| m <= n = Exact 0
| otherwise = Max (m - n)
clampedSubtract (Exact m) (Max _) = Max m
clampedSubtract (Max m) (Max _) = Max m
clampedSubtract _ _ = Unknown
-- | Minimum of two size hints
smaller :: Size -> Size -> Size
{-# INLINE smaller #-}
smaller (Exact m) (Exact n) = Exact (delay_inline min m n)
smaller (Exact m) (Max n) = Max (delay_inline min m n)
smaller (Exact m) Unknown = Max m
smaller (Max m) (Exact n) = Max (delay_inline min m n)
smaller (Max m) (Max n) = Max (delay_inline min m n)
smaller (Max m) Unknown = Max m
smaller Unknown (Exact n) = Max n
smaller Unknown (Max n) = Max n
smaller Unknown Unknown = Unknown
-- | Maximum of two size hints
larger :: Size -> Size -> Size
{-# INLINE larger #-}
larger (Exact m) (Exact n) = Exact (delay_inline max m n)
larger (Exact m) (Max n) | m >= n = Exact m
| otherwise = Max n
larger (Max m) (Exact n) | n >= m = Exact n
| otherwise = Max m
larger (Max m) (Max n) = Max (delay_inline max m n)
larger _ _ = Unknown
-- | Convert a size hint to an upper bound
toMax :: Size -> Size
toMax (Exact n) = Max n
toMax (Max n) = Max n
toMax Unknown = Unknown
-- | Compute the minimum size from a size hint
lowerBound :: Size -> Int
lowerBound (Exact n) = n
lowerBound _ = 0
-- | Compute the maximum size from a size hint if possible
upperBound :: Size -> Maybe Int
upperBound (Exact n) = Just n
upperBound (Max n) = Just n
upperBound Unknown = Nothing

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,60 @@
{-# LANGUAGE CPP #-}
-- |
-- Module : Data.Vector.Fusion.Util
-- Copyright : (c) Roman Leshchinskiy 2009
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : portable
--
-- Fusion-related utility types
--
module Data.Vector.Fusion.Util (
Id(..), Box(..),
delay_inline, delayed_min
) where
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative (Applicative(..))
#endif
-- | Identity monad
newtype Id a = Id { unId :: a }
instance Functor Id where
fmap f (Id x) = Id (f x)
instance Applicative Id where
pure = Id
Id f <*> Id x = Id (f x)
instance Monad Id where
return = pure
Id x >>= f = f x
-- | Box monad
data Box a = Box { unBox :: a }
instance Functor Box where
fmap f (Box x) = Box (f x)
instance Applicative Box where
pure = Box
Box f <*> Box x = Box (f x)
instance Monad Box where
return = pure
Box x >>= f = f x
-- | Delay inlining a function until late in the game (simplifier phase 0).
delay_inline :: (a -> b) -> a -> b
{-# INLINE [0] delay_inline #-}
delay_inline f = f
-- | `min` inlined in phase 0
delayed_min :: Int -> Int -> Int
{-# INLINE [0] delayed_min #-}
delayed_min m n = min m n

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,140 @@
{-# LANGUAGE Rank2Types, MultiParamTypeClasses, FlexibleContexts,
TypeFamilies, ScopedTypeVariables, BangPatterns #-}
{-# OPTIONS_HADDOCK hide #-}
-- |
-- Module : Data.Vector.Generic.Base
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Class of pure vectors
--
module Data.Vector.Generic.Base (
Vector(..), Mutable
) where
import Data.Vector.Generic.Mutable.Base ( MVector )
import qualified Data.Vector.Generic.Mutable.Base as M
import Control.Monad.Primitive
-- | @Mutable v s a@ is the mutable version of the pure vector type @v a@ with
-- the state token @s@
--
type family Mutable (v :: * -> *) :: * -> * -> *
-- | Class of immutable vectors. Every immutable vector is associated with its
-- mutable version through the 'Mutable' type family. Methods of this class
-- should not be used directly. Instead, "Data.Vector.Generic" and other
-- Data.Vector modules provide safe and fusible wrappers.
--
-- Minimum complete implementation:
--
-- * 'basicUnsafeFreeze'
--
-- * 'basicUnsafeThaw'
--
-- * 'basicLength'
--
-- * 'basicUnsafeSlice'
--
-- * 'basicUnsafeIndexM'
--
class MVector (Mutable v) a => Vector v a where
-- | /Assumed complexity: O(1)/
--
-- Unsafely convert a mutable vector to its immutable version
-- without copying. The mutable vector may not be used after
-- this operation.
basicUnsafeFreeze :: PrimMonad m => Mutable v (PrimState m) a -> m (v a)
-- | /Assumed complexity: O(1)/
--
-- Unsafely convert an immutable vector to its mutable version without
-- copying. The immutable vector may not be used after this operation.
basicUnsafeThaw :: PrimMonad m => v a -> m (Mutable v (PrimState m) a)
-- | /Assumed complexity: O(1)/
--
-- Yield the length of the vector.
basicLength :: v a -> Int
-- | /Assumed complexity: O(1)/
--
-- Yield a slice of the vector without copying it. No range checks are
-- performed.
basicUnsafeSlice :: Int -- ^ starting index
-> Int -- ^ length
-> v a -> v a
-- | /Assumed complexity: O(1)/
--
-- Yield the element at the given position in a monad. No range checks are
-- performed.
--
-- The monad allows us to be strict in the vector if we want. Suppose we had
--
-- > unsafeIndex :: v a -> Int -> a
--
-- instead. Now, if we wanted to copy a vector, we'd do something like
--
-- > copy mv v ... = ... unsafeWrite mv i (unsafeIndex v i) ...
--
-- For lazy vectors, the indexing would not be evaluated which means that we
-- would retain a reference to the original vector in each element we write.
-- This is not what we want!
--
-- With 'basicUnsafeIndexM', we can do
--
-- > copy mv v ... = ... case basicUnsafeIndexM v i of
-- > Box x -> unsafeWrite mv i x ...
--
-- which does not have this problem because indexing (but not the returned
-- element!) is evaluated immediately.
--
basicUnsafeIndexM :: Monad m => v a -> Int -> m a
-- | /Assumed complexity: O(n)/
--
-- Copy an immutable vector into a mutable one. The two vectors must have
-- the same length but this is not checked.
--
-- Instances of 'Vector' should redefine this method if they wish to support
-- an efficient block copy operation.
--
-- Default definition: copying basic on 'basicUnsafeIndexM' and
-- 'basicUnsafeWrite'.
basicUnsafeCopy :: PrimMonad m => Mutable v (PrimState m) a -> v a -> m ()
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy !dst !src = do_copy 0
where
!n = basicLength src
do_copy i | i < n = do
x <- basicUnsafeIndexM src i
M.basicUnsafeWrite dst i x
do_copy (i+1)
| otherwise = return ()
-- | Evaluate @a@ as far as storing it in a vector would and yield @b@.
-- The @v a@ argument only fixes the type and is not touched. The method is
-- only used for optimisation purposes. Thus, it is safe for instances of
-- 'Vector' to evaluate @a@ less than it would be when stored in a vector
-- although this might result in suboptimal code.
--
-- > elemseq v x y = (singleton x `asTypeOf` v) `seq` y
--
-- Default defintion: @a@ is not evaluated at all
--
elemseq :: v a -> a -> b -> b
{-# INLINE elemseq #-}
elemseq _ = \_ x -> x

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,145 @@
{-# LANGUAGE CPP, MultiParamTypeClasses, BangPatterns, TypeFamilies #-}
-- |
-- Module : Data.Vector.Generic.Mutable.Base
-- Copyright : (c) Roman Leshchinskiy 2008-2011
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Class of mutable vectors
--
module Data.Vector.Generic.Mutable.Base (
MVector(..)
) where
import Control.Monad.Primitive ( PrimMonad, PrimState )
-- Data.Vector.Internal.Check is unused
#define NOT_VECTOR_MODULE
#include "vector.h"
-- | Class of mutable vectors parametrised with a primitive state token.
--
class MVector v a where
-- | Length of the mutable vector. This method should not be
-- called directly, use 'length' instead.
basicLength :: v s a -> Int
-- | Yield a part of the mutable vector without copying it. This method
-- should not be called directly, use 'unsafeSlice' instead.
basicUnsafeSlice :: Int -- ^ starting index
-> Int -- ^ length of the slice
-> v s a
-> v s a
-- | Check whether two vectors overlap. This method should not be
-- called directly, use 'overlaps' instead.
basicOverlaps :: v s a -> v s a -> Bool
-- | Create a mutable vector of the given length. This method should not be
-- called directly, use 'unsafeNew' instead.
basicUnsafeNew :: PrimMonad m => Int -> m (v (PrimState m) a)
-- | Initialize a vector to a standard value. This is intended to be called as
-- part of the safe new operation (and similar operations), to properly blank
-- the newly allocated memory if necessary.
--
-- Vectors that are necessarily initialized as part of creation may implement
-- this as a no-op.
basicInitialize :: PrimMonad m => v (PrimState m) a -> m ()
-- | Create a mutable vector of the given length and fill it with an
-- initial value. This method should not be called directly, use
-- 'replicate' instead.
basicUnsafeReplicate :: PrimMonad m => Int -> a -> m (v (PrimState m) a)
-- | Yield the element at the given position. This method should not be
-- called directly, use 'unsafeRead' instead.
basicUnsafeRead :: PrimMonad m => v (PrimState m) a -> Int -> m a
-- | Replace the element at the given position. This method should not be
-- called directly, use 'unsafeWrite' instead.
basicUnsafeWrite :: PrimMonad m => v (PrimState m) a -> Int -> a -> m ()
-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed
-- vectors. This method should not be called directly, use 'clear' instead.
basicClear :: PrimMonad m => v (PrimState m) a -> m ()
-- | Set all elements of the vector to the given value. This method should
-- not be called directly, use 'set' instead.
basicSet :: PrimMonad m => v (PrimState m) a -> a -> m ()
-- | Copy a vector. The two vectors may not overlap. This method should not
-- be called directly, use 'unsafeCopy' instead.
basicUnsafeCopy :: PrimMonad m => v (PrimState m) a -- ^ target
-> v (PrimState m) a -- ^ source
-> m ()
-- | Move the contents of a vector. The two vectors may overlap. This method
-- should not be called directly, use 'unsafeMove' instead.
basicUnsafeMove :: PrimMonad m => v (PrimState m) a -- ^ target
-> v (PrimState m) a -- ^ source
-> m ()
-- | Grow a vector by the given number of elements. This method should not be
-- called directly, use 'unsafeGrow' instead.
basicUnsafeGrow :: PrimMonad m => v (PrimState m) a -> Int
-> m (v (PrimState m) a)
{-# INLINE basicUnsafeReplicate #-}
basicUnsafeReplicate n x
= do
v <- basicUnsafeNew n
basicSet v x
return v
{-# INLINE basicClear #-}
basicClear _ = return ()
{-# INLINE basicSet #-}
basicSet !v x
| n == 0 = return ()
| otherwise = do
basicUnsafeWrite v 0 x
do_set 1
where
!n = basicLength v
do_set i | 2*i < n = do basicUnsafeCopy (basicUnsafeSlice i i v)
(basicUnsafeSlice 0 i v)
do_set (2*i)
| otherwise = basicUnsafeCopy (basicUnsafeSlice i (n-i) v)
(basicUnsafeSlice 0 (n-i) v)
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy !dst !src = do_copy 0
where
!n = basicLength src
do_copy i | i < n = do
x <- basicUnsafeRead src i
basicUnsafeWrite dst i x
do_copy (i+1)
| otherwise = return ()
{-# INLINE basicUnsafeMove #-}
basicUnsafeMove !dst !src
| basicOverlaps dst src = do
srcCopy <- basicUnsafeNew (basicLength src)
basicUnsafeCopy srcCopy src
basicUnsafeCopy dst srcCopy
| otherwise = basicUnsafeCopy dst src
{-# INLINE basicUnsafeGrow #-}
basicUnsafeGrow v by
= do
v' <- basicUnsafeNew (n+by)
basicUnsafeCopy (basicUnsafeSlice 0 n v') v
return v'
where
n = basicLength v

View file

@ -0,0 +1,178 @@
{-# LANGUAGE CPP, Rank2Types, FlexibleContexts, MultiParamTypeClasses #-}
-- |
-- Module : Data.Vector.Generic.New
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Purely functional interface to initialisation of mutable vectors
--
module Data.Vector.Generic.New (
New(..), create, run, runPrim, apply, modify, modifyWithBundle,
unstream, transform, unstreamR, transformR,
slice, init, tail, take, drop,
unsafeSlice, unsafeInit, unsafeTail
) where
import qualified Data.Vector.Generic.Mutable as MVector
import Data.Vector.Generic.Base ( Vector, Mutable )
import Data.Vector.Fusion.Bundle ( Bundle )
import qualified Data.Vector.Fusion.Bundle as Bundle
import Data.Vector.Fusion.Stream.Monadic ( Stream )
import Data.Vector.Fusion.Bundle.Size
import Control.Monad.Primitive
import Control.Monad.ST ( ST )
import Control.Monad ( liftM )
import Prelude hiding ( init, tail, take, drop, reverse, map, filter )
-- Data.Vector.Internal.Check is unused
#define NOT_VECTOR_MODULE
#include "vector.h"
data New v a = New (forall s. ST s (Mutable v s a))
create :: (forall s. ST s (Mutable v s a)) -> New v a
{-# INLINE create #-}
create p = New p
run :: New v a -> ST s (Mutable v s a)
{-# INLINE run #-}
run (New p) = p
runPrim :: PrimMonad m => New v a -> m (Mutable v (PrimState m) a)
{-# INLINE runPrim #-}
runPrim (New p) = primToPrim p
apply :: (forall s. Mutable v s a -> Mutable v s a) -> New v a -> New v a
{-# INLINE apply #-}
apply f (New p) = New (liftM f p)
modify :: (forall s. Mutable v s a -> ST s ()) -> New v a -> New v a
{-# INLINE modify #-}
modify f (New p) = New (do { v <- p; f v; return v })
modifyWithBundle :: (forall s. Mutable v s a -> Bundle u b -> ST s ())
-> New v a -> Bundle u b -> New v a
{-# INLINE_FUSED modifyWithBundle #-}
modifyWithBundle f (New p) s = s `seq` New (do { v <- p; f v s; return v })
unstream :: Vector v a => Bundle v a -> New v a
{-# INLINE_FUSED unstream #-}
unstream s = s `seq` New (MVector.vunstream s)
transform
:: Vector v a => (forall m. Monad m => Stream m a -> Stream m a)
-> (Size -> Size) -> New v a -> New v a
{-# INLINE_FUSED transform #-}
transform f _ (New p) = New (MVector.transform f =<< p)
{-# RULES
"transform/transform [New]"
forall (f1 :: forall m. Monad m => Stream m a -> Stream m a)
(f2 :: forall m. Monad m => Stream m a -> Stream m a)
g1 g2 p .
transform f1 g1 (transform f2 g2 p) = transform (f1 . f2) (g1 . g2) p
"transform/unstream [New]"
forall (f :: forall m. Monad m => Stream m a -> Stream m a)
g s.
transform f g (unstream s) = unstream (Bundle.inplace f g s) #-}
unstreamR :: Vector v a => Bundle v a -> New v a
{-# INLINE_FUSED unstreamR #-}
unstreamR s = s `seq` New (MVector.unstreamR s)
transformR
:: Vector v a => (forall m. Monad m => Stream m a -> Stream m a)
-> (Size -> Size) -> New v a -> New v a
{-# INLINE_FUSED transformR #-}
transformR f _ (New p) = New (MVector.transformR f =<< p)
{-# RULES
"transformR/transformR [New]"
forall (f1 :: forall m. Monad m => Stream m a -> Stream m a)
(f2 :: forall m. Monad m => Stream m a -> Stream m a)
g1 g2
p .
transformR f1 g1 (transformR f2 g2 p) = transformR (f1 . f2) (g1 . g2) p
"transformR/unstreamR [New]"
forall (f :: forall m. Monad m => Stream m a -> Stream m a)
g s.
transformR f g (unstreamR s) = unstreamR (Bundle.inplace f g s) #-}
slice :: Vector v a => Int -> Int -> New v a -> New v a
{-# INLINE_FUSED slice #-}
slice i n m = apply (MVector.slice i n) m
init :: Vector v a => New v a -> New v a
{-# INLINE_FUSED init #-}
init m = apply MVector.init m
tail :: Vector v a => New v a -> New v a
{-# INLINE_FUSED tail #-}
tail m = apply MVector.tail m
take :: Vector v a => Int -> New v a -> New v a
{-# INLINE_FUSED take #-}
take n m = apply (MVector.take n) m
drop :: Vector v a => Int -> New v a -> New v a
{-# INLINE_FUSED drop #-}
drop n m = apply (MVector.drop n) m
unsafeSlice :: Vector v a => Int -> Int -> New v a -> New v a
{-# INLINE_FUSED unsafeSlice #-}
unsafeSlice i n m = apply (MVector.unsafeSlice i n) m
unsafeInit :: Vector v a => New v a -> New v a
{-# INLINE_FUSED unsafeInit #-}
unsafeInit m = apply MVector.unsafeInit m
unsafeTail :: Vector v a => New v a -> New v a
{-# INLINE_FUSED unsafeTail #-}
unsafeTail m = apply MVector.unsafeTail m
{-# RULES
"slice/unstream [New]" forall i n s.
slice i n (unstream s) = unstream (Bundle.slice i n s)
"init/unstream [New]" forall s.
init (unstream s) = unstream (Bundle.init s)
"tail/unstream [New]" forall s.
tail (unstream s) = unstream (Bundle.tail s)
"take/unstream [New]" forall n s.
take n (unstream s) = unstream (Bundle.take n s)
"drop/unstream [New]" forall n s.
drop n (unstream s) = unstream (Bundle.drop n s)
"unsafeSlice/unstream [New]" forall i n s.
unsafeSlice i n (unstream s) = unstream (Bundle.slice i n s)
"unsafeInit/unstream [New]" forall s.
unsafeInit (unstream s) = unstream (Bundle.init s)
"unsafeTail/unstream [New]" forall s.
unsafeTail (unstream s) = unstream (Bundle.tail s) #-}

View file

@ -0,0 +1,152 @@
{-# LANGUAGE CPP #-}
-- |
-- Module : Data.Vector.Internal.Check
-- Copyright : (c) Roman Leshchinskiy 2009
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Bounds checking infrastructure
--
{-# LANGUAGE MagicHash #-}
module Data.Vector.Internal.Check (
Checks(..), doChecks,
error, internalError,
check, checkIndex, checkLength, checkSlice
) where
import GHC.Base( Int(..) )
import GHC.Prim( Int# )
import Prelude hiding( error, (&&), (||), not )
import qualified Prelude as P
-- NOTE: This is a workaround for GHC's weird behaviour where it doesn't inline
-- these functions into unfoldings which makes the intermediate code size
-- explode. See http://hackage.haskell.org/trac/ghc/ticket/5539.
infixr 2 ||
infixr 3 &&
not :: Bool -> Bool
{-# INLINE not #-}
not True = False
not False = True
(&&) :: Bool -> Bool -> Bool
{-# INLINE (&&) #-}
False && _ = False
True && x = x
(||) :: Bool -> Bool -> Bool
{-# INLINE (||) #-}
True || _ = True
False || x = x
data Checks = Bounds | Unsafe | Internal deriving( Eq )
doBoundsChecks :: Bool
#ifdef VECTOR_BOUNDS_CHECKS
doBoundsChecks = True
#else
doBoundsChecks = False
#endif
doUnsafeChecks :: Bool
#ifdef VECTOR_UNSAFE_CHECKS
doUnsafeChecks = True
#else
doUnsafeChecks = False
#endif
doInternalChecks :: Bool
#ifdef VECTOR_INTERNAL_CHECKS
doInternalChecks = True
#else
doInternalChecks = False
#endif
doChecks :: Checks -> Bool
{-# INLINE doChecks #-}
doChecks Bounds = doBoundsChecks
doChecks Unsafe = doUnsafeChecks
doChecks Internal = doInternalChecks
error_msg :: String -> Int -> String -> String -> String
error_msg file line loc msg = file ++ ":" ++ show line ++ " (" ++ loc ++ "): " ++ msg
error :: String -> Int -> String -> String -> a
{-# NOINLINE error #-}
error file line loc msg
= P.error $ error_msg file line loc msg
internalError :: String -> Int -> String -> String -> a
{-# NOINLINE internalError #-}
internalError file line loc msg
= P.error $ unlines
["*** Internal error in package vector ***"
,"*** Please submit a bug report at http://trac.haskell.org/vector"
,error_msg file line loc msg]
checkError :: String -> Int -> Checks -> String -> String -> a
{-# NOINLINE checkError #-}
checkError file line kind loc msg
= case kind of
Internal -> internalError file line loc msg
_ -> error file line loc msg
check :: String -> Int -> Checks -> String -> String -> Bool -> a -> a
{-# INLINE check #-}
check file line kind loc msg cond x
| not (doChecks kind) || cond = x
| otherwise = checkError file line kind loc msg
checkIndex_msg :: Int -> Int -> String
{-# INLINE checkIndex_msg #-}
checkIndex_msg (I# i#) (I# n#) = checkIndex_msg# i# n#
checkIndex_msg# :: Int# -> Int# -> String
{-# NOINLINE checkIndex_msg# #-}
checkIndex_msg# i# n# = "index out of bounds " ++ show (I# i#, I# n#)
checkIndex :: String -> Int -> Checks -> String -> Int -> Int -> a -> a
{-# INLINE checkIndex #-}
checkIndex file line kind loc i n x
= check file line kind loc (checkIndex_msg i n) (i >= 0 && i<n) x
checkLength_msg :: Int -> String
{-# INLINE checkLength_msg #-}
checkLength_msg (I# n#) = checkLength_msg# n#
checkLength_msg# :: Int# -> String
{-# NOINLINE checkLength_msg# #-}
checkLength_msg# n# = "negative length " ++ show (I# n#)
checkLength :: String -> Int -> Checks -> String -> Int -> a -> a
{-# INLINE checkLength #-}
checkLength file line kind loc n x
= check file line kind loc (checkLength_msg n) (n >= 0) x
checkSlice_msg :: Int -> Int -> Int -> String
{-# INLINE checkSlice_msg #-}
checkSlice_msg (I# i#) (I# m#) (I# n#) = checkSlice_msg# i# m# n#
checkSlice_msg# :: Int# -> Int# -> Int# -> String
{-# NOINLINE checkSlice_msg# #-}
checkSlice_msg# i# m# n# = "invalid slice " ++ show (I# i#, I# m#, I# n#)
checkSlice :: String -> Int -> Checks -> String -> Int -> Int -> Int -> a -> a
{-# INLINE checkSlice #-}
checkSlice file line kind loc i m n x
= check file line kind loc (checkSlice_msg i m n)
(i >= 0 && m >= 0 && i+m <= n) x

View file

@ -0,0 +1,416 @@
{-# LANGUAGE CPP, DeriveDataTypeable, MultiParamTypeClasses, FlexibleInstances, BangPatterns, TypeFamilies #-}
-- |
-- Module : Data.Vector.Mutable
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Mutable boxed vectors.
--
module Data.Vector.Mutable (
-- * Mutable boxed vectors
MVector(..), IOVector, STVector,
-- * Accessors
-- ** Length information
length, null,
-- ** Extracting subvectors
slice, init, tail, take, drop, splitAt,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- ** Overlapping
overlaps,
-- * Construction
-- ** Initialisation
new, unsafeNew, replicate, replicateM, clone,
-- ** Growing
grow, unsafeGrow,
-- ** Restricting memory usage
clear,
-- * Accessing individual elements
read, write, modify, swap,
unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-- * Modifying vectors
nextPermutation,
-- ** Filling and copying
set, copy, move, unsafeCopy, unsafeMove
) where
import Control.Monad (when)
import qualified Data.Vector.Generic.Mutable as G
import Data.Primitive.Array
import Control.Monad.Primitive
import Prelude hiding ( length, null, replicate, reverse, read,
take, drop, splitAt, init, tail )
import Data.Typeable ( Typeable )
#include "vector.h"
-- | Mutable boxed vectors keyed on the monad they live in ('IO' or @'ST' s@).
data MVector s a = MVector {-# UNPACK #-} !Int
{-# UNPACK #-} !Int
{-# UNPACK #-} !(MutableArray s a)
deriving ( Typeable )
type IOVector = MVector RealWorld
type STVector s = MVector s
-- NOTE: This seems unsafe, see http://trac.haskell.org/vector/ticket/54
{-
instance NFData a => NFData (MVector s a) where
rnf (MVector i n arr) = unsafeInlineST $ force i
where
force !ix | ix < n = do x <- readArray arr ix
rnf x `seq` force (ix+1)
| otherwise = return ()
-}
instance G.MVector MVector a where
{-# INLINE basicLength #-}
basicLength (MVector _ n _) = n
{-# INLINE basicUnsafeSlice #-}
basicUnsafeSlice j m (MVector i _ arr) = MVector (i+j) m arr
{-# INLINE basicOverlaps #-}
basicOverlaps (MVector i m arr1) (MVector j n arr2)
= sameMutableArray arr1 arr2
&& (between i j (j+n) || between j i (i+m))
where
between x y z = x >= y && x < z
{-# INLINE basicUnsafeNew #-}
basicUnsafeNew n
= do
arr <- newArray n uninitialised
return (MVector 0 n arr)
{-# INLINE basicInitialize #-}
-- initialization is unnecessary for boxed vectors
basicInitialize _ = return ()
{-# INLINE basicUnsafeReplicate #-}
basicUnsafeReplicate n x
= do
arr <- newArray n x
return (MVector 0 n arr)
{-# INLINE basicUnsafeRead #-}
basicUnsafeRead (MVector i _ arr) j = readArray arr (i+j)
{-# INLINE basicUnsafeWrite #-}
basicUnsafeWrite (MVector i _ arr) j x = writeArray arr (i+j) x
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy (MVector i n dst) (MVector j _ src)
= copyMutableArray dst i src j n
basicUnsafeMove dst@(MVector iDst n arrDst) src@(MVector iSrc _ arrSrc)
= case n of
0 -> return ()
1 -> readArray arrSrc iSrc >>= writeArray arrDst iDst
2 -> do
x <- readArray arrSrc iSrc
y <- readArray arrSrc (iSrc + 1)
writeArray arrDst iDst x
writeArray arrDst (iDst + 1) y
_
| overlaps dst src
-> case compare iDst iSrc of
LT -> moveBackwards arrDst iDst iSrc n
EQ -> return ()
GT | (iDst - iSrc) * 2 < n
-> moveForwardsLargeOverlap arrDst iDst iSrc n
| otherwise
-> moveForwardsSmallOverlap arrDst iDst iSrc n
| otherwise -> G.basicUnsafeCopy dst src
{-# INLINE basicClear #-}
basicClear v = G.set v uninitialised
{-# INLINE moveBackwards #-}
moveBackwards :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveBackwards !arr !dstOff !srcOff !len =
INTERNAL_CHECK(check) "moveBackwards" "not a backwards move" (dstOff < srcOff)
$ loopM len $ \ i -> readArray arr (srcOff + i) >>= writeArray arr (dstOff + i)
{-# INLINE moveForwardsSmallOverlap #-}
-- Performs a move when dstOff > srcOff, optimized for when the overlap of the intervals is small.
moveForwardsSmallOverlap :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsSmallOverlap !arr !dstOff !srcOff !len =
INTERNAL_CHECK(check) "moveForwardsSmallOverlap" "not a forward move" (dstOff > srcOff)
$ do
tmp <- newArray overlap uninitialised
loopM overlap $ \ i -> readArray arr (dstOff + i) >>= writeArray tmp i
loopM nonOverlap $ \ i -> readArray arr (srcOff + i) >>= writeArray arr (dstOff + i)
loopM overlap $ \ i -> readArray tmp i >>= writeArray arr (dstOff + nonOverlap + i)
where nonOverlap = dstOff - srcOff; overlap = len - nonOverlap
-- Performs a move when dstOff > srcOff, optimized for when the overlap of the intervals is large.
moveForwardsLargeOverlap :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsLargeOverlap !arr !dstOff !srcOff !len =
INTERNAL_CHECK(check) "moveForwardsLargeOverlap" "not a forward move" (dstOff > srcOff)
$ do
queue <- newArray nonOverlap uninitialised
loopM nonOverlap $ \ i -> readArray arr (srcOff + i) >>= writeArray queue i
let mov !i !qTop = when (i < dstOff + len) $ do
x <- readArray arr i
y <- readArray queue qTop
writeArray arr i y
writeArray queue qTop x
mov (i+1) (if qTop + 1 >= nonOverlap then 0 else qTop + 1)
mov dstOff 0
where nonOverlap = dstOff - srcOff
{-# INLINE loopM #-}
loopM :: Monad m => Int -> (Int -> m a) -> m ()
loopM !n k = let
go i = when (i < n) (k i >> go (i+1))
in go 0
uninitialised :: a
uninitialised = error "Data.Vector.Mutable: uninitialised element"
-- Length information
-- ------------------
-- | Length of the mutable vector.
length :: MVector s a -> Int
{-# INLINE length #-}
length = G.length
-- | Check whether the vector is empty
null :: MVector s a -> Bool
{-# INLINE null #-}
null = G.null
-- Extracting subvectors
-- ---------------------
-- | Yield a part of the mutable vector without copying it.
slice :: Int -> Int -> MVector s a -> MVector s a
{-# INLINE slice #-}
slice = G.slice
take :: Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take = G.take
drop :: Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop = G.drop
{-# INLINE splitAt #-}
splitAt :: Int -> MVector s a -> (MVector s a, MVector s a)
splitAt = G.splitAt
init :: MVector s a -> MVector s a
{-# INLINE init #-}
init = G.init
tail :: MVector s a -> MVector s a
{-# INLINE tail #-}
tail = G.tail
-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Int -- ^ starting index
-> Int -- ^ length of the slice
-> MVector s a
-> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
unsafeTake :: Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
unsafeDrop :: Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
unsafeInit :: MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
unsafeTail :: MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- Overlapping
-- -----------
-- | Check whether two vectors overlap.
overlaps :: MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps = G.overlaps
-- Initialisation
-- --------------
-- | Create a mutable vector of the given length.
new :: PrimMonad m => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new = G.new
-- | Create a mutable vector of the given length. The memory is not initialized.
unsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew = G.unsafeNew
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: PrimMonad m => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate = G.replicate
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: PrimMonad m => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | Create a copy of a mutable vector.
clone :: PrimMonad m => MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone = G.clone
-- Growing
-- -------
-- | Grow a vector by the given number of elements. The number must be
-- positive.
grow :: PrimMonad m
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow = G.grow
-- | Grow a vector by the given number of elements. The number must be
-- positive but this is not checked.
unsafeGrow :: PrimMonad m
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow = G.unsafeGrow
-- Restricting memory usage
-- ------------------------
-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: PrimMonad m => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear = G.clear
-- Accessing individual elements
-- -----------------------------
-- | Yield the element at the given position.
read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read = G.read
-- | Replace the element at the given position.
write :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write = G.write
-- | Modify the element at the given position.
modify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify = G.modify
-- | Swap the elements at the given positions.
swap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap = G.swap
-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead = G.unsafeRead
-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite = G.unsafeWrite
-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify = G.unsafeModify
-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap = G.unsafeSwap
-- Filling and copying
-- -------------------
-- | Set all elements of the vector to the given value.
set :: PrimMonad m => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set = G.set
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: PrimMonad m
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE copy #-}
copy = G.copy
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap. This is not checked.
unsafeCopy :: PrimMonad m => MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy = G.unsafeCopy
-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: PrimMonad m
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE move #-}
move = G.move
-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: PrimMonad m => MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeMove #-}
unsafeMove = G.unsafeMove
-- | Compute the next (lexicographically) permutation of given vector in-place.
-- Returns False when input is the last permtuation
nextPermutation :: (PrimMonad m,Ord e) => MVector (PrimState m) e -> m Bool
{-# INLINE nextPermutation #-}
nextPermutation = G.nextPermutation

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,366 @@
{-# LANGUAGE CPP, DeriveDataTypeable, MultiParamTypeClasses, FlexibleInstances, ScopedTypeVariables #-}
-- |
-- Module : Data.Vector.Primitive.Mutable
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Mutable primitive vectors.
--
module Data.Vector.Primitive.Mutable (
-- * Mutable vectors of primitive types
MVector(..), IOVector, STVector, Prim,
-- * Accessors
-- ** Length information
length, null,
-- ** Extracting subvectors
slice, init, tail, take, drop, splitAt,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- ** Overlapping
overlaps,
-- * Construction
-- ** Initialisation
new, unsafeNew, replicate, replicateM, clone,
-- ** Growing
grow, unsafeGrow,
-- ** Restricting memory usage
clear,
-- * Accessing individual elements
read, write, modify, swap,
unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-- * Modifying vectors
nextPermutation,
-- ** Filling and copying
set, copy, move, unsafeCopy, unsafeMove
) where
import qualified Data.Vector.Generic.Mutable as G
import Data.Primitive.ByteArray
import Data.Primitive ( Prim, sizeOf )
import Data.Word ( Word8 )
import Control.Monad.Primitive
import Control.Monad ( liftM )
import Control.DeepSeq ( NFData(rnf) )
import Prelude hiding ( length, null, replicate, reverse, map, read,
take, drop, splitAt, init, tail )
import Data.Typeable ( Typeable )
-- Data.Vector.Internal.Check is unnecessary
#define NOT_VECTOR_MODULE
#include "vector.h"
-- | Mutable vectors of primitive types.
data MVector s a = MVector {-# UNPACK #-} !Int
{-# UNPACK #-} !Int
{-# UNPACK #-} !(MutableByteArray s) -- ^ offset, length, underlying mutable byte array
deriving ( Typeable )
type IOVector = MVector RealWorld
type STVector s = MVector s
instance NFData (MVector s a) where
rnf (MVector _ _ _) = ()
instance Prim a => G.MVector MVector a where
basicLength (MVector _ n _) = n
basicUnsafeSlice j m (MVector i _ arr)
= MVector (i+j) m arr
{-# INLINE basicOverlaps #-}
basicOverlaps (MVector i m arr1) (MVector j n arr2)
= sameMutableByteArray arr1 arr2
&& (between i j (j+n) || between j i (i+m))
where
between x y z = x >= y && x < z
{-# INLINE basicUnsafeNew #-}
basicUnsafeNew n
| n < 0 = error $ "Primitive.basicUnsafeNew: negative length: " ++ show n
| n > mx = error $ "Primitive.basicUnsafeNew: length to large: " ++ show n
| otherwise = MVector 0 n `liftM` newByteArray (n * size)
where
size = sizeOf (undefined :: a)
mx = maxBound `div` size :: Int
{-# INLINE basicInitialize #-}
basicInitialize (MVector off n v) =
setByteArray v (off * size) (n * size) (0 :: Word8)
where
size = sizeOf (undefined :: a)
{-# INLINE basicUnsafeRead #-}
basicUnsafeRead (MVector i _ arr) j = readByteArray arr (i+j)
{-# INLINE basicUnsafeWrite #-}
basicUnsafeWrite (MVector i _ arr) j x = writeByteArray arr (i+j) x
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy (MVector i n dst) (MVector j _ src)
= copyMutableByteArray dst (i*sz) src (j*sz) (n*sz)
where
sz = sizeOf (undefined :: a)
{-# INLINE basicUnsafeMove #-}
basicUnsafeMove (MVector i n dst) (MVector j _ src)
= moveByteArray dst (i*sz) src (j*sz) (n * sz)
where
sz = sizeOf (undefined :: a)
{-# INLINE basicSet #-}
basicSet (MVector i n arr) x = setByteArray arr i n x
-- Length information
-- ------------------
-- | Length of the mutable vector.
length :: Prim a => MVector s a -> Int
{-# INLINE length #-}
length = G.length
-- | Check whether the vector is empty
null :: Prim a => MVector s a -> Bool
{-# INLINE null #-}
null = G.null
-- Extracting subvectors
-- ---------------------
-- | Yield a part of the mutable vector without copying it.
slice :: Prim a => Int -> Int -> MVector s a -> MVector s a
{-# INLINE slice #-}
slice = G.slice
take :: Prim a => Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take = G.take
drop :: Prim a => Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop = G.drop
splitAt :: Prim a => Int -> MVector s a -> (MVector s a, MVector s a)
{-# INLINE splitAt #-}
splitAt = G.splitAt
init :: Prim a => MVector s a -> MVector s a
{-# INLINE init #-}
init = G.init
tail :: Prim a => MVector s a -> MVector s a
{-# INLINE tail #-}
tail = G.tail
-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Prim a
=> Int -- ^ starting index
-> Int -- ^ length of the slice
-> MVector s a
-> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
unsafeTake :: Prim a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
unsafeDrop :: Prim a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
unsafeInit :: Prim a => MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
unsafeTail :: Prim a => MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- Overlapping
-- -----------
-- | Check whether two vectors overlap.
overlaps :: Prim a => MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps = G.overlaps
-- Initialisation
-- --------------
-- | Create a mutable vector of the given length.
new :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new = G.new
-- | Create a mutable vector of the given length. The memory is not initialized.
unsafeNew :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew = G.unsafeNew
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate = G.replicate
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: (PrimMonad m, Prim a) => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | Create a copy of a mutable vector.
clone :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone = G.clone
-- Growing
-- -------
-- | Grow a vector by the given number of elements. The number must be
-- positive.
grow :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow = G.grow
-- | Grow a vector by the given number of elements. The number must be
-- positive but this is not checked.
unsafeGrow :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow = G.unsafeGrow
-- Restricting memory usage
-- ------------------------
-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear = G.clear
-- Accessing individual elements
-- -----------------------------
-- | Yield the element at the given position.
read :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read = G.read
-- | Replace the element at the given position.
write :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write = G.write
-- | Modify the element at the given position.
modify :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify = G.modify
-- | Swap the elements at the given positions.
swap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap = G.swap
-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead = G.unsafeRead
-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite
:: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite = G.unsafeWrite
-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify = G.unsafeModify
-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap
:: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap = G.unsafeSwap
-- Filling and copying
-- -------------------
-- | Set all elements of the vector to the given value.
set :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set = G.set
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE copy #-}
copy = G.copy
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap. This is not checked.
unsafeCopy :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy = G.unsafeCopy
-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE move #-}
move = G.move
-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: (PrimMonad m, Prim a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeMove #-}
unsafeMove = G.unsafeMove
-- | Compute the next (lexicographically) permutation of given vector in-place.
-- Returns False when input is the last permtuation
nextPermutation :: (PrimMonad m,Ord e,Prim e) => MVector (PrimState m) e -> m Bool
{-# INLINE nextPermutation #-}
nextPermutation = G.nextPermutation

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,33 @@
-- |
-- Module : Data.Vector.Storable.Internal
-- Copyright : (c) Roman Leshchinskiy 2009-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Ugly internal utility functions for implementing 'Storable'-based vectors.
--
module Data.Vector.Storable.Internal (
getPtr, setPtr, updPtr
) where
import Foreign.ForeignPtr
import Foreign.Ptr
import GHC.ForeignPtr ( ForeignPtr(..) )
import GHC.Ptr ( Ptr(..) )
getPtr :: ForeignPtr a -> Ptr a
{-# INLINE getPtr #-}
getPtr (ForeignPtr addr _) = Ptr addr
setPtr :: ForeignPtr a -> Ptr a -> ForeignPtr a
{-# INLINE setPtr #-}
setPtr (ForeignPtr _ c) (Ptr addr) = ForeignPtr addr c
updPtr :: (Ptr a -> Ptr a) -> ForeignPtr a -> ForeignPtr a
{-# INLINE updPtr #-}
updPtr f (ForeignPtr p c) = case f (Ptr p) of { Ptr q -> ForeignPtr q c }

View file

@ -0,0 +1,543 @@
{-# LANGUAGE CPP, DeriveDataTypeable, FlexibleInstances, MagicHash, MultiParamTypeClasses, ScopedTypeVariables #-}
-- |
-- Module : Data.Vector.Storable.Mutable
-- Copyright : (c) Roman Leshchinskiy 2009-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Mutable vectors based on Storable.
--
module Data.Vector.Storable.Mutable(
-- * Mutable vectors of 'Storable' types
MVector(..), IOVector, STVector, Storable,
-- * Accessors
-- ** Length information
length, null,
-- ** Extracting subvectors
slice, init, tail, take, drop, splitAt,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- ** Overlapping
overlaps,
-- * Construction
-- ** Initialisation
new, unsafeNew, replicate, replicateM, clone,
-- ** Growing
grow, unsafeGrow,
-- ** Restricting memory usage
clear,
-- * Accessing individual elements
read, write, modify, swap,
unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-- * Modifying vectors
-- ** Filling and copying
set, copy, move, unsafeCopy, unsafeMove,
-- * Unsafe conversions
unsafeCast,
-- * Raw pointers
unsafeFromForeignPtr, unsafeFromForeignPtr0,
unsafeToForeignPtr, unsafeToForeignPtr0,
unsafeWith
) where
import Control.DeepSeq ( NFData(rnf) )
import qualified Data.Vector.Generic.Mutable as G
import Data.Vector.Storable.Internal
import Foreign.Storable
import Foreign.ForeignPtr
#if __GLASGOW_HASKELL__ >= 706
import GHC.ForeignPtr (mallocPlainForeignPtrAlignedBytes)
#elif __GLASGOW_HASKELL__ >= 700
import Data.Primitive.ByteArray (MutableByteArray(..), newAlignedPinnedByteArray,
unsafeFreezeByteArray)
import GHC.Prim (byteArrayContents#, unsafeCoerce#)
import GHC.ForeignPtr
#endif
import Foreign.Ptr
import Foreign.Marshal.Array ( advancePtr, copyArray, moveArray )
import Control.Monad.Primitive
import Data.Primitive.Addr
import Data.Primitive.Types (Prim)
import GHC.Word (Word8, Word16, Word32, Word64)
import GHC.Ptr (Ptr(..))
import Prelude hiding ( length, null, replicate, reverse, map, read,
take, drop, splitAt, init, tail )
import Data.Typeable ( Typeable )
-- Data.Vector.Internal.Check is not needed
#define NOT_VECTOR_MODULE
#include "vector.h"
-- | Mutable 'Storable'-based vectors
data MVector s a = MVector {-# UNPACK #-} !Int
{-# UNPACK #-} !(ForeignPtr a)
deriving ( Typeable )
type IOVector = MVector RealWorld
type STVector s = MVector s
instance NFData (MVector s a) where
rnf (MVector _ _) = ()
instance Storable a => G.MVector MVector a where
{-# INLINE basicLength #-}
basicLength (MVector n _) = n
{-# INLINE basicUnsafeSlice #-}
basicUnsafeSlice j m (MVector _ fp) = MVector m (updPtr (`advancePtr` j) fp)
-- FIXME: this relies on non-portable pointer comparisons
{-# INLINE basicOverlaps #-}
basicOverlaps (MVector m fp) (MVector n fq)
= between p q (q `advancePtr` n) || between q p (p `advancePtr` m)
where
between x y z = x >= y && x < z
p = getPtr fp
q = getPtr fq
{-# INLINE basicUnsafeNew #-}
basicUnsafeNew n
| n < 0 = error $ "Storable.basicUnsafeNew: negative length: " ++ show n
| n > mx = error $ "Storable.basicUnsafeNew: length too large: " ++ show n
| otherwise = unsafePrimToPrim $ do
fp <- mallocVector n
return $ MVector n fp
where
size = sizeOf (undefined :: a)
mx = maxBound `quot` size :: Int
{-# INLINE basicInitialize #-}
basicInitialize = storableZero
{-# INLINE basicUnsafeRead #-}
basicUnsafeRead (MVector _ fp) i
= unsafePrimToPrim
$ withForeignPtr fp (`peekElemOff` i)
{-# INLINE basicUnsafeWrite #-}
basicUnsafeWrite (MVector _ fp) i x
= unsafePrimToPrim
$ withForeignPtr fp $ \p -> pokeElemOff p i x
{-# INLINE basicSet #-}
basicSet = storableSet
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy (MVector n fp) (MVector _ fq)
= unsafePrimToPrim
$ withForeignPtr fp $ \p ->
withForeignPtr fq $ \q ->
copyArray p q n
{-# INLINE basicUnsafeMove #-}
basicUnsafeMove (MVector n fp) (MVector _ fq)
= unsafePrimToPrim
$ withForeignPtr fp $ \p ->
withForeignPtr fq $ \q ->
moveArray p q n
storableZero :: forall a m. (Storable a, PrimMonad m) => MVector (PrimState m) a -> m ()
{-# INLINE storableZero #-}
storableZero (MVector n fp) = unsafePrimToPrim . withForeignPtr fp $ \(Ptr p) -> do
let q = Addr p
setAddr q byteSize (0 :: Word8)
where
x :: a
x = undefined
byteSize :: Int
byteSize = n * sizeOf x
storableSet :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> a -> m ()
{-# INLINE storableSet #-}
storableSet (MVector n fp) x
| n == 0 = return ()
| otherwise = unsafePrimToPrim $
case sizeOf x of
1 -> storableSetAsPrim n fp x (undefined :: Word8)
2 -> storableSetAsPrim n fp x (undefined :: Word16)
4 -> storableSetAsPrim n fp x (undefined :: Word32)
8 -> storableSetAsPrim n fp x (undefined :: Word64)
_ -> withForeignPtr fp $ \p -> do
poke p x
let do_set i
| 2*i < n = do
copyArray (p `advancePtr` i) p i
do_set (2*i)
| otherwise = copyArray (p `advancePtr` i) p (n-i)
do_set 1
storableSetAsPrim
:: (Storable a, Prim b) => Int -> ForeignPtr a -> a -> b -> IO ()
{-# INLINE [0] storableSetAsPrim #-}
storableSetAsPrim n fp x y = withForeignPtr fp $ \(Ptr p) -> do
poke (Ptr p) x
let q = Addr p
w <- readOffAddr q 0
setAddr (q `plusAddr` sizeOf x) (n-1) (w `asTypeOf` y)
{-# INLINE mallocVector #-}
mallocVector :: Storable a => Int -> IO (ForeignPtr a)
mallocVector =
#if __GLASGOW_HASKELL__ >= 706
doMalloc undefined
where
doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
doMalloc dummy size =
mallocPlainForeignPtrAlignedBytes (size * sizeOf dummy) (alignment dummy)
#elif __GLASGOW_HASKELL__ >= 700
doMalloc undefined
where
doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
doMalloc dummy size = do
arr@(MutableByteArray arr#) <- newAlignedPinnedByteArray arrSize arrAlign
newConcForeignPtr
(Ptr (byteArrayContents# (unsafeCoerce# arr#)))
-- Keep reference to mutable byte array until whole ForeignPtr goes out
-- of scope.
(touch arr)
where
arrSize = size * sizeOf dummy
arrAlign = alignment dummy
#else
mallocForeignPtrArray
#endif
-- Length information
-- ------------------
-- | Length of the mutable vector.
length :: Storable a => MVector s a -> Int
{-# INLINE length #-}
length = G.length
-- | Check whether the vector is empty
null :: Storable a => MVector s a -> Bool
{-# INLINE null #-}
null = G.null
-- Extracting subvectors
-- ---------------------
-- | Yield a part of the mutable vector without copying it.
slice :: Storable a => Int -> Int -> MVector s a -> MVector s a
{-# INLINE slice #-}
slice = G.slice
take :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take = G.take
drop :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop = G.drop
splitAt :: Storable a => Int -> MVector s a -> (MVector s a, MVector s a)
{-# INLINE splitAt #-}
splitAt = G.splitAt
init :: Storable a => MVector s a -> MVector s a
{-# INLINE init #-}
init = G.init
tail :: Storable a => MVector s a -> MVector s a
{-# INLINE tail #-}
tail = G.tail
-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Storable a
=> Int -- ^ starting index
-> Int -- ^ length of the slice
-> MVector s a
-> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
unsafeTake :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
unsafeDrop :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
unsafeInit :: Storable a => MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
unsafeTail :: Storable a => MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- Overlapping
-- -----------
-- | Check whether two vectors overlap.
overlaps :: Storable a => MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps = G.overlaps
-- Initialisation
-- --------------
-- | Create a mutable vector of the given length.
new :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new = G.new
-- | Create a mutable vector of the given length. The memory is not initialized.
unsafeNew :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew = G.unsafeNew
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: (PrimMonad m, Storable a) => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate = G.replicate
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: (PrimMonad m, Storable a) => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | Create a copy of a mutable vector.
clone :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone = G.clone
-- Growing
-- -------
-- | Grow a vector by the given number of elements. The number must be
-- positive.
grow :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow = G.grow
-- | Grow a vector by the given number of elements. The number must be
-- positive but this is not checked.
unsafeGrow :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow = G.unsafeGrow
-- Restricting memory usage
-- ------------------------
-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear = G.clear
-- Accessing individual elements
-- -----------------------------
-- | Yield the element at the given position.
read :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read = G.read
-- | Replace the element at the given position.
write
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write = G.write
-- | Modify the element at the given position.
modify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify = G.modify
-- | Swap the elements at the given positions.
swap
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap = G.swap
-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead = G.unsafeRead
-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite = G.unsafeWrite
-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify = G.unsafeModify
-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap = G.unsafeSwap
-- Filling and copying
-- -------------------
-- | Set all elements of the vector to the given value.
set :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set = G.set
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE copy #-}
copy = G.copy
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap. This is not checked.
unsafeCopy :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy = G.unsafeCopy
-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE move #-}
move = G.move
-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeMove #-}
unsafeMove = G.unsafeMove
-- Unsafe conversions
-- ------------------
-- | /O(1)/ Unsafely cast a mutable vector from one element type to another.
-- The operation just changes the type of the underlying pointer and does not
-- modify the elements.
--
-- The resulting vector contains as many elements as can fit into the
-- underlying memory block.
--
unsafeCast :: forall a b s.
(Storable a, Storable b) => MVector s a -> MVector s b
{-# INLINE unsafeCast #-}
unsafeCast (MVector n fp)
= MVector ((n * sizeOf (undefined :: a)) `div` sizeOf (undefined :: b))
(castForeignPtr fp)
-- Raw pointers
-- ------------
-- | Create a mutable vector from a 'ForeignPtr' with an offset and a length.
--
-- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
-- could have been frozen before the modification.
--
-- If your offset is 0 it is more efficient to use 'unsafeFromForeignPtr0'.
unsafeFromForeignPtr :: Storable a
=> ForeignPtr a -- ^ pointer
-> Int -- ^ offset
-> Int -- ^ length
-> MVector s a
{-# INLINE_FUSED unsafeFromForeignPtr #-}
unsafeFromForeignPtr fp i n = unsafeFromForeignPtr0 fp' n
where
fp' = updPtr (`advancePtr` i) fp
{-# RULES
"unsafeFromForeignPtr fp 0 n -> unsafeFromForeignPtr0 fp n " forall fp n.
unsafeFromForeignPtr fp 0 n = unsafeFromForeignPtr0 fp n #-}
-- | /O(1)/ Create a mutable vector from a 'ForeignPtr' and a length.
--
-- It is assumed the pointer points directly to the data (no offset).
-- Use `unsafeFromForeignPtr` if you need to specify an offset.
--
-- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
-- could have been frozen before the modification.
unsafeFromForeignPtr0 :: Storable a
=> ForeignPtr a -- ^ pointer
-> Int -- ^ length
-> MVector s a
{-# INLINE unsafeFromForeignPtr0 #-}
unsafeFromForeignPtr0 fp n = MVector n fp
-- | Yield the underlying 'ForeignPtr' together with the offset to the data
-- and its length. Modifying the data through the 'ForeignPtr' is
-- unsafe if the vector could have frozen before the modification.
unsafeToForeignPtr :: Storable a => MVector s a -> (ForeignPtr a, Int, Int)
{-# INLINE unsafeToForeignPtr #-}
unsafeToForeignPtr (MVector n fp) = (fp, 0, n)
-- | /O(1)/ Yield the underlying 'ForeignPtr' together with its length.
--
-- You can assume the pointer points directly to the data (no offset).
--
-- Modifying the data through the 'ForeignPtr' is unsafe if the vector could
-- have frozen before the modification.
unsafeToForeignPtr0 :: Storable a => MVector s a -> (ForeignPtr a, Int)
{-# INLINE unsafeToForeignPtr0 #-}
unsafeToForeignPtr0 (MVector n fp) = (fp, n)
-- | Pass a pointer to the vector's data to the IO action. Modifying data
-- through the pointer is unsafe if the vector could have been frozen before
-- the modification.
unsafeWith :: Storable a => IOVector a -> (Ptr a -> IO b) -> IO b
{-# INLINE unsafeWith #-}
unsafeWith (MVector _ fp) = withForeignPtr fp

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,408 @@
{-# LANGUAGE BangPatterns, CPP, MultiParamTypeClasses, TypeFamilies, FlexibleContexts #-}
#if __GLASGOW_HASKELL__ >= 707
{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
#endif
{-# OPTIONS_HADDOCK hide #-}
-- |
-- Module : Data.Vector.Unboxed.Base
-- Copyright : (c) Roman Leshchinskiy 2009-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Adaptive unboxed vectors: basic implementation
--
module Data.Vector.Unboxed.Base (
MVector(..), IOVector, STVector, Vector(..), Unbox
) where
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Primitive as P
import Control.DeepSeq ( NFData(rnf) )
import Control.Monad.Primitive
import Control.Monad ( liftM )
import Data.Word ( Word8, Word16, Word32, Word64 )
import Data.Int ( Int8, Int16, Int32, Int64 )
import Data.Complex
#if !MIN_VERSION_base(4,8,0)
import Data.Word ( Word )
#endif
#if __GLASGOW_HASKELL__ >= 707
import Data.Typeable ( Typeable )
#else
import Data.Typeable ( Typeable1(..), Typeable2(..), mkTyConApp,
mkTyCon3
)
#endif
import Data.Data ( Data(..) )
-- Data.Vector.Internal.Check is unused
#define NOT_VECTOR_MODULE
#include "vector.h"
data family MVector s a
data family Vector a
type IOVector = MVector RealWorld
type STVector s = MVector s
type instance G.Mutable Vector = MVector
class (G.Vector Vector a, M.MVector MVector a) => Unbox a
instance NFData (Vector a) where rnf !_ = ()
instance NFData (MVector s a) where rnf !_ = ()
-- -----------------
-- Data and Typeable
-- -----------------
#if __GLASGOW_HASKELL__ >= 707
deriving instance Typeable Vector
deriving instance Typeable MVector
#else
vectorTyCon = mkTyCon3 "vector"
instance Typeable1 Vector where
typeOf1 _ = mkTyConApp (vectorTyCon "Data.Vector.Unboxed" "Vector") []
instance Typeable2 MVector where
typeOf2 _ = mkTyConApp (vectorTyCon "Data.Vector.Unboxed.Mutable" "MVector") []
#endif
instance (Data a, Unbox a) => Data (Vector a) where
gfoldl = G.gfoldl
toConstr _ = error "toConstr"
gunfold _ _ = error "gunfold"
dataTypeOf _ = G.mkType "Data.Vector.Unboxed.Vector"
dataCast1 = G.dataCast
-- ----
-- Unit
-- ----
newtype instance MVector s () = MV_Unit Int
newtype instance Vector () = V_Unit Int
instance Unbox ()
instance M.MVector MVector () where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicInitialize #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
{-# INLINE basicClear #-}
{-# INLINE basicSet #-}
{-# INLINE basicUnsafeCopy #-}
{-# INLINE basicUnsafeGrow #-}
basicLength (MV_Unit n) = n
basicUnsafeSlice _ m (MV_Unit _) = MV_Unit m
basicOverlaps _ _ = False
basicUnsafeNew n = return (MV_Unit n)
-- Nothing to initialize
basicInitialize _ = return ()
basicUnsafeRead (MV_Unit _) _ = return ()
basicUnsafeWrite (MV_Unit _) _ () = return ()
basicClear _ = return ()
basicSet (MV_Unit _) () = return ()
basicUnsafeCopy (MV_Unit _) (MV_Unit _) = return ()
basicUnsafeGrow (MV_Unit n) m = return $ MV_Unit (n+m)
instance G.Vector Vector () where
{-# INLINE basicUnsafeFreeze #-}
basicUnsafeFreeze (MV_Unit n) = return $ V_Unit n
{-# INLINE basicUnsafeThaw #-}
basicUnsafeThaw (V_Unit n) = return $ MV_Unit n
{-# INLINE basicLength #-}
basicLength (V_Unit n) = n
{-# INLINE basicUnsafeSlice #-}
basicUnsafeSlice _ m (V_Unit _) = V_Unit m
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeIndexM (V_Unit _) _ = return ()
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy (MV_Unit _) (V_Unit _) = return ()
{-# INLINE elemseq #-}
elemseq _ = seq
-- ---------------
-- Primitive types
-- ---------------
#define primMVector(ty,con) \
instance M.MVector MVector ty where { \
{-# INLINE basicLength #-} \
; {-# INLINE basicUnsafeSlice #-} \
; {-# INLINE basicOverlaps #-} \
; {-# INLINE basicUnsafeNew #-} \
; {-# INLINE basicInitialize #-} \
; {-# INLINE basicUnsafeReplicate #-} \
; {-# INLINE basicUnsafeRead #-} \
; {-# INLINE basicUnsafeWrite #-} \
; {-# INLINE basicClear #-} \
; {-# INLINE basicSet #-} \
; {-# INLINE basicUnsafeCopy #-} \
; {-# INLINE basicUnsafeGrow #-} \
; basicLength (con v) = M.basicLength v \
; basicUnsafeSlice i n (con v) = con $ M.basicUnsafeSlice i n v \
; basicOverlaps (con v1) (con v2) = M.basicOverlaps v1 v2 \
; basicUnsafeNew n = con `liftM` M.basicUnsafeNew n \
; basicInitialize (con v) = M.basicInitialize v \
; basicUnsafeReplicate n x = con `liftM` M.basicUnsafeReplicate n x \
; basicUnsafeRead (con v) i = M.basicUnsafeRead v i \
; basicUnsafeWrite (con v) i x = M.basicUnsafeWrite v i x \
; basicClear (con v) = M.basicClear v \
; basicSet (con v) x = M.basicSet v x \
; basicUnsafeCopy (con v1) (con v2) = M.basicUnsafeCopy v1 v2 \
; basicUnsafeMove (con v1) (con v2) = M.basicUnsafeMove v1 v2 \
; basicUnsafeGrow (con v) n = con `liftM` M.basicUnsafeGrow v n }
#define primVector(ty,con,mcon) \
instance G.Vector Vector ty where { \
{-# INLINE basicUnsafeFreeze #-} \
; {-# INLINE basicUnsafeThaw #-} \
; {-# INLINE basicLength #-} \
; {-# INLINE basicUnsafeSlice #-} \
; {-# INLINE basicUnsafeIndexM #-} \
; {-# INLINE elemseq #-} \
; basicUnsafeFreeze (mcon v) = con `liftM` G.basicUnsafeFreeze v \
; basicUnsafeThaw (con v) = mcon `liftM` G.basicUnsafeThaw v \
; basicLength (con v) = G.basicLength v \
; basicUnsafeSlice i n (con v) = con $ G.basicUnsafeSlice i n v \
; basicUnsafeIndexM (con v) i = G.basicUnsafeIndexM v i \
; basicUnsafeCopy (mcon mv) (con v) = G.basicUnsafeCopy mv v \
; elemseq _ = seq }
newtype instance MVector s Int = MV_Int (P.MVector s Int)
newtype instance Vector Int = V_Int (P.Vector Int)
instance Unbox Int
primMVector(Int, MV_Int)
primVector(Int, V_Int, MV_Int)
newtype instance MVector s Int8 = MV_Int8 (P.MVector s Int8)
newtype instance Vector Int8 = V_Int8 (P.Vector Int8)
instance Unbox Int8
primMVector(Int8, MV_Int8)
primVector(Int8, V_Int8, MV_Int8)
newtype instance MVector s Int16 = MV_Int16 (P.MVector s Int16)
newtype instance Vector Int16 = V_Int16 (P.Vector Int16)
instance Unbox Int16
primMVector(Int16, MV_Int16)
primVector(Int16, V_Int16, MV_Int16)
newtype instance MVector s Int32 = MV_Int32 (P.MVector s Int32)
newtype instance Vector Int32 = V_Int32 (P.Vector Int32)
instance Unbox Int32
primMVector(Int32, MV_Int32)
primVector(Int32, V_Int32, MV_Int32)
newtype instance MVector s Int64 = MV_Int64 (P.MVector s Int64)
newtype instance Vector Int64 = V_Int64 (P.Vector Int64)
instance Unbox Int64
primMVector(Int64, MV_Int64)
primVector(Int64, V_Int64, MV_Int64)
newtype instance MVector s Word = MV_Word (P.MVector s Word)
newtype instance Vector Word = V_Word (P.Vector Word)
instance Unbox Word
primMVector(Word, MV_Word)
primVector(Word, V_Word, MV_Word)
newtype instance MVector s Word8 = MV_Word8 (P.MVector s Word8)
newtype instance Vector Word8 = V_Word8 (P.Vector Word8)
instance Unbox Word8
primMVector(Word8, MV_Word8)
primVector(Word8, V_Word8, MV_Word8)
newtype instance MVector s Word16 = MV_Word16 (P.MVector s Word16)
newtype instance Vector Word16 = V_Word16 (P.Vector Word16)
instance Unbox Word16
primMVector(Word16, MV_Word16)
primVector(Word16, V_Word16, MV_Word16)
newtype instance MVector s Word32 = MV_Word32 (P.MVector s Word32)
newtype instance Vector Word32 = V_Word32 (P.Vector Word32)
instance Unbox Word32
primMVector(Word32, MV_Word32)
primVector(Word32, V_Word32, MV_Word32)
newtype instance MVector s Word64 = MV_Word64 (P.MVector s Word64)
newtype instance Vector Word64 = V_Word64 (P.Vector Word64)
instance Unbox Word64
primMVector(Word64, MV_Word64)
primVector(Word64, V_Word64, MV_Word64)
newtype instance MVector s Float = MV_Float (P.MVector s Float)
newtype instance Vector Float = V_Float (P.Vector Float)
instance Unbox Float
primMVector(Float, MV_Float)
primVector(Float, V_Float, MV_Float)
newtype instance MVector s Double = MV_Double (P.MVector s Double)
newtype instance Vector Double = V_Double (P.Vector Double)
instance Unbox Double
primMVector(Double, MV_Double)
primVector(Double, V_Double, MV_Double)
newtype instance MVector s Char = MV_Char (P.MVector s Char)
newtype instance Vector Char = V_Char (P.Vector Char)
instance Unbox Char
primMVector(Char, MV_Char)
primVector(Char, V_Char, MV_Char)
-- ----
-- Bool
-- ----
fromBool :: Bool -> Word8
{-# INLINE fromBool #-}
fromBool True = 1
fromBool False = 0
toBool :: Word8 -> Bool
{-# INLINE toBool #-}
toBool 0 = False
toBool _ = True
newtype instance MVector s Bool = MV_Bool (P.MVector s Word8)
newtype instance Vector Bool = V_Bool (P.Vector Word8)
instance Unbox Bool
instance M.MVector MVector Bool where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicInitialize #-}
{-# INLINE basicUnsafeReplicate #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
{-# INLINE basicClear #-}
{-# INLINE basicSet #-}
{-# INLINE basicUnsafeCopy #-}
{-# INLINE basicUnsafeGrow #-}
basicLength (MV_Bool v) = M.basicLength v
basicUnsafeSlice i n (MV_Bool v) = MV_Bool $ M.basicUnsafeSlice i n v
basicOverlaps (MV_Bool v1) (MV_Bool v2) = M.basicOverlaps v1 v2
basicUnsafeNew n = MV_Bool `liftM` M.basicUnsafeNew n
basicInitialize (MV_Bool v) = M.basicInitialize v
basicUnsafeReplicate n x = MV_Bool `liftM` M.basicUnsafeReplicate n (fromBool x)
basicUnsafeRead (MV_Bool v) i = toBool `liftM` M.basicUnsafeRead v i
basicUnsafeWrite (MV_Bool v) i x = M.basicUnsafeWrite v i (fromBool x)
basicClear (MV_Bool v) = M.basicClear v
basicSet (MV_Bool v) x = M.basicSet v (fromBool x)
basicUnsafeCopy (MV_Bool v1) (MV_Bool v2) = M.basicUnsafeCopy v1 v2
basicUnsafeMove (MV_Bool v1) (MV_Bool v2) = M.basicUnsafeMove v1 v2
basicUnsafeGrow (MV_Bool v) n = MV_Bool `liftM` M.basicUnsafeGrow v n
instance G.Vector Vector Bool where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
{-# INLINE elemseq #-}
basicUnsafeFreeze (MV_Bool v) = V_Bool `liftM` G.basicUnsafeFreeze v
basicUnsafeThaw (V_Bool v) = MV_Bool `liftM` G.basicUnsafeThaw v
basicLength (V_Bool v) = G.basicLength v
basicUnsafeSlice i n (V_Bool v) = V_Bool $ G.basicUnsafeSlice i n v
basicUnsafeIndexM (V_Bool v) i = toBool `liftM` G.basicUnsafeIndexM v i
basicUnsafeCopy (MV_Bool mv) (V_Bool v) = G.basicUnsafeCopy mv v
elemseq _ = seq
-- -------
-- Complex
-- -------
newtype instance MVector s (Complex a) = MV_Complex (MVector s (a,a))
newtype instance Vector (Complex a) = V_Complex (Vector (a,a))
instance (Unbox a) => Unbox (Complex a)
instance (Unbox a) => M.MVector MVector (Complex a) where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicInitialize #-}
{-# INLINE basicUnsafeReplicate #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
{-# INLINE basicClear #-}
{-# INLINE basicSet #-}
{-# INLINE basicUnsafeCopy #-}
{-# INLINE basicUnsafeGrow #-}
basicLength (MV_Complex v) = M.basicLength v
basicUnsafeSlice i n (MV_Complex v) = MV_Complex $ M.basicUnsafeSlice i n v
basicOverlaps (MV_Complex v1) (MV_Complex v2) = M.basicOverlaps v1 v2
basicUnsafeNew n = MV_Complex `liftM` M.basicUnsafeNew n
basicInitialize (MV_Complex v) = M.basicInitialize v
basicUnsafeReplicate n (x :+ y) = MV_Complex `liftM` M.basicUnsafeReplicate n (x,y)
basicUnsafeRead (MV_Complex v) i = uncurry (:+) `liftM` M.basicUnsafeRead v i
basicUnsafeWrite (MV_Complex v) i (x :+ y) = M.basicUnsafeWrite v i (x,y)
basicClear (MV_Complex v) = M.basicClear v
basicSet (MV_Complex v) (x :+ y) = M.basicSet v (x,y)
basicUnsafeCopy (MV_Complex v1) (MV_Complex v2) = M.basicUnsafeCopy v1 v2
basicUnsafeMove (MV_Complex v1) (MV_Complex v2) = M.basicUnsafeMove v1 v2
basicUnsafeGrow (MV_Complex v) n = MV_Complex `liftM` M.basicUnsafeGrow v n
instance (Unbox a) => G.Vector Vector (Complex a) where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
{-# INLINE elemseq #-}
basicUnsafeFreeze (MV_Complex v) = V_Complex `liftM` G.basicUnsafeFreeze v
basicUnsafeThaw (V_Complex v) = MV_Complex `liftM` G.basicUnsafeThaw v
basicLength (V_Complex v) = G.basicLength v
basicUnsafeSlice i n (V_Complex v) = V_Complex $ G.basicUnsafeSlice i n v
basicUnsafeIndexM (V_Complex v) i
= uncurry (:+) `liftM` G.basicUnsafeIndexM v i
basicUnsafeCopy (MV_Complex mv) (V_Complex v)
= G.basicUnsafeCopy mv v
elemseq _ (x :+ y) z = G.elemseq (undefined :: Vector a) x
$ G.elemseq (undefined :: Vector a) y z
-- ------
-- Tuples
-- ------
#define DEFINE_INSTANCES
#include "unbox-tuple-instances"

View file

@ -0,0 +1,307 @@
{-# LANGUAGE CPP #-}
-- |
-- Module : Data.Vector.Unboxed.Mutable
-- Copyright : (c) Roman Leshchinskiy 2009-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Mutable adaptive unboxed vectors
--
module Data.Vector.Unboxed.Mutable (
-- * Mutable vectors of primitive types
MVector(..), IOVector, STVector, Unbox,
-- * Accessors
-- ** Length information
length, null,
-- ** Extracting subvectors
slice, init, tail, take, drop, splitAt,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- ** Overlapping
overlaps,
-- * Construction
-- ** Initialisation
new, unsafeNew, replicate, replicateM, clone,
-- ** Growing
grow, unsafeGrow,
-- ** Restricting memory usage
clear,
-- * Zipping and unzipping
zip, zip3, zip4, zip5, zip6,
unzip, unzip3, unzip4, unzip5, unzip6,
-- * Accessing individual elements
read, write, modify, swap,
unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-- * Modifying vectors
nextPermutation,
-- ** Filling and copying
set, copy, move, unsafeCopy, unsafeMove
) where
import Data.Vector.Unboxed.Base
import qualified Data.Vector.Generic.Mutable as G
import Data.Vector.Fusion.Util ( delayed_min )
import Control.Monad.Primitive
import Prelude hiding ( length, null, replicate, reverse, map, read,
take, drop, splitAt, init, tail,
zip, zip3, unzip, unzip3 )
-- don't import an unused Data.Vector.Internal.Check
#define NOT_VECTOR_MODULE
#include "vector.h"
-- Length information
-- ------------------
-- | Length of the mutable vector.
length :: Unbox a => MVector s a -> Int
{-# INLINE length #-}
length = G.length
-- | Check whether the vector is empty
null :: Unbox a => MVector s a -> Bool
{-# INLINE null #-}
null = G.null
-- Extracting subvectors
-- ---------------------
-- | Yield a part of the mutable vector without copying it.
slice :: Unbox a => Int -> Int -> MVector s a -> MVector s a
{-# INLINE slice #-}
slice = G.slice
take :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take = G.take
drop :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop = G.drop
splitAt :: Unbox a => Int -> MVector s a -> (MVector s a, MVector s a)
{-# INLINE splitAt #-}
splitAt = G.splitAt
init :: Unbox a => MVector s a -> MVector s a
{-# INLINE init #-}
init = G.init
tail :: Unbox a => MVector s a -> MVector s a
{-# INLINE tail #-}
tail = G.tail
-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Unbox a
=> Int -- ^ starting index
-> Int -- ^ length of the slice
-> MVector s a
-> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
unsafeTake :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
unsafeDrop :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
unsafeInit :: Unbox a => MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
unsafeTail :: Unbox a => MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- Overlapping
-- -----------
-- | Check whether two vectors overlap.
overlaps :: Unbox a => MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps = G.overlaps
-- Initialisation
-- --------------
-- | Create a mutable vector of the given length.
new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new = G.new
-- | Create a mutable vector of the given length. The memory is not initialized.
unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew = G.unsafeNew
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate = G.replicate
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | Create a copy of a mutable vector.
clone :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone = G.clone
-- Growing
-- -------
-- | Grow a vector by the given number of elements. The number must be
-- positive.
grow :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow = G.grow
-- | Grow a vector by the given number of elements. The number must be
-- positive but this is not checked.
unsafeGrow :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow = G.unsafeGrow
-- Restricting memory usage
-- ------------------------
-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear = G.clear
-- Accessing individual elements
-- -----------------------------
-- | Yield the element at the given position.
read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read = G.read
-- | Replace the element at the given position.
write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write = G.write
-- | Modify the element at the given position.
modify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify = G.modify
-- | Swap the elements at the given positions.
swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap = G.swap
-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead = G.unsafeRead
-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite
:: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite = G.unsafeWrite
-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify = G.unsafeModify
-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap
:: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap = G.unsafeSwap
-- Filling and copying
-- -------------------
-- | Set all elements of the vector to the given value.
set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set = G.set
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE copy #-}
copy = G.copy
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap. This is not checked.
unsafeCopy :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy = G.unsafeCopy
-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE move #-}
move = G.move
-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: (PrimMonad m, Unbox a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeMove #-}
unsafeMove = G.unsafeMove
-- | Compute the next (lexicographically) permutation of given vector in-place.
-- Returns False when input is the last permtuation
nextPermutation :: (PrimMonad m,Ord e,Unbox e) => MVector (PrimState m) e -> m Bool
{-# INLINE nextPermutation #-}
nextPermutation = G.nextPermutation
#define DEFINE_MUTABLE
#include "unbox-tuple-instances"