Export of internal Abseil changes.

--
c321829735accc2e6beb81e6a5a4421e5647b876 by CJ Johnson <johnsoncj@google.com>:

Updates the definition of InlinedVector::swap(InlinedVector&) to be exception safe and adds exception safety tests

PiperOrigin-RevId: 255511536

--
0d86445891748efb09430eb9ede267b54185a246 by CJ Johnson <johnsoncj@google.com>:

Updates the definition of InlinedVector::erase(...) to be exception safe and adds an exception safety test for it.

PiperOrigin-RevId: 255492671

--
f07e8fa62dfe9eb0d025b27fca8c6db43c5a328f by CJ Johnson <johnsoncj@google.com>:

Updates the implementation of InlinedVector::emplace_back(...) to be exception safe and adds exception safety tests

PiperOrigin-RevId: 255422837

--
4c3be92bfe4c1636a03cef8fd5aa802fed0d2c61 by Abseil Team <absl-team@google.com>:

Internal Change

PiperOrigin-RevId: 255422693

--
6df38ea42f00678c357a539016163f8ac4c084e6 by Gennadiy Rozental <rogeeff@google.com>:

Introduce public interfaces for setting and getting program usage messages.

PiperOrigin-RevId: 255291467

--
8f21d594aed3971d37db70226847c693eb548edb by Laramie Leavitt <lar@google.com>:

Move absl/random's copy of ABSL_ATTRIBUTE_FORCE_INLINE and
ABSL_ATTRIBUTE_NEVER_INLINE into .cc files and rename to
prevent conflicts.

https://github.com/abseil/abseil-cpp/issues/343

PiperOrigin-RevId: 255288599

--
6b7430ad0c8bd860fb9394894f5eeedd1acc9f77 by CJ Johnson <johnsoncj@google.com>:

Updates the ScopedAllocatorWorks test for InlinedVector to not rely on the byte count allocated by the standard library

In doing so, removes LegacyNextCapacityFrom(...) impl function from InlinedVector

Also applies clang-format to the test file

PiperOrigin-RevId: 255207606
GitOrigin-RevId: c321829735accc2e6beb81e6a5a4421e5647b876
Change-Id: I7438211c36c4549fca2e866658f8d579c65d7d52
This commit is contained in:
Abseil Team 2019-06-27 17:24:26 -07:00 committed by Shaindel Schwartz
parent 72e09a54d9
commit c964fcffac
16 changed files with 518 additions and 367 deletions

View file

@ -640,28 +640,7 @@ class InlinedVector {
// returning a `reference` to the emplaced element. // returning a `reference` to the emplaced element.
template <typename... Args> template <typename... Args>
reference emplace_back(Args&&... args) { reference emplace_back(Args&&... args) {
size_type s = size(); return storage_.EmplaceBack(std::forward<Args>(args)...);
if (ABSL_PREDICT_FALSE(s == capacity())) {
size_type new_capacity = 2 * capacity();
pointer new_data =
AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);
reference new_element =
Construct(new_data + s, std::forward<Args>(args)...);
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + s), new_data);
ResetAllocation(new_data, new_capacity, s + 1);
return new_element;
} else {
pointer space;
if (storage_.GetIsAllocated()) {
storage_.SetAllocatedSize(s + 1);
space = storage_.GetAllocatedData();
} else {
storage_.SetInlinedSize(s + 1);
space = storage_.GetInlinedData();
}
return Construct(space + s, std::forward<Args>(args)...);
}
} }
// `InlinedVector::push_back()` // `InlinedVector::push_back()`
@ -696,10 +675,7 @@ class InlinedVector {
assert(pos >= begin()); assert(pos >= begin());
assert(pos < end()); assert(pos < end());
iterator position = const_cast<iterator>(pos); return storage_.Erase(pos, pos + 1);
std::move(position + 1, end(), position);
pop_back();
return position;
} }
// Overload of `InlinedVector::erase()` for erasing all elements in the // Overload of `InlinedVector::erase()` for erasing all elements in the
@ -707,28 +683,15 @@ class InlinedVector {
// to the first element following the range erased or the end iterator if `to` // to the first element following the range erased or the end iterator if `to`
// was the end iterator. // was the end iterator.
iterator erase(const_iterator from, const_iterator to) { iterator erase(const_iterator from, const_iterator to) {
assert(begin() <= from); assert(from >= begin());
assert(from <= to); assert(from <= to);
assert(to <= end()); assert(to <= end());
iterator range_start = const_cast<iterator>(from); if (ABSL_PREDICT_TRUE(from != to)) {
iterator range_end = const_cast<iterator>(to); return storage_.Erase(from, to);
} else {
size_type s = size(); return const_cast<iterator>(from);
ptrdiff_t erase_gap = std::distance(range_start, range_end);
if (erase_gap > 0) {
pointer space;
if (storage_.GetIsAllocated()) {
space = storage_.GetAllocatedData();
storage_.SetAllocatedSize(s - erase_gap);
} else {
space = storage_.GetInlinedData();
storage_.SetInlinedSize(s - erase_gap);
}
std::move(range_end, space + s, range_start);
Destroy(space + s - erase_gap, space + s);
} }
return range_start;
} }
// `InlinedVector::clear()` // `InlinedVector::clear()`
@ -774,96 +737,9 @@ class InlinedVector {
// //
// Swaps the contents of this inlined vector with the contents of `other`. // Swaps the contents of this inlined vector with the contents of `other`.
void swap(InlinedVector& other) { void swap(InlinedVector& other) {
using std::swap; if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
storage_.Swap(std::addressof(other.storage_));
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) {
return;
} }
bool is_allocated = storage_.GetIsAllocated();
bool other_is_allocated = other.storage_.GetIsAllocated();
if (is_allocated && other_is_allocated) {
// Both out of line, so just swap the tag, allocation, and allocator.
storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_));
storage_.SwapAllocatedSizeAndCapacity(std::addressof(other.storage_));
swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr());
return;
}
if (!is_allocated && !other_is_allocated) {
// Both inlined: swap up to smaller size, then move remaining elements.
InlinedVector* a = this;
InlinedVector* b = std::addressof(other);
if (size() < other.size()) {
swap(a, b);
}
const size_type a_size = a->size();
const size_type b_size = b->size();
assert(a_size >= b_size);
// `a` is larger. Swap the elements up to the smaller array size.
std::swap_ranges(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + b_size,
b->storage_.GetInlinedData());
// Move the remaining elements:
// [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
b->UninitializedCopy(a->storage_.GetInlinedData() + b_size,
a->storage_.GetInlinedData() + a_size,
b->storage_.GetInlinedData() + b_size);
a->Destroy(a->storage_.GetInlinedData() + b_size,
a->storage_.GetInlinedData() + a_size);
storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_));
swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr());
assert(b->size() == a_size);
assert(a->size() == b_size);
return;
}
// One is out of line, one is inline.
// We first move the elements from the inlined vector into the
// inlined space in the other vector. We then put the other vector's
// pointer/capacity into the originally inlined vector and swap
// the tags.
InlinedVector* a = this;
InlinedVector* b = std::addressof(other);
if (a->storage_.GetIsAllocated()) {
swap(a, b);
}
assert(!a->storage_.GetIsAllocated());
assert(b->storage_.GetIsAllocated());
const size_type a_size = a->size();
const size_type b_size = b->size();
// In an optimized build, `b_size` would be unused.
static_cast<void>(b_size);
// Made Local copies of `size()`, these can now be swapped
a->storage_.SwapSizeAndIsAllocated(std::addressof(b->storage_));
// Copy out before `b`'s union gets clobbered by `inline_space`
pointer b_data = b->storage_.GetAllocatedData();
size_type b_capacity = b->storage_.GetAllocatedCapacity();
b->UninitializedCopy(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + a_size,
b->storage_.GetInlinedData());
a->Destroy(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + a_size);
a->storage_.SetAllocatedData(b_data, b_capacity);
if (*a->storage_.GetAllocPtr() != *b->storage_.GetAllocPtr()) {
swap(*a->storage_.GetAllocPtr(), *b->storage_.GetAllocPtr());
}
assert(b->size() == a_size);
assert(a->size() == b_size);
} }
private: private:

View file

@ -279,12 +279,34 @@ TYPED_TEST(TwoSizeTest, Resize) {
})); }));
} }
TYPED_TEST(OneSizeTest, EmplaceBack) {
using VecT = typename TypeParam::VecT;
constexpr static auto size = TypeParam::GetSizeAt(0);
VecT full_vec{size};
full_vec.resize(full_vec.capacity());
VecT nonfull_vec{size};
nonfull_vec.reserve(size + 1);
auto tester = testing::MakeExceptionSafetyTester().WithContracts(
InlinedVectorInvariants<VecT>);
EXPECT_TRUE(tester.WithInitialValue(nonfull_vec).Test([](VecT* vec) {
vec->emplace_back(); //
}));
EXPECT_TRUE(tester.WithInitialValue(full_vec).Test([](VecT* vec) {
vec->emplace_back(); //
}));
}
TYPED_TEST(OneSizeTest, PopBack) { TYPED_TEST(OneSizeTest, PopBack) {
using VecT = typename TypeParam::VecT; using VecT = typename TypeParam::VecT;
constexpr static auto size = TypeParam::GetSizeAt(0); constexpr static auto size = TypeParam::GetSizeAt(0);
auto tester = testing::MakeExceptionSafetyTester() auto tester = testing::MakeExceptionSafetyTester()
.WithInitialValue(VecT(size)) .WithInitialValue(VecT{size})
.WithContracts(NoThrowGuarantee<VecT>); .WithContracts(NoThrowGuarantee<VecT>);
EXPECT_TRUE(tester.Test([](VecT* vec) { EXPECT_TRUE(tester.Test([](VecT* vec) {
@ -292,12 +314,47 @@ TYPED_TEST(OneSizeTest, PopBack) {
})); }));
} }
TYPED_TEST(OneSizeTest, Erase) {
using VecT = typename TypeParam::VecT;
constexpr static auto size = TypeParam::GetSizeAt(0);
auto tester = testing::MakeExceptionSafetyTester()
.WithInitialValue(VecT{size})
.WithContracts(InlinedVectorInvariants<VecT>);
EXPECT_TRUE(tester.Test([](VecT* vec) {
auto it = vec->begin();
vec->erase(it);
}));
EXPECT_TRUE(tester.Test([](VecT* vec) {
auto it = vec->begin() + (vec->size() / 2);
vec->erase(it);
}));
EXPECT_TRUE(tester.Test([](VecT* vec) {
auto it = vec->begin() + (vec->size() - 1);
vec->erase(it);
}));
EXPECT_TRUE(tester.Test([](VecT* vec) {
auto it = vec->begin();
vec->erase(it, it + 1);
}));
EXPECT_TRUE(tester.Test([](VecT* vec) {
auto it = vec->begin() + (vec->size() / 2);
vec->erase(it, it + 1);
}));
EXPECT_TRUE(tester.Test([](VecT* vec) {
auto it = vec->begin() + (vec->size() - 1);
vec->erase(it, it + 1);
}));
}
TYPED_TEST(OneSizeTest, Clear) { TYPED_TEST(OneSizeTest, Clear) {
using VecT = typename TypeParam::VecT; using VecT = typename TypeParam::VecT;
constexpr static auto size = TypeParam::GetSizeAt(0); constexpr static auto size = TypeParam::GetSizeAt(0);
auto tester = testing::MakeExceptionSafetyTester() auto tester = testing::MakeExceptionSafetyTester()
.WithInitialValue(VecT(size)) .WithInitialValue(VecT{size})
.WithContracts(NoThrowGuarantee<VecT>); .WithContracts(NoThrowGuarantee<VecT>);
EXPECT_TRUE(tester.Test([](VecT* vec) { EXPECT_TRUE(tester.Test([](VecT* vec) {
@ -332,4 +389,25 @@ TYPED_TEST(OneSizeTest, ShrinkToFit) {
})); }));
} }
TYPED_TEST(TwoSizeTest, Swap) {
using VecT = typename TypeParam::VecT;
constexpr static auto from_size = TypeParam::GetSizeAt(0);
constexpr static auto to_size = TypeParam::GetSizeAt(1);
auto tester = testing::MakeExceptionSafetyTester()
.WithInitialValue(VecT{from_size})
.WithContracts(InlinedVectorInvariants<VecT>);
EXPECT_TRUE(tester.Test([](VecT* vec) {
VecT other_vec{to_size};
vec->swap(other_vec);
}));
EXPECT_TRUE(tester.Test([](VecT* vec) {
using std::swap;
VecT other_vec{to_size};
swap(*vec, other_vec);
}));
}
} // namespace } // namespace

View file

@ -76,12 +76,9 @@ TYPED_TEST_SUITE_P(InstanceTest);
// destroyed in the erase(begin, end) test. // destroyed in the erase(begin, end) test.
class RefCounted { class RefCounted {
public: public:
RefCounted(int value, int* count) : value_(value), count_(count) { RefCounted(int value, int* count) : value_(value), count_(count) { Ref(); }
Ref();
}
RefCounted(const RefCounted& v) RefCounted(const RefCounted& v) : value_(v.value_), count_(v.count_) {
: value_(v.value_), count_(v.count_) {
Ref(); Ref();
} }
@ -290,7 +287,7 @@ TEST(RefCountedVec, EraseBeginEnd) {
} }
// Check that the elements at the end are preserved. // Check that the elements at the end are preserved.
for (int i = erase_end; i< len; ++i) { for (int i = erase_end; i < len; ++i) {
EXPECT_EQ(1, counts[i]); EXPECT_EQ(1, counts[i]);
} }
} }
@ -552,10 +549,10 @@ TEST(IntVec, Resize) {
static const int kResizeElem = 1000000; static const int kResizeElem = 1000000;
for (int k = 0; k < 10; k++) { for (int k = 0; k < 10; k++) {
// Enlarging resize // Enlarging resize
v.resize(len+k, kResizeElem); v.resize(len + k, kResizeElem);
EXPECT_EQ(len+k, v.size()); EXPECT_EQ(len + k, v.size());
EXPECT_LE(len+k, v.capacity()); EXPECT_LE(len + k, v.capacity());
for (int i = 0; i < len+k; i++) { for (int i = 0; i < len + k; i++) {
if (i < len) { if (i < len) {
EXPECT_EQ(i, v[i]); EXPECT_EQ(i, v[i]);
} else { } else {
@ -866,7 +863,7 @@ TYPED_TEST_P(InstanceTest, Swap) {
auto min_len = std::min(l1, l2); auto min_len = std::min(l1, l2);
auto max_len = std::max(l1, l2); auto max_len = std::max(l1, l2);
for (int i = 0; i < l1; i++) a.push_back(Instance(i)); for (int i = 0; i < l1; i++) a.push_back(Instance(i));
for (int i = 0; i < l2; i++) b.push_back(Instance(100+i)); for (int i = 0; i < l2; i++) b.push_back(Instance(100 + i));
EXPECT_EQ(tracker.instances(), l1 + l2); EXPECT_EQ(tracker.instances(), l1 + l2);
tracker.ResetCopiesMovesSwaps(); tracker.ResetCopiesMovesSwaps();
{ {
@ -934,7 +931,7 @@ TEST(IntVec, EqualAndNotEqual) {
EXPECT_FALSE(a == b); EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b); EXPECT_TRUE(a != b);
b[i] = b[i] - 1; // Back to before b[i] = b[i] - 1; // Back to before
EXPECT_TRUE(a == b); EXPECT_TRUE(a == b);
EXPECT_FALSE(a != b); EXPECT_FALSE(a != b);
} }
@ -1001,7 +998,7 @@ TYPED_TEST_P(InstanceTest, CountConstructorsDestructors) {
// reserve() must not increase the number of initialized objects // reserve() must not increase the number of initialized objects
SCOPED_TRACE("reserve"); SCOPED_TRACE("reserve");
v.reserve(len+1000); v.reserve(len + 1000);
EXPECT_EQ(tracker.instances(), len); EXPECT_EQ(tracker.instances(), len);
EXPECT_EQ(tracker.copies() + tracker.moves(), len); EXPECT_EQ(tracker.copies() + tracker.moves(), len);
@ -1247,9 +1244,8 @@ void InstanceCountElemAssignWithAllocationTest() {
absl::InlinedVector<Instance, 2> v(original_contents.begin(), absl::InlinedVector<Instance, 2> v(original_contents.begin(),
original_contents.end()); original_contents.end());
v.assign(3, Instance(123)); v.assign(3, Instance(123));
EXPECT_THAT(v, EXPECT_THAT(v, AllOf(SizeIs(3), ElementsAre(ValueIs(123), ValueIs(123),
AllOf(SizeIs(3), ValueIs(123))));
ElementsAre(ValueIs(123), ValueIs(123), ValueIs(123))));
EXPECT_LE(v.size(), v.capacity()); EXPECT_LE(v.size(), v.capacity());
} }
} }
@ -1528,8 +1524,8 @@ TYPED_TEST_P(InstanceTest, InitializerListAssign) {
SCOPED_TRACE(original_size); SCOPED_TRACE(original_size);
absl::InlinedVector<Instance, 2> v(original_size, Instance(12345)); absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));
v.assign({Instance(3), Instance(4), Instance(5)}); v.assign({Instance(3), Instance(4), Instance(5)});
EXPECT_THAT(v, AllOf(SizeIs(3), EXPECT_THAT(
ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5)))); v, AllOf(SizeIs(3), ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5))));
EXPECT_LE(3, v.capacity()); EXPECT_LE(3, v.capacity());
} }
} }
@ -1554,7 +1550,7 @@ TEST(DynamicVec, DynamicVecCompiles) {
TEST(AllocatorSupportTest, Constructors) { TEST(AllocatorSupportTest, Constructors) {
using MyAlloc = CountingAllocator<int>; using MyAlloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
const int ia[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
int64_t allocated = 0; int64_t allocated = 0;
MyAlloc alloc(&allocated); MyAlloc alloc(&allocated);
{ AllocVec ABSL_ATTRIBUTE_UNUSED v; } { AllocVec ABSL_ATTRIBUTE_UNUSED v; }
@ -1570,7 +1566,7 @@ TEST(AllocatorSupportTest, Constructors) {
TEST(AllocatorSupportTest, CountAllocations) { TEST(AllocatorSupportTest, CountAllocations) {
using MyAlloc = CountingAllocator<int>; using MyAlloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
const int ia[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
int64_t allocated = 0; int64_t allocated = 0;
MyAlloc alloc(&allocated); MyAlloc alloc(&allocated);
{ {
@ -1634,8 +1630,8 @@ TEST(AllocatorSupportTest, SwapBothAllocated) {
int64_t allocated1 = 0; int64_t allocated1 = 0;
int64_t allocated2 = 0; int64_t allocated2 = 0;
{ {
const int ia1[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7};
const int ia2[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 }; const int ia2[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
MyAlloc a1(&allocated1); MyAlloc a1(&allocated1);
MyAlloc a2(&allocated2); MyAlloc a2(&allocated2);
AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1); AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);
@ -1659,8 +1655,8 @@ TEST(AllocatorSupportTest, SwapOneAllocated) {
int64_t allocated1 = 0; int64_t allocated1 = 0;
int64_t allocated2 = 0; int64_t allocated2 = 0;
{ {
const int ia1[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7};
const int ia2[] = { 0, 1, 2, 3 }; const int ia2[] = {0, 1, 2, 3};
MyAlloc a1(&allocated1); MyAlloc a1(&allocated1);
MyAlloc a2(&allocated2); MyAlloc a2(&allocated2);
AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1); AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);
@ -1681,65 +1677,42 @@ TEST(AllocatorSupportTest, SwapOneAllocated) {
TEST(AllocatorSupportTest, ScopedAllocatorWorks) { TEST(AllocatorSupportTest, ScopedAllocatorWorks) {
using StdVector = std::vector<int, CountingAllocator<int>>; using StdVector = std::vector<int, CountingAllocator<int>>;
using MyAlloc = using Alloc = CountingAllocator<StdVector>;
std::scoped_allocator_adaptor<CountingAllocator<StdVector>>; using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>;
using AllocVec = absl::InlinedVector<StdVector, 4, MyAlloc>; using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>;
// MSVC 2017's std::vector allocates different amounts of memory in debug {
// versus opt mode. int64_t total_allocated_byte_count = 0;
int64_t test_allocated = 0;
StdVector v(CountingAllocator<int>{&test_allocated});
// The amount of memory allocated by a default constructed vector<int>
auto default_std_vec_allocated = test_allocated;
v.push_back(1);
// The amound of memory allocated by a copy-constructed vector<int> with one
// element.
int64_t one_element_std_vec_copy_allocated = test_allocated;
int64_t allocated = 0; AllocVec inlined_case(ScopedAlloc(Alloc(+&total_allocated_byte_count)));
AllocVec vec(MyAlloc{CountingAllocator<StdVector>{&allocated}}); inlined_case.emplace_back();
EXPECT_EQ(allocated, 0);
// This default constructs a vector<int>, but the allocator should pass itself int64_t absl_responsible_for_count = total_allocated_byte_count;
// into the vector<int>, so check allocation compared to that. EXPECT_EQ(absl_responsible_for_count, 0);
// The absl::InlinedVector does not allocate any memory.
// The vector<int> may allocate any memory.
auto expected = default_std_vec_allocated;
vec.resize(1);
EXPECT_EQ(allocated, expected);
// We make vector<int> allocate memory. inlined_case[0].emplace_back();
// It must go through the allocator even though we didn't construct the EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count);
// vector directly. This assumes that vec[0] doesn't need to grow its
// allocation.
expected += sizeof(int);
vec[0].push_back(1);
EXPECT_EQ(allocated, expected);
// Another allocating vector. inlined_case.clear();
expected += one_element_std_vec_copy_allocated; EXPECT_EQ(total_allocated_byte_count, 0);
vec.push_back(vec[0]); }
EXPECT_EQ(allocated, expected);
// Overflow the inlined memory. {
// The absl::InlinedVector will now allocate. int64_t total_allocated_byte_count = 0;
expected += sizeof(StdVector) * 8 + default_std_vec_allocated * 3;
vec.resize(5);
EXPECT_EQ(allocated, expected);
// Adding one more in external mode should also work. AllocVec allocated_case(ScopedAlloc(Alloc(+&total_allocated_byte_count)));
expected += one_element_std_vec_copy_allocated; allocated_case.emplace_back();
vec.push_back(vec[0]); allocated_case.emplace_back();
EXPECT_EQ(allocated, expected);
// And extending these should still work. This assumes that vec[0] does not int64_t absl_responsible_for_count = total_allocated_byte_count;
// need to grow its allocation. EXPECT_GT(absl_responsible_for_count, 0);
expected += sizeof(int);
vec[0].push_back(1);
EXPECT_EQ(allocated, expected);
vec.clear(); allocated_case[1].emplace_back();
EXPECT_EQ(allocated, 0); EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count);
allocated_case.clear();
EXPECT_EQ(total_allocated_byte_count, 0);
}
} }
TEST(AllocatorSupportTest, SizeAllocConstructor) { TEST(AllocatorSupportTest, SizeAllocConstructor) {

View file

@ -364,16 +364,6 @@ class Storage {
allocation_tx_ptr->GetCapacity() = 0; allocation_tx_ptr->GetCapacity() = 0;
} }
void SwapSizeAndIsAllocated(Storage* other) {
using std::swap;
swap(GetSizeAndIsAllocated(), other->GetSizeAndIsAllocated());
}
void SwapAllocatedSizeAndCapacity(Storage* other) {
using std::swap;
swap(data_.allocated, other->data_.allocated);
}
void MemcpyFrom(const Storage& other_storage) { void MemcpyFrom(const Storage& other_storage) {
assert(IsMemcpyOk::value || other_storage.GetIsAllocated()); assert(IsMemcpyOk::value || other_storage.GetIsAllocated());
@ -390,10 +380,17 @@ class Storage {
template <typename ValueAdapter> template <typename ValueAdapter>
void Resize(ValueAdapter values, size_type new_size); void Resize(ValueAdapter values, size_type new_size);
template <typename... Args>
reference EmplaceBack(Args&&... args);
iterator Erase(const_iterator from, const_iterator to);
void Reserve(size_type requested_capacity); void Reserve(size_type requested_capacity);
void ShrinkToFit(); void ShrinkToFit();
void Swap(Storage* other_storage_ptr);
private: private:
size_type& GetSizeAndIsAllocated() { return metadata_.template get<1>(); } size_type& GetSizeAndIsAllocated() { return metadata_.template get<1>(); }
@ -401,14 +398,8 @@ class Storage {
return metadata_.template get<1>(); return metadata_.template get<1>();
} }
static size_type LegacyNextCapacityFrom(size_type current_capacity, static size_type NextCapacityFrom(size_type current_capacity) {
size_type requested_capacity) { return current_capacity * 2;
// TODO(johnsoncj): Get rid of this old behavior.
size_type new_capacity = current_capacity;
while (new_capacity < requested_capacity) {
new_capacity *= 2;
}
return new_capacity;
} }
using Metadata = using Metadata =
@ -521,8 +512,7 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void {
absl::Span<value_type> destroy_loop; absl::Span<value_type> destroy_loop;
if (new_size > storage_view.capacity) { if (new_size > storage_view.capacity) {
pointer new_data = allocation_tx.Allocate( pointer new_data = allocation_tx.Allocate(new_size);
LegacyNextCapacityFrom(storage_view.capacity, new_size));
// Construct new objects in `new_data` // Construct new objects in `new_data`
construct_loop = {new_data + storage_view.size, construct_loop = {new_data + storage_view.size,
@ -562,6 +552,75 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void {
SetSize(new_size); SetSize(new_size);
} }
template <typename T, size_t N, typename A>
template <typename... Args>
auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> reference {
StorageView storage_view = MakeStorageView();
AllocationTransaction allocation_tx(GetAllocPtr());
IteratorValueAdapter<MoveIterator> move_values(
MoveIterator(storage_view.data));
pointer construct_data =
(storage_view.size == storage_view.capacity
? allocation_tx.Allocate(NextCapacityFrom(storage_view.capacity))
: storage_view.data);
pointer last_ptr = construct_data + storage_view.size;
AllocatorTraits::construct(*GetAllocPtr(), last_ptr,
std::forward<Args>(args)...);
if (allocation_tx.DidAllocate()) {
ABSL_INTERNAL_TRY {
inlined_vector_internal::ConstructElements(
GetAllocPtr(), allocation_tx.GetData(), &move_values,
storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
AllocatorTraits::destroy(*GetAllocPtr(), last_ptr);
ABSL_INTERNAL_RETHROW;
}
inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data,
storage_view.size);
DeallocateIfAllocated();
AcquireAllocation(&allocation_tx);
SetIsAllocated();
}
AddSize(1);
return *last_ptr;
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Erase(const_iterator from, const_iterator to)
-> iterator {
assert(from != to);
StorageView storage_view = MakeStorageView();
size_type erase_size = std::distance(from, to);
size_type erase_index =
std::distance(const_iterator(storage_view.data), from);
size_type erase_end_index = erase_index + erase_size;
IteratorValueAdapter<MoveIterator> move_values(
MoveIterator(storage_view.data + erase_end_index));
inlined_vector_internal::AssignElements(storage_view.data + erase_index,
&move_values,
storage_view.size - erase_end_index);
inlined_vector_internal::DestroyElements(
GetAllocPtr(), storage_view.data + (storage_view.size - erase_size),
erase_size);
SubtractSize(erase_size);
return iterator(storage_view.data + erase_index);
}
template <typename T, size_t N, typename A> template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Reserve(size_type requested_capacity) -> void { auto Storage<T, N, A>::Reserve(size_type requested_capacity) -> void {
StorageView storage_view = MakeStorageView(); StorageView storage_view = MakeStorageView();
@ -573,8 +632,7 @@ auto Storage<T, N, A>::Reserve(size_type requested_capacity) -> void {
IteratorValueAdapter<MoveIterator> move_values( IteratorValueAdapter<MoveIterator> move_values(
MoveIterator(storage_view.data)); MoveIterator(storage_view.data));
pointer new_data = allocation_tx.Allocate( pointer new_data = allocation_tx.Allocate(requested_capacity);
LegacyNextCapacityFrom(storage_view.capacity, requested_capacity));
inlined_vector_internal::ConstructElements(GetAllocPtr(), new_data, inlined_vector_internal::ConstructElements(GetAllocPtr(), new_data,
&move_values, storage_view.size); &move_values, storage_view.size);
@ -592,8 +650,8 @@ auto Storage<T, N, A>::ShrinkToFit() -> void {
// May only be called on allocated instances! // May only be called on allocated instances!
assert(GetIsAllocated()); assert(GetIsAllocated());
StorageView storage_view = {GetAllocatedData(), GetSize(), StorageView storage_view{GetAllocatedData(), GetSize(),
GetAllocatedCapacity()}; GetAllocatedCapacity()};
AllocationTransaction allocation_tx(GetAllocPtr()); AllocationTransaction allocation_tx(GetAllocPtr());
@ -634,6 +692,82 @@ auto Storage<T, N, A>::ShrinkToFit() -> void {
} }
} }
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
using std::swap;
assert(this != other_storage_ptr);
if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
// Both are allocated, thus we can swap the allocations at the top level.
swap(data_.allocated, other_storage_ptr->data_.allocated);
} else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
// Both are inlined, thus element-wise swap up to smaller size, then move
// the remaining elements.
Storage* small_ptr = this;
Storage* large_ptr = other_storage_ptr;
if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr);
for (size_type i = 0; i < small_ptr->GetSize(); ++i) {
swap(small_ptr->GetInlinedData()[i], large_ptr->GetInlinedData()[i]);
}
IteratorValueAdapter<MoveIterator> move_values(
MoveIterator(large_ptr->GetInlinedData() + small_ptr->GetSize()));
inlined_vector_internal::ConstructElements(
large_ptr->GetAllocPtr(),
small_ptr->GetInlinedData() + small_ptr->GetSize(), &move_values,
large_ptr->GetSize() - small_ptr->GetSize());
inlined_vector_internal::DestroyElements(
large_ptr->GetAllocPtr(),
large_ptr->GetInlinedData() + small_ptr->GetSize(),
large_ptr->GetSize() - small_ptr->GetSize());
} else {
// One is allocated and the other is inlined, thus we first move the
// elements from the inlined instance to the inlined space in the allocated
// instance and then we can finish by having the other vector take on the
// allocation.
Storage* allocated_ptr = this;
Storage* inlined_ptr = other_storage_ptr;
if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
StorageView allocated_storage_view{allocated_ptr->GetAllocatedData(),
allocated_ptr->GetSize(),
allocated_ptr->GetAllocatedCapacity()};
IteratorValueAdapter<MoveIterator> move_values(
MoveIterator(inlined_ptr->GetInlinedData()));
ABSL_INTERNAL_TRY {
inlined_vector_internal::ConstructElements(
inlined_ptr->GetAllocPtr(), allocated_ptr->GetInlinedData(),
&move_values, inlined_ptr->GetSize());
}
ABSL_INTERNAL_CATCH_ANY {
// Writing to inlined data will trample on the existing state, thus it
// needs to be restored when a construction fails.
allocated_ptr->SetAllocatedData(allocated_storage_view.data,
allocated_storage_view.capacity);
ABSL_INTERNAL_RETHROW;
}
inlined_vector_internal::DestroyElements(inlined_ptr->GetAllocPtr(),
inlined_ptr->GetInlinedData(),
inlined_ptr->GetSize());
inlined_ptr->SetAllocatedData(allocated_storage_view.data,
allocated_storage_view.capacity);
}
// All cases swap the size, `is_allocated` boolean and the allocator.
swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
swap(*GetAllocPtr(), *other_storage_ptr->GetAllocPtr());
}
} // namespace inlined_vector_internal } // namespace inlined_vector_internal
} // namespace absl } // namespace absl

View file

@ -158,9 +158,11 @@ cc_library(
name = "usage", name = "usage",
srcs = [ srcs = [
"internal/usage.cc", "internal/usage.cc",
"usage.cc",
], ],
hdrs = [ hdrs = [
"internal/usage.h", "internal/usage.h",
"usage.h",
], ],
copts = ABSL_DEFAULT_COPTS, copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS, linkopts = ABSL_DEFAULT_LINKOPTS,

View file

@ -144,8 +144,10 @@ absl_cc_library(
flags_usage flags_usage
SRCS SRCS
"internal/usage.cc" "internal/usage.cc"
"usage.cc"
HDRS HDRS
"internal/usage.h" "internal/usage.h"
"usage.h"
COPTS COPTS
${ABSL_DEFAULT_COPTS} ${ABSL_DEFAULT_COPTS}
LINKOPTS LINKOPTS

View file

@ -21,6 +21,7 @@
#include "absl/flags/flag.h" #include "absl/flags/flag.h"
#include "absl/flags/internal/path_util.h" #include "absl/flags/internal/path_util.h"
#include "absl/flags/internal/program_name.h" #include "absl/flags/internal/program_name.h"
#include "absl/flags/usage.h"
#include "absl/flags/usage_config.h" #include "absl/flags/usage_config.h"
#include "absl/strings/ascii.h" #include "absl/strings/ascii.h"
#include "absl/strings/str_cat.h" #include "absl/strings/str_cat.h"
@ -204,7 +205,7 @@ void FlagsHelpImpl(std::ostream& out, flags_internal::FlagKindFilter filter_cb,
HelpFormat format = HelpFormat::kHumanReadable) { HelpFormat format = HelpFormat::kHumanReadable) {
if (format == HelpFormat::kHumanReadable) { if (format == HelpFormat::kHumanReadable) {
out << flags_internal::ShortProgramInvocationName() << ": " out << flags_internal::ShortProgramInvocationName() << ": "
<< flags_internal::ProgramUsageMessage() << "\n\n"; << absl::ProgramUsageMessage() << "\n\n";
} else { } else {
// XML schema is not a part of our public API for now. // XML schema is not a part of our public API for now.
out << "<?xml version=\"1.0\"?>\n" out << "<?xml version=\"1.0\"?>\n"
@ -213,7 +214,7 @@ void FlagsHelpImpl(std::ostream& out, flags_internal::FlagKindFilter filter_cb,
// The program name and usage. // The program name and usage.
<< XMLElement("program", flags_internal::ShortProgramInvocationName()) << XMLElement("program", flags_internal::ShortProgramInvocationName())
<< '\n' << '\n'
<< XMLElement("usage", flags_internal::ProgramUsageMessage()) << '\n'; << XMLElement("usage", absl::ProgramUsageMessage()) << '\n';
} }
// Map of package name to // Map of package name to
@ -278,38 +279,8 @@ void FlagsHelpImpl(std::ostream& out, flags_internal::FlagKindFilter filter_cb,
} }
} }
ABSL_CONST_INIT absl::Mutex usage_message_guard(absl::kConstInit);
ABSL_CONST_INIT std::string* program_usage_message
GUARDED_BY(usage_message_guard) = nullptr;
} // namespace } // namespace
// --------------------------------------------------------------------
// Sets the "usage" message to be used by help reporting routines.
void SetProgramUsageMessage(absl::string_view new_usage_message) {
absl::MutexLock l(&usage_message_guard);
if (flags_internal::program_usage_message != nullptr) {
ABSL_INTERNAL_LOG(FATAL, "SetProgramUsageMessage() called twice.");
std::exit(1);
}
program_usage_message = new std::string(new_usage_message);
}
// --------------------------------------------------------------------
// Returns the usage message set by SetProgramUsageMessage().
// Note: We able to return string_view here only because calling
// SetProgramUsageMessage twice is prohibited.
absl::string_view ProgramUsageMessage() {
absl::MutexLock l(&usage_message_guard);
return program_usage_message != nullptr
? absl::string_view(*program_usage_message)
: "Warning: SetProgramUsageMessage() never called";
}
// -------------------------------------------------------------------- // --------------------------------------------------------------------
// Produces the help message describing specific flag. // Produces the help message describing specific flag.
void FlagHelp(std::ostream& out, const flags_internal::CommandLineFlag& flag, void FlagHelp(std::ostream& out, const flags_internal::CommandLineFlag& flag,

View file

@ -29,20 +29,6 @@
namespace absl { namespace absl {
namespace flags_internal { namespace flags_internal {
// Sets the "usage" message to be used by help reporting routines.
// For example:
// absl::SetProgramUsageMessage(
// absl::StrCat("This program does nothing. Sample usage:\n", argv[0],
// " <uselessarg1> <uselessarg2>"));
// Do not include commandline flags in the usage: we do that for you!
// Note: Calling SetProgramUsageMessage twice will trigger a call to std::exit.
void SetProgramUsageMessage(absl::string_view new_usage_message);
// Returns the usage message set by SetProgramUsageMessage().
absl::string_view ProgramUsageMessage();
// --------------------------------------------------------------------
// The format to report the help messages in. // The format to report the help messages in.
enum class HelpFormat { enum class HelpFormat {
kHumanReadable, kHumanReadable,

View file

@ -13,14 +13,16 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "absl/flags/internal/usage.h"
#include <sstream> #include <sstream>
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "absl/flags/flag.h" #include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "absl/flags/internal/path_util.h" #include "absl/flags/internal/path_util.h"
#include "absl/flags/internal/program_name.h" #include "absl/flags/internal/program_name.h"
#include "absl/flags/internal/usage.h" #include "absl/flags/parse.h"
#include "absl/flags/usage.h"
#include "absl/flags/usage_config.h" #include "absl/flags/usage_config.h"
#include "absl/memory/memory.h" #include "absl/memory/memory.h"
#include "absl/strings/match.h" #include "absl/strings/match.h"
@ -81,11 +83,11 @@ class UsageReportingTest : public testing::Test {
using UsageReportingDeathTest = UsageReportingTest; using UsageReportingDeathTest = UsageReportingTest;
TEST_F(UsageReportingDeathTest, TestSetProgramUsageMessage) { TEST_F(UsageReportingDeathTest, TestSetProgramUsageMessage) {
EXPECT_EQ(flags::ProgramUsageMessage(), "Custom usage message"); EXPECT_EQ(absl::ProgramUsageMessage(), "Custom usage message");
#ifndef _WIN32 #ifndef _WIN32
// TODO(rogeeff): figure out why this does not work on Windows. // TODO(rogeeff): figure out why this does not work on Windows.
EXPECT_DEATH(flags::SetProgramUsageMessage("custom usage message"), EXPECT_DEATH(absl::SetProgramUsageMessage("custom usage message"),
".*SetProgramUsageMessage\\(\\) called twice.*"); ".*SetProgramUsageMessage\\(\\) called twice.*");
#endif #endif
} }
@ -360,7 +362,7 @@ TEST_F(UsageReportingTest, TestUsageFlag_helpon) {
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
absl::GetFlag(FLAGS_undefok); // Force linking of parse.cc absl::GetFlag(FLAGS_undefok); // Force linking of parse.cc
flags::SetProgramInvocationName("usage_test"); flags::SetProgramInvocationName("usage_test");
flags::SetProgramUsageMessage("Custom usage message"); absl::SetProgramUsageMessage("Custom usage message");
::testing::InitGoogleTest(&argc, argv); ::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS(); return RUN_ALL_TESTS();

56
absl/flags/usage.cc Normal file
View file

@ -0,0 +1,56 @@
//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/flags/usage.h"
#include <string>
#include "absl/flags/internal/usage.h"
#include "absl/synchronization/mutex.h"
namespace absl {
namespace flags_internal {
namespace {
ABSL_CONST_INIT absl::Mutex usage_message_guard(absl::kConstInit);
ABSL_CONST_INIT std::string* program_usage_message
GUARDED_BY(usage_message_guard) = nullptr;
} // namespace
} // namespace flags_internal
// --------------------------------------------------------------------
// Sets the "usage" message to be used by help reporting routines.
void SetProgramUsageMessage(absl::string_view new_usage_message) {
absl::MutexLock l(&flags_internal::usage_message_guard);
if (flags_internal::program_usage_message != nullptr) {
ABSL_INTERNAL_LOG(FATAL, "SetProgramUsageMessage() called twice.");
std::exit(1);
}
flags_internal::program_usage_message = new std::string(new_usage_message);
}
// --------------------------------------------------------------------
// Returns the usage message set by SetProgramUsageMessage().
// Note: We able to return string_view here only because calling
// SetProgramUsageMessage twice is prohibited.
absl::string_view ProgramUsageMessage() {
absl::MutexLock l(&flags_internal::usage_message_guard);
return flags_internal::program_usage_message != nullptr
? absl::string_view(*flags_internal::program_usage_message)
: "Warning: SetProgramUsageMessage() never called";
}
} // namespace absl

40
absl/flags/usage.h Normal file
View file

@ -0,0 +1,40 @@
//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_FLAGS_USAGE_H_
#define ABSL_FLAGS_USAGE_H_
#include "absl/strings/string_view.h"
// --------------------------------------------------------------------
// Usage reporting interfaces
namespace absl {
// Sets the "usage" message to be used by help reporting routines.
// For example:
// absl::SetProgramUsageMessage(
// absl::StrCat("This program does nothing. Sample usage:\n", argv[0],
// " <uselessarg1> <uselessarg2>"));
// Do not include commandline flags in the usage: we do that for you!
// Note: Calling SetProgramUsageMessage twice will trigger a call to std::exit.
void SetProgramUsageMessage(absl::string_view new_usage_message);
// Returns the usage message set by SetProgramUsageMessage().
absl::string_view ProgramUsageMessage();
} // namespace absl
#endif // ABSL_FLAGS_USAGE_H_

View file

@ -59,6 +59,24 @@
#include <time.h> // NOLINT #include <time.h> // NOLINT
#endif #endif
// ABSL_HAVE_ATTRIBUTE
#if !defined(ABSL_HAVE_ATTRIBUTE)
#ifdef __has_attribute
#define ABSL_HAVE_ATTRIBUTE(x) __has_attribute(x)
#else
#define ABSL_HAVE_ATTRIBUTE(x) 0
#endif
#endif
// ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method.
#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline))
#elif defined(_MSC_VER)
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline)
#else
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE
#endif
namespace absl { namespace absl {
namespace random_internal_nanobenchmark { namespace random_internal_nanobenchmark {
namespace { namespace {
@ -658,8 +676,8 @@ Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs,
} }
// (Nearly) empty Func for measuring timer overhead/resolution. // (Nearly) empty Func for measuring timer overhead/resolution.
ABSL_ATTRIBUTE_NEVER_INLINE FuncOutput EmptyFunc(const void* arg, ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput
const FuncInput input) { EmptyFunc(const void* arg, const FuncInput input) {
return input; return input;
} }

View file

@ -81,50 +81,8 @@
// Attribute Checks // Attribute Checks
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// ABSL_HAVE_ATTRIBUTE
#undef ABSL_HAVE_ATTRIBUTE
#ifdef __has_attribute
#define ABSL_HAVE_ATTRIBUTE(x) __has_attribute(x)
#else
#define ABSL_HAVE_ATTRIBUTE(x) 0
#endif
// ABSL_ATTRIBUTE_ALWAYS_INLINE forces inlining of the method.
#undef ABSL_ATTRIBUTE_ALWAYS_INLINE
#if ABSL_HAVE_ATTRIBUTE(always_inline) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_ALWAYS_INLINE __attribute__((always_inline))
#elif defined(_MSC_VER)
// We can achieve something similar to attribute((always_inline)) with MSVC by
// using the __forceinline keyword, however this is not perfect. MSVC is
// much less aggressive about inlining, and even with the __forceinline keyword.
#define ABSL_ATTRIBUTE_ALWAYS_INLINE __forceinline
#else
#define ABSL_ATTRIBUTE_ALWAYS_INLINE
#endif
// ABSL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method.
#undef ABSL_ATTRIBUTE_NEVER_INLINE
#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline))
#elif defined(_MSC_VER)
#define ABSL_ATTRIBUTE_NEVER_INLINE __declspec(noinline)
#else
#define ABSL_ATTRIBUTE_NEVER_INLINE
#endif
// ABSL_ATTRIBUTE_FLATTEN enables much more aggressive inlining within
// the indicated function.
#undef ABSL_ATTRIBUTE_FLATTEN
#if ABSL_HAVE_ATTRIBUTE(flatten) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_FLATTEN __attribute__((flatten))
#else
#define ABSL_ATTRIBUTE_FLATTEN
#endif
// ABSL_RANDOM_INTERNAL_RESTRICT annotates whether pointers may be considered // ABSL_RANDOM_INTERNAL_RESTRICT annotates whether pointers may be considered
// to be unaliased. // to be unaliased.
#undef ABSL_RANDOM_INTERNAL_RESTRICT
#if defined(__clang__) || defined(__GNUC__) #if defined(__clang__) || defined(__GNUC__)
#define ABSL_RANDOM_INTERNAL_RESTRICT __restrict__ #define ABSL_RANDOM_INTERNAL_RESTRICT __restrict__
#elif defined(_MSC_VER) #elif defined(_MSC_VER)

View file

@ -24,6 +24,37 @@
#include "absl/random/internal/platform.h" #include "absl/random/internal/platform.h"
// ABSL_HAVE_ATTRIBUTE
#if !defined(ABSL_HAVE_ATTRIBUTE)
#ifdef __has_attribute
#define ABSL_HAVE_ATTRIBUTE(x) __has_attribute(x)
#else
#define ABSL_HAVE_ATTRIBUTE(x) 0
#endif
#endif
#if ABSL_HAVE_ATTRIBUTE(always_inline) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE \
__attribute__((always_inline))
#elif defined(_MSC_VER)
// We can achieve something similar to attribute((always_inline)) with MSVC by
// using the __forceinline keyword, however this is not perfect. MSVC is
// much less aggressive about inlining, and even with the __forceinline keyword.
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE __forceinline
#else
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE
#endif
// ABSL_ATTRIBUTE_FLATTEN enables much more aggressive inlining within
// the indicated function.
#undef ABSL_ATTRIBUTE_FLATTEN
#if ABSL_HAVE_ATTRIBUTE(flatten) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_ATTRIBUTE_FLATTEN __attribute__((flatten))
#else
#define ABSL_ATTRIBUTE_FLATTEN
#endif
// ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
// a hardware accelerated implementation of randen, or whether it // a hardware accelerated implementation of randen, or whether it
// will contain stubs that exit the process. // will contain stubs that exit the process.
@ -160,7 +191,7 @@ using Vector128 = __vector unsigned long long; // NOLINT(runtime/int)
namespace { namespace {
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
ReverseBytes(const Vector128& v) { ReverseBytes(const Vector128& v) {
// Reverses the bytes of the vector. // Reverses the bytes of the vector.
const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8, const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
@ -171,26 +202,26 @@ ReverseBytes(const Vector128& v) {
// WARNING: these load/store in native byte order. It is OK to load and then // WARNING: these load/store in native byte order. It is OK to load and then
// store an unchanged vector, but interpreting the bits as a number or input // store an unchanged vector, but interpreting the bits as a number or input
// to AES will have undefined results. // to AES will have undefined results.
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from)); return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
} }
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store( inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { Vector128Store(const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to)); vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
} }
// One round of AES. "round_key" is a public constant for breaking the // One round of AES. "round_key" is a public constant for breaking the
// symmetry of AES (ensures previously equal columns differ afterwards). // symmetry of AES (ensures previously equal columns differ afterwards).
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
AesRound(const Vector128& state, const Vector128& round_key) { AesRound(const Vector128& state, const Vector128& round_key) {
return Vector128(__builtin_crypto_vcipher(state, round_key)); return Vector128(__builtin_crypto_vcipher(state, round_key));
} }
// Enables native loads in the round loop by pre-swapping. // Enables native loads in the round loop by pre-swapping.
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian( inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { SwapEndian(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
using absl::random_internal::RandenTraits; using absl::random_internal::RandenTraits;
constexpr size_t kLanes = 2; constexpr size_t kLanes = 2;
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks; constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
@ -242,19 +273,19 @@ using Vector128 = uint8x16_t;
namespace { namespace {
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
return vld1q_u8(reinterpret_cast<const uint8_t*>(from)); return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
} }
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store( inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { Vector128Store(const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
vst1q_u8(reinterpret_cast<uint8_t*>(to), v); vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
} }
// One round of AES. "round_key" is a public constant for breaking the // One round of AES. "round_key" is a public constant for breaking the
// symmetry of AES (ensures previously equal columns differ afterwards). // symmetry of AES (ensures previously equal columns differ afterwards).
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
AesRound(const Vector128& state, const Vector128& round_key) { AesRound(const Vector128& state, const Vector128& round_key) {
// It is important to always use the full round function - omitting the // It is important to always use the full round function - omitting the
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
@ -266,8 +297,8 @@ AesRound(const Vector128& state, const Vector128& round_key) {
return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key; return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
} }
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian( inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {} SwapEndian(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {}
} // namespace } // namespace
@ -282,13 +313,15 @@ namespace {
class Vector128 { class Vector128 {
public: public:
// Convert from/to intrinsics. // Convert from/to intrinsics.
inline ABSL_ATTRIBUTE_ALWAYS_INLINE explicit Vector128( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE explicit Vector128(
const __m128i& Vector128) const __m128i& Vector128)
: data_(Vector128) {} : data_(Vector128) {}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE __m128i data() const { return data_; } inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE __m128i data() const {
return data_;
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128& operator^=( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128& operator^=(
const Vector128& other) { const Vector128& other) {
data_ = _mm_xor_si128(data_, other.data()); data_ = _mm_xor_si128(data_, other.data());
return *this; return *this;
@ -298,20 +331,20 @@ class Vector128 {
__m128i data_; __m128i data_;
}; };
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from))); return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
} }
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store( inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { Vector128Store(const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
_mm_store_si128(reinterpret_cast<__m128i * ABSL_RANDOM_INTERNAL_RESTRICT>(to), _mm_store_si128(reinterpret_cast<__m128i * ABSL_RANDOM_INTERNAL_RESTRICT>(to),
v.data()); v.data());
} }
// One round of AES. "round_key" is a public constant for breaking the // One round of AES. "round_key" is a public constant for breaking the
// symmetry of AES (ensures previously equal columns differ afterwards). // symmetry of AES (ensures previously equal columns differ afterwards).
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
AesRound(const Vector128& state, const Vector128& round_key) { AesRound(const Vector128& state, const Vector128& round_key) {
// It is important to always use the full round function - omitting the // It is important to always use the full round function - omitting the
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
@ -319,8 +352,8 @@ AesRound(const Vector128& state, const Vector128& round_key) {
return Vector128(_mm_aesenc_si128(state.data(), round_key.data())); return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
} }
inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian( inline ABSL_TARGET_CRYPTO ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {} SwapEndian(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {}
} // namespace } // namespace
@ -417,8 +450,8 @@ constexpr size_t kLanes = 2;
// Block shuffles applies a shuffle to the entire state between AES rounds. // Block shuffles applies a shuffle to the entire state between AES rounds.
// Improved odd-even shuffle from "New criterion for diffusion property". // Improved odd-even shuffle from "New criterion for diffusion property".
inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void BlockShuffle( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { BlockShuffle(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
constexpr size_t shuffle[kFeistelBlocks] = {7, 2, 13, 4, 11, 8, 3, 6, constexpr size_t shuffle[kFeistelBlocks] = {7, 2, 13, 4, 11, 8, 3, 6,
@ -466,9 +499,10 @@ inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void BlockShuffle(
// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
// XORs are 'free' (included in the second AES instruction). // XORs are 'free' (included in the second AES instruction).
inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO const u64x2* inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO const
FeistelRound(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state, u64x2*
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { FeistelRound(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state,
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
// MSVC does a horrible job at unrolling loops. // MSVC does a horrible job at unrolling loops.
@ -527,9 +561,9 @@ FeistelRound(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state,
// Indistinguishable from ideal by chosen-ciphertext adversaries using less than // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
// 2^64 queries if the round function is a PRF. This is similar to the b=8 case // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
// of Simpira v2, but more efficient than its generic construction for b=16. // of Simpira v2, but more efficient than its generic construction for b=16.
inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void Permute( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void
const void* ABSL_RANDOM_INTERNAL_RESTRICT keys, Permute(const void* ABSL_RANDOM_INTERNAL_RESTRICT keys,
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 = const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 =
static_cast<const u64x2*>(keys); static_cast<const u64x2*>(keys);

View file

@ -20,6 +20,28 @@
#include "absl/random/internal/platform.h" #include "absl/random/internal/platform.h"
// ABSL_HAVE_ATTRIBUTE
#if !defined(ABSL_HAVE_ATTRIBUTE)
#ifdef __has_attribute
#define ABSL_HAVE_ATTRIBUTE(x) __has_attribute(x)
#else
#define ABSL_HAVE_ATTRIBUTE(x) 0
#endif
#endif
#if ABSL_HAVE_ATTRIBUTE(always_inline) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE \
__attribute__((always_inline))
#elif defined(_MSC_VER)
// We can achieve something similar to attribute((always_inline)) with MSVC by
// using the __forceinline keyword, however this is not perfect. MSVC is
// much less aggressive about inlining, and even with the __forceinline keyword.
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE __forceinline
#else
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE
#endif
namespace { namespace {
// AES portions based on rijndael-alg-fst.c, // AES portions based on rijndael-alg-fst.c,
@ -222,7 +244,7 @@ struct alignas(16) u64x2 {
// as an underlying vector register. // as an underlying vector register.
// //
struct Vector128 { struct Vector128 {
inline ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128& operator^=( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128& operator^=(
const Vector128& other) { const Vector128& other) {
s[0] ^= other.s[0]; s[0] ^= other.s[0];
s[1] ^= other.s[1]; s[1] ^= other.s[1];
@ -234,7 +256,7 @@ struct Vector128 {
uint32_t s[4]; uint32_t s[4];
}; };
inline ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
Vector128 result; Vector128 result;
const uint8_t* ABSL_RANDOM_INTERNAL_RESTRICT src = const uint8_t* ABSL_RANDOM_INTERNAL_RESTRICT src =
@ -259,7 +281,7 @@ Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
return result; return result;
} }
inline ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store(
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
uint8_t* dst = reinterpret_cast<uint8_t*>(to); uint8_t* dst = reinterpret_cast<uint8_t*>(to);
dst[0] = static_cast<uint8_t>(v.s[0] >> 24); dst[0] = static_cast<uint8_t>(v.s[0] >> 24);
@ -282,7 +304,7 @@ inline ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store(
// One round of AES. "round_key" is a public constant for breaking the // One round of AES. "round_key" is a public constant for breaking the
// symmetry of AES (ensures previously equal columns differ afterwards). // symmetry of AES (ensures previously equal columns differ afterwards).
inline ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128 inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
AesRound(const Vector128& state, const Vector128& round_key) { AesRound(const Vector128& state, const Vector128& round_key) {
// clang-format off // clang-format off
Vector128 result; Vector128 result;
@ -348,7 +370,7 @@ static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal");
static constexpr size_t kLanes = 2; static constexpr size_t kLanes = 2;
// The improved Feistel block shuffle function for 16 blocks. // The improved Feistel block shuffle function for 16 blocks.
inline ABSL_ATTRIBUTE_ALWAYS_INLINE void BlockShuffle( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void BlockShuffle(
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state_u64) { uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state_u64) {
static_assert(kFeistelBlocks == 16, static_assert(kFeistelBlocks == 16,
"Feistel block shuffle only works for 16 blocks."); "Feistel block shuffle only works for 16 blocks.");
@ -409,7 +431,7 @@ inline ABSL_ATTRIBUTE_ALWAYS_INLINE void BlockShuffle(
// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
// XORs are 'free' (included in the second AES instruction). // XORs are 'free' (included in the second AES instruction).
inline ABSL_ATTRIBUTE_ALWAYS_INLINE const u64x2* FeistelRound( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE const u64x2* FeistelRound(
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state, uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state,
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
for (size_t branch = 0; branch < kFeistelBlocks; branch += 4) { for (size_t branch = 0; branch < kFeistelBlocks; branch += 4) {
@ -435,7 +457,7 @@ inline ABSL_ATTRIBUTE_ALWAYS_INLINE const u64x2* FeistelRound(
// Indistinguishable from ideal by chosen-ciphertext adversaries using less than // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
// 2^64 queries if the round function is a PRF. This is similar to the b=8 case // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
// of Simpira v2, but more efficient than its generic construction for b=16. // of Simpira v2, but more efficient than its generic construction for b=16.
inline ABSL_ATTRIBUTE_ALWAYS_INLINE void Permute( inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void Permute(
const void* keys, uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { const void* keys, uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 = const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 =
static_cast<const u64x2*>(keys); static_cast<const u64x2*>(keys);

View file

@ -62,8 +62,7 @@ inline bool EndsWith(absl::string_view text, absl::string_view suffix) {
return suffix.empty() || return suffix.empty() ||
(text.size() >= suffix.size() && (text.size() >= suffix.size() &&
memcmp(text.data() + (text.size() - suffix.size()), suffix.data(), memcmp(text.data() + (text.size() - suffix.size()), suffix.data(),
suffix.size()) == 0 suffix.size()) == 0);
);
} }
// EqualsIgnoreCase() // EqualsIgnoreCase()