Initial Commit
This commit is contained in:
commit
c2e7548296
238 changed files with 65475 additions and 0 deletions
47
absl/memory/BUILD.bazel
Normal file
47
absl/memory/BUILD.bazel
Normal file
|
@ -0,0 +1,47 @@
|
|||
#
|
||||
# Copyright 2017 The Abseil Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
load(
|
||||
"//absl:copts.bzl",
|
||||
"ABSL_DEFAULT_COPTS",
|
||||
"ABSL_TEST_COPTS",
|
||||
)
|
||||
load(
|
||||
"//absl:test_dependencies.bzl",
|
||||
"GUNIT_MAIN_DEPS_SELECTOR",
|
||||
)
|
||||
|
||||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
cc_library(
|
||||
name = "memory",
|
||||
hdrs = ["memory.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = ["//absl/meta:type_traits"],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "memory_test",
|
||||
srcs = ["memory_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":memory",
|
||||
"//absl/base",
|
||||
"//absl/base:core_headers",
|
||||
] + select(GUNIT_MAIN_DEPS_SELECTOR),
|
||||
)
|
22
absl/memory/README.md
Normal file
22
absl/memory/README.md
Normal file
|
@ -0,0 +1,22 @@
|
|||
# ABSL Memory
|
||||
|
||||
This directory contains packages related to abstractions for managing memory
|
||||
within objects.
|
||||
|
||||
## Library Listing
|
||||
|
||||
Only one library target exists within this directory at this time:
|
||||
|
||||
* **memory** (`//absl/memory:memory`) provides classes and
|
||||
utility functions for managing memory associated with pointers.
|
||||
|
||||
|
||||
## Memory Library File Listing
|
||||
|
||||
The following header files are directly included within the
|
||||
`absl::memory` library:
|
||||
|
||||
### Smart Pointer Management
|
||||
|
||||
* `memory.h`
|
||||
<br/>Pointer memory management abstractions for handling unique pointers
|
622
absl/memory/memory.h
Normal file
622
absl/memory/memory.h
Normal file
|
@ -0,0 +1,622 @@
|
|||
// Copyright 2017 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: memory.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// This header file contains utility functions for managing the creation and
|
||||
// conversion of smart pointers. This file is an extension to the C++
|
||||
// standard <memory> library header file.
|
||||
|
||||
#ifndef ABSL_MEMORY_MEMORY_H_
|
||||
#define ABSL_MEMORY_MEMORY_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <new>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/meta/type_traits.h"
|
||||
|
||||
namespace absl {
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Function Template: WrapUnique()
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Transfers ownership of a raw pointer to a `std::unique_ptr`. The returned
|
||||
// value is a `std::unique_ptr` of deduced type.
|
||||
//
|
||||
// Example:
|
||||
// X* NewX(int, int);
|
||||
// auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>.
|
||||
//
|
||||
// `absl::WrapUnique` is useful for capturing the output of a raw pointer
|
||||
// factory. However, prefer 'absl::make_unique<T>(args...) over
|
||||
// 'absl::WrapUnique(new T(args...))'.
|
||||
//
|
||||
// auto x = WrapUnique(new X(1, 2)); // works, but nonideal.
|
||||
// auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'.
|
||||
//
|
||||
// Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
|
||||
// expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
|
||||
// arrays, functions or void, and it must not be used to capture pointers
|
||||
// obtained from array-new expressions (even though that would compile!).
|
||||
template <typename T>
|
||||
std::unique_ptr<T> WrapUnique(T* ptr) {
|
||||
static_assert(!std::is_array<T>::value, "array types are unsupported");
|
||||
static_assert(std::is_object<T>::value, "non-object types are unsupported");
|
||||
return std::unique_ptr<T>(ptr);
|
||||
}
|
||||
|
||||
namespace memory_internal {
|
||||
|
||||
// Traits to select proper overload and return type for `absl::make_unique<>`.
|
||||
template <typename T>
|
||||
struct MakeUniqueResult {
|
||||
using scalar = std::unique_ptr<T>;
|
||||
};
|
||||
template <typename T>
|
||||
struct MakeUniqueResult<T[]> {
|
||||
using array = std::unique_ptr<T[]>;
|
||||
};
|
||||
template <typename T, size_t N>
|
||||
struct MakeUniqueResult<T[N]> {
|
||||
using invalid = void;
|
||||
};
|
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Function Template: make_unique<T>()
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
|
||||
// during the construction process. `absl::make_unique<>` also avoids redundant
|
||||
// type declarations, by avoiding the need to explicitly use the `new` operator.
|
||||
//
|
||||
// This implementation of `absl::make_unique<>` is designed for C++11 code and
|
||||
// will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction.
|
||||
// `absl::make_unique<>` is designed to be 100% compatible with
|
||||
// `std::make_unique<>` so that the eventual migration will involve a simple
|
||||
// rename operation.
|
||||
//
|
||||
// For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
|
||||
// see Herb Sutter's explanation on
|
||||
// (Exception-Safe Function Calls)[http://herbsutter.com/gotw/_102/].
|
||||
// (In general, reviewers should treat `new T(a,b)` with scrutiny.)
|
||||
//
|
||||
// Example usage:
|
||||
//
|
||||
// auto p = make_unique<X>(args...); // 'p' is a std::unique_ptr<X>
|
||||
// auto pa = make_unique<X[]>(5); // 'pa' is a std::unique_ptr<X[]>
|
||||
//
|
||||
// Three overloads of `absl::make_unique` are required:
|
||||
//
|
||||
// - For non-array T:
|
||||
//
|
||||
// Allocates a T with `new T(std::forward<Args> args...)`,
|
||||
// forwarding all `args` to T's constructor.
|
||||
// Returns a `std::unique_ptr<T>` owning that object.
|
||||
//
|
||||
// - For an array of unknown bounds T[]:
|
||||
//
|
||||
// `absl::make_unique<>` will allocate an array T of type U[] with
|
||||
// `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array.
|
||||
//
|
||||
// Note that 'U[n]()' is different from 'U[n]', and elements will be
|
||||
// value-initialized. Note as well that `std::unique_ptr` will perform its
|
||||
// own destruction of the array elements upon leaving scope, even though
|
||||
// the array [] does not have a default destructor.
|
||||
//
|
||||
// NOTE: an array of unknown bounds T[] may still be (and often will be)
|
||||
// initialized to have a size, and will still use this overload. E.g:
|
||||
//
|
||||
// auto my_array = absl::make_unique<int[]>(10);
|
||||
//
|
||||
// - For an array of known bounds T[N]:
|
||||
//
|
||||
// `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as
|
||||
// this overload is not useful.
|
||||
//
|
||||
// NOTE: an array of known bounds T[N] is not considered a useful
|
||||
// construction, and may cause undefined behavior in templates. E.g:
|
||||
//
|
||||
// auto my_array = absl::make_unique<int[10]>();
|
||||
//
|
||||
// In those cases, of course, you can still use the overload above and
|
||||
// simply initialize it to its desired size:
|
||||
//
|
||||
// auto my_array = absl::make_unique<int[]>(10);
|
||||
|
||||
// `absl::make_unique` overload for non-array types.
|
||||
template <typename T, typename... Args>
|
||||
typename memory_internal::MakeUniqueResult<T>::scalar make_unique(
|
||||
Args&&... args) {
|
||||
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
||||
}
|
||||
|
||||
// `absl::make_unique` overload for an array T[] of unknown bounds.
|
||||
// The array allocation needs to use the `new T[size]` form and cannot take
|
||||
// element constructor arguments. The `std::unique_ptr` will manage destructing
|
||||
// these array elements.
|
||||
template <typename T>
|
||||
typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) {
|
||||
return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]());
|
||||
}
|
||||
|
||||
// `absl::make_unique` overload for an array T[N] of known bounds.
|
||||
// This construction will be rejected.
|
||||
template <typename T, typename... Args>
|
||||
typename memory_internal::MakeUniqueResult<T>::invalid make_unique(
|
||||
Args&&... /* args */) = delete;
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Function Template: RawPtr()
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Extracts the raw pointer from a pointer-like 'ptr'. `absl::RawPtr` is useful
|
||||
// within templates that need to handle a complement of raw pointers,
|
||||
// `std::nullptr_t`, and smart pointers.
|
||||
template <typename T>
|
||||
auto RawPtr(T&& ptr) -> decltype(&*ptr) {
|
||||
// ptr is a forwarding reference to support Ts with non-const operators.
|
||||
return (ptr != nullptr) ? &*ptr : nullptr;
|
||||
}
|
||||
inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Function Template: ShareUniquePtr()
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Transforms a `std::unique_ptr` rvalue into a `std::shared_ptr`. The returned
|
||||
// value is a `std::shared_ptr` of deduced type and ownership is transferred to
|
||||
// the shared pointer.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// auto up = absl::make_unique<int>(10);
|
||||
// auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int>
|
||||
// CHECK_EQ(*sp, 10);
|
||||
// CHECK(up == nullptr);
|
||||
//
|
||||
// Note that this conversion is correct even when T is an array type, although
|
||||
// the resulting shared pointer may not be very useful.
|
||||
//
|
||||
// Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
|
||||
// null shared pointer does not attempt to call the deleter.
|
||||
template <typename T, typename D>
|
||||
std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
|
||||
return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Function Template: WeakenPtr()
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Creates a weak pointer associated with a given shared pointer. The returned
|
||||
// value is a `std::weak_ptr` of deduced type.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// auto sp = std::make_shared<int>(10);
|
||||
// auto wp = absl::WeakenPtr(sp);
|
||||
// CHECK_EQ(sp.get(), wp.lock().get());
|
||||
// sp.reset();
|
||||
// CHECK(wp.lock() == nullptr);
|
||||
//
|
||||
template <typename T>
|
||||
std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
|
||||
return std::weak_ptr<T>(ptr);
|
||||
}
|
||||
|
||||
namespace memory_internal {
|
||||
|
||||
// ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
|
||||
template <template <typename> class Extract, typename Obj, typename Default,
|
||||
typename>
|
||||
struct ExtractOr {
|
||||
using type = Default;
|
||||
};
|
||||
|
||||
template <template <typename> class Extract, typename Obj, typename Default>
|
||||
struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
|
||||
using type = Extract<Obj>;
|
||||
};
|
||||
|
||||
template <template <typename> class Extract, typename Obj, typename Default>
|
||||
using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
|
||||
|
||||
// Extractors for the features of allocators.
|
||||
template <typename T>
|
||||
using GetPointer = typename T::pointer;
|
||||
|
||||
template <typename T>
|
||||
using GetConstPointer = typename T::const_pointer;
|
||||
|
||||
template <typename T>
|
||||
using GetVoidPointer = typename T::void_pointer;
|
||||
|
||||
template <typename T>
|
||||
using GetConstVoidPointer = typename T::const_void_pointer;
|
||||
|
||||
template <typename T>
|
||||
using GetDifferenceType = typename T::difference_type;
|
||||
|
||||
template <typename T>
|
||||
using GetSizeType = typename T::size_type;
|
||||
|
||||
template <typename T>
|
||||
using GetPropagateOnContainerCopyAssignment =
|
||||
typename T::propagate_on_container_copy_assignment;
|
||||
|
||||
template <typename T>
|
||||
using GetPropagateOnContainerMoveAssignment =
|
||||
typename T::propagate_on_container_move_assignment;
|
||||
|
||||
template <typename T>
|
||||
using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap;
|
||||
|
||||
template <typename T>
|
||||
using GetIsAlwaysEqual = typename T::is_always_equal;
|
||||
|
||||
template <typename T>
|
||||
struct GetFirstArg;
|
||||
|
||||
template <template <typename...> class Class, typename T, typename... Args>
|
||||
struct GetFirstArg<Class<T, Args...>> {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <typename Ptr, typename = void>
|
||||
struct ElementType {
|
||||
using type = typename GetFirstArg<Ptr>::type;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct ElementType<T, void_t<typename T::element_type>> {
|
||||
using type = typename T::element_type;
|
||||
};
|
||||
|
||||
template <typename T, typename U>
|
||||
struct RebindFirstArg;
|
||||
|
||||
template <template <typename...> class Class, typename T, typename... Args,
|
||||
typename U>
|
||||
struct RebindFirstArg<Class<T, Args...>, U> {
|
||||
using type = Class<U, Args...>;
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename = void>
|
||||
struct RebindPtr {
|
||||
using type = typename RebindFirstArg<T, U>::type;
|
||||
};
|
||||
|
||||
template <typename T, typename U>
|
||||
struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> {
|
||||
using type = typename T::template rebind<U>;
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename = void>
|
||||
struct RebindAlloc {
|
||||
using type = typename RebindFirstArg<T, U>::type;
|
||||
};
|
||||
|
||||
template <typename T, typename U>
|
||||
struct RebindAlloc<T, U, void_t<typename T::template rebind<U>::other>> {
|
||||
using type = typename T::template rebind<U>::other;
|
||||
};
|
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Class Template: pointer_traits
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An implementation of C++11's std::pointer_traits.
|
||||
//
|
||||
// Provided for portability on toolchains that have a working C++11 compiler,
|
||||
// but the standard library is lacking in C++11 support. For example, some
|
||||
// version of the Android NDK.
|
||||
//
|
||||
|
||||
template <typename Ptr>
|
||||
struct pointer_traits {
|
||||
using pointer = Ptr;
|
||||
|
||||
// element_type:
|
||||
// Ptr::element_type if present. Otherwise T if Ptr is a template
|
||||
// instantiation Template<T, Args...>
|
||||
using element_type = typename memory_internal::ElementType<Ptr>::type;
|
||||
|
||||
// difference_type:
|
||||
// Ptr::difference_type if present, otherwise std::ptrdiff_t
|
||||
using difference_type =
|
||||
memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr,
|
||||
std::ptrdiff_t>;
|
||||
|
||||
// rebind:
|
||||
// Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a
|
||||
// template instantiation Template<T, Args...>
|
||||
template <typename U>
|
||||
using rebind = typename memory_internal::RebindPtr<Ptr, U>::type;
|
||||
|
||||
// pointer_to:
|
||||
// Calls Ptr::pointer_to(r)
|
||||
static pointer pointer_to(element_type& r) { // NOLINT(runtime/references)
|
||||
return Ptr::pointer_to(r);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for T*.
|
||||
template <typename T>
|
||||
struct pointer_traits<T*> {
|
||||
using pointer = T*;
|
||||
using element_type = T;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
|
||||
template <typename U>
|
||||
using rebind = U*;
|
||||
|
||||
// pointer_to:
|
||||
// Calls std::addressof(r)
|
||||
static pointer pointer_to(
|
||||
element_type& r) noexcept { // NOLINT(runtime/references)
|
||||
return std::addressof(r);
|
||||
}
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Class Template: allocator_traits
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// A C++11 compatible implementation of C++17's std::allocator_traits.
|
||||
//
|
||||
template <typename Alloc>
|
||||
struct allocator_traits {
|
||||
using allocator_type = Alloc;
|
||||
|
||||
// value_type:
|
||||
// Alloc::value_type
|
||||
using value_type = typename Alloc::value_type;
|
||||
|
||||
// pointer:
|
||||
// Alloc::pointer if present, otherwise value_type*
|
||||
using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer,
|
||||
Alloc, value_type*>;
|
||||
|
||||
// const_pointer:
|
||||
// Alloc::const_pointer if present, otherwise
|
||||
// absl::pointer_traits<pointer>::rebind<const value_type>
|
||||
using const_pointer =
|
||||
memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc,
|
||||
typename absl::pointer_traits<pointer>::
|
||||
template rebind<const value_type>>;
|
||||
|
||||
// void_pointer:
|
||||
// Alloc::void_pointer if present, otherwise
|
||||
// absl::pointer_traits<pointer>::rebind<void>
|
||||
using void_pointer = memory_internal::ExtractOrT<
|
||||
memory_internal::GetVoidPointer, Alloc,
|
||||
typename absl::pointer_traits<pointer>::template rebind<void>>;
|
||||
|
||||
// const_void_pointer:
|
||||
// Alloc::const_void_pointer if present, otherwise
|
||||
// absl::pointer_traits<pointer>::rebind<const void>
|
||||
using const_void_pointer = memory_internal::ExtractOrT<
|
||||
memory_internal::GetConstVoidPointer, Alloc,
|
||||
typename absl::pointer_traits<pointer>::template rebind<const void>>;
|
||||
|
||||
// difference_type:
|
||||
// Alloc::difference_type if present, otherwise
|
||||
// absl::pointer_traits<pointer>::difference_type
|
||||
using difference_type = memory_internal::ExtractOrT<
|
||||
memory_internal::GetDifferenceType, Alloc,
|
||||
typename absl::pointer_traits<pointer>::difference_type>;
|
||||
|
||||
// size_type:
|
||||
// Alloc::size_type if present, otherwise
|
||||
// std::make_unsigned<difference_type>::type
|
||||
using size_type = memory_internal::ExtractOrT<
|
||||
memory_internal::GetSizeType, Alloc,
|
||||
typename std::make_unsigned<difference_type>::type>;
|
||||
|
||||
// propagate_on_container_copy_assignment:
|
||||
// Alloc::propagate_on_container_copy_assignment if present, otherwise
|
||||
// std::false_type
|
||||
using propagate_on_container_copy_assignment = memory_internal::ExtractOrT<
|
||||
memory_internal::GetPropagateOnContainerCopyAssignment, Alloc,
|
||||
std::false_type>;
|
||||
|
||||
// propagate_on_container_move_assignment:
|
||||
// Alloc::propagate_on_container_move_assignment if present, otherwise
|
||||
// std::false_type
|
||||
using propagate_on_container_move_assignment = memory_internal::ExtractOrT<
|
||||
memory_internal::GetPropagateOnContainerMoveAssignment, Alloc,
|
||||
std::false_type>;
|
||||
|
||||
// propagate_on_container_swap:
|
||||
// Alloc::propagate_on_container_swap if present, otherwise std::false_type
|
||||
using propagate_on_container_swap =
|
||||
memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap,
|
||||
Alloc, std::false_type>;
|
||||
|
||||
// is_always_equal:
|
||||
// Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type
|
||||
using is_always_equal =
|
||||
memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc,
|
||||
typename std::is_empty<Alloc>::type>;
|
||||
|
||||
// rebind_alloc:
|
||||
// Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc
|
||||
// is Alloc<U, Args>
|
||||
template <typename T>
|
||||
using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type;
|
||||
|
||||
// rebind_traits:
|
||||
// absl::allocator_traits<rebind_alloc<T>>
|
||||
template <typename T>
|
||||
using rebind_traits = absl::allocator_traits<rebind_alloc<T>>;
|
||||
|
||||
// allocate(Alloc& a, size_type n):
|
||||
// Calls a.allocate(n)
|
||||
static pointer allocate(Alloc& a, // NOLINT(runtime/references)
|
||||
size_type n) {
|
||||
return a.allocate(n);
|
||||
}
|
||||
|
||||
// allocate(Alloc& a, size_type n, const_void_pointer hint):
|
||||
// Calls a.allocate(n, hint) if possible.
|
||||
// If not possible, calls a.allocate(n)
|
||||
static pointer allocate(Alloc& a, size_type n, // NOLINT(runtime/references)
|
||||
const_void_pointer hint) {
|
||||
return allocate_impl(0, a, n, hint);
|
||||
}
|
||||
|
||||
// deallocate(Alloc& a, pointer p, size_type n):
|
||||
// Calls a.deallocate(p, n)
|
||||
static void deallocate(Alloc& a, pointer p, // NOLINT(runtime/references)
|
||||
size_type n) {
|
||||
a.deallocate(p, n);
|
||||
}
|
||||
|
||||
// construct(Alloc& a, T* p, Args&&... args):
|
||||
// Calls a.construct(p, std::forward<Args>(args)...) if possible.
|
||||
// If not possible, calls
|
||||
// ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...)
|
||||
template <typename T, typename... Args>
|
||||
static void construct(Alloc& a, T* p, // NOLINT(runtime/references)
|
||||
Args&&... args) {
|
||||
construct_impl(0, a, p, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
// destroy(Alloc& a, T* p):
|
||||
// Calls a.destroy(p) if possible. If not possible, calls p->~T().
|
||||
template <typename T>
|
||||
static void destroy(Alloc& a, T* p) { // NOLINT(runtime/references)
|
||||
destroy_impl(0, a, p);
|
||||
}
|
||||
|
||||
// max_size(const Alloc& a):
|
||||
// Returns a.max_size() if possible. If not possible, returns
|
||||
// std::numeric_limits<size_type>::max() / sizeof(value_type)
|
||||
static size_type max_size(const Alloc& a) { return max_size_impl(0, a); }
|
||||
|
||||
// select_on_container_copy_construction(const Alloc& a):
|
||||
// Returns a.select_on_container_copy_construction() if possible.
|
||||
// If not possible, returns a.
|
||||
static Alloc select_on_container_copy_construction(const Alloc& a) {
|
||||
return select_on_container_copy_construction_impl(0, a);
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename A>
|
||||
static auto allocate_impl(int, A& a, // NOLINT(runtime/references)
|
||||
size_type n, const_void_pointer hint)
|
||||
-> decltype(a.allocate(n, hint)) {
|
||||
return a.allocate(n, hint);
|
||||
}
|
||||
static pointer allocate_impl(char, Alloc& a, // NOLINT(runtime/references)
|
||||
size_type n, const_void_pointer) {
|
||||
return a.allocate(n);
|
||||
}
|
||||
|
||||
template <typename A, typename... Args>
|
||||
static auto construct_impl(int, A& a, // NOLINT(runtime/references)
|
||||
Args&&... args)
|
||||
-> decltype(a.construct(std::forward<Args>(args)...)) {
|
||||
a.construct(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename T, typename... Args>
|
||||
static void construct_impl(char, Alloc&, T* p, Args&&... args) {
|
||||
::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename A, typename T>
|
||||
static auto destroy_impl(int, A& a, // NOLINT(runtime/references)
|
||||
T* p) -> decltype(a.destroy(p)) {
|
||||
a.destroy(p);
|
||||
}
|
||||
template <typename T>
|
||||
static void destroy_impl(char, Alloc&, T* p) {
|
||||
p->~T();
|
||||
}
|
||||
|
||||
template <typename A>
|
||||
static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) {
|
||||
return a.max_size();
|
||||
}
|
||||
static size_type max_size_impl(char, const Alloc&) {
|
||||
return std::numeric_limits<size_type>::max() / sizeof(value_type);
|
||||
}
|
||||
|
||||
template <typename A>
|
||||
static auto select_on_container_copy_construction_impl(int, const A& a)
|
||||
-> decltype(a.select_on_container_copy_construction()) {
|
||||
return a.select_on_container_copy_construction();
|
||||
}
|
||||
static Alloc select_on_container_copy_construction_impl(char,
|
||||
const Alloc& a) {
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
namespace memory_internal {
|
||||
|
||||
// This template alias transforms Alloc::is_nothrow into a metafunction with
|
||||
// Alloc as a parameter so it can be used with ExtractOrT<>.
|
||||
template <typename Alloc>
|
||||
using GetIsNothrow = typename Alloc::is_nothrow;
|
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
|
||||
// specify whether the default allocation function can throw or never throws.
|
||||
// If the allocation function never throws, user should define it to a non-zero
|
||||
// value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
|
||||
// If the allocation function can throw, user should leave it undefined or
|
||||
// define it to zero.
|
||||
//
|
||||
// allocator_is_nothrow<Alloc> is a traits class that derives from
|
||||
// Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
|
||||
// for Alloc = std::allocator<T> for any type T according to the state of
|
||||
// ABSL_ALLOCATOR_NOTHROW.
|
||||
//
|
||||
// default_allocator_is_nothrow is a class that derives from std::true_type
|
||||
// when the default allocator (global operator new) never throws, and
|
||||
// std::false_type when it can throw. It is a convenience shorthand for writing
|
||||
// allocator_is_nothrow<std::allocator<T>> (T can be any type).
|
||||
// NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
|
||||
// the same type for all T, because users should specialize neither
|
||||
// allocator_is_nothrow nor std::allocator.
|
||||
template <typename Alloc>
|
||||
struct allocator_is_nothrow
|
||||
: memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
|
||||
std::false_type> {};
|
||||
|
||||
#if ABSL_ALLOCATOR_NOTHROW
|
||||
template <typename T>
|
||||
struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
|
||||
struct default_allocator_is_nothrow : std::true_type {};
|
||||
#else
|
||||
struct default_allocator_is_nothrow : std::false_type {};
|
||||
#endif
|
||||
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_MEMORY_MEMORY_H_
|
590
absl/memory/memory_test.cc
Normal file
590
absl/memory/memory_test.cc
Normal file
|
@ -0,0 +1,590 @@
|
|||
// Copyright 2017 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Tests for pointer utilities.
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace {
|
||||
|
||||
using ::testing::ElementsAre;
|
||||
using ::testing::Return;
|
||||
|
||||
// This class creates observable behavior to verify that a destructor has
|
||||
// been called, via the instance_count variable.
|
||||
class DestructorVerifier {
|
||||
public:
|
||||
DestructorVerifier() { ++instance_count_; }
|
||||
DestructorVerifier(const DestructorVerifier&) = delete;
|
||||
DestructorVerifier& operator=(const DestructorVerifier&) = delete;
|
||||
~DestructorVerifier() { --instance_count_; }
|
||||
|
||||
// The number of instances of this class currently active.
|
||||
static int instance_count() { return instance_count_; }
|
||||
|
||||
private:
|
||||
// The number of instances of this class currently active.
|
||||
static int instance_count_;
|
||||
};
|
||||
|
||||
int DestructorVerifier::instance_count_ = 0;
|
||||
|
||||
TEST(WrapUniqueTest, WrapUnique) {
|
||||
// Test that the unique_ptr is constructed properly by verifying that the
|
||||
// destructor for its payload gets called at the proper time.
|
||||
{
|
||||
auto dv = new DestructorVerifier;
|
||||
EXPECT_EQ(1, DestructorVerifier::instance_count());
|
||||
std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv);
|
||||
EXPECT_EQ(1, DestructorVerifier::instance_count());
|
||||
}
|
||||
EXPECT_EQ(0, DestructorVerifier::instance_count());
|
||||
}
|
||||
TEST(MakeUniqueTest, Basic) {
|
||||
std::unique_ptr<std::string> p = absl::make_unique<std::string>();
|
||||
EXPECT_EQ("", *p);
|
||||
p = absl::make_unique<std::string>("hi");
|
||||
EXPECT_EQ("hi", *p);
|
||||
}
|
||||
|
||||
struct MoveOnly {
|
||||
MoveOnly() = default;
|
||||
explicit MoveOnly(int i1) : ip1{new int{i1}} {}
|
||||
MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {}
|
||||
std::unique_ptr<int> ip1;
|
||||
std::unique_ptr<int> ip2;
|
||||
};
|
||||
|
||||
struct AcceptMoveOnly {
|
||||
explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {}
|
||||
MoveOnly m_;
|
||||
};
|
||||
|
||||
TEST(MakeUniqueTest, MoveOnlyTypeAndValue) {
|
||||
using ExpectedType = std::unique_ptr<MoveOnly>;
|
||||
{
|
||||
auto p = absl::make_unique<MoveOnly>();
|
||||
static_assert(std::is_same<decltype(p), ExpectedType>::value,
|
||||
"unexpected return type");
|
||||
EXPECT_TRUE(!p->ip1);
|
||||
EXPECT_TRUE(!p->ip2);
|
||||
}
|
||||
{
|
||||
auto p = absl::make_unique<MoveOnly>(1);
|
||||
static_assert(std::is_same<decltype(p), ExpectedType>::value,
|
||||
"unexpected return type");
|
||||
EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
|
||||
EXPECT_TRUE(!p->ip2);
|
||||
}
|
||||
{
|
||||
auto p = absl::make_unique<MoveOnly>(1, 2);
|
||||
static_assert(std::is_same<decltype(p), ExpectedType>::value,
|
||||
"unexpected return type");
|
||||
EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
|
||||
EXPECT_TRUE(p->ip2 && *p->ip2 == 2);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(MakeUniqueTest, AcceptMoveOnly) {
|
||||
auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly());
|
||||
p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly()));
|
||||
}
|
||||
|
||||
struct ArrayWatch {
|
||||
void* operator new[](size_t n) {
|
||||
allocs().push_back(n);
|
||||
return ::operator new[](n);
|
||||
}
|
||||
void operator delete[](void* p) {
|
||||
return ::operator delete[](p);
|
||||
}
|
||||
static std::vector<size_t>& allocs() {
|
||||
static auto& v = *new std::vector<size_t>;
|
||||
return v;
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Make_UniqueTest, Array) {
|
||||
// Ensure state is clean before we start so that these tests
|
||||
// are order-agnostic.
|
||||
ArrayWatch::allocs().clear();
|
||||
|
||||
auto p = absl::make_unique<ArrayWatch[]>(5);
|
||||
static_assert(std::is_same<decltype(p),
|
||||
std::unique_ptr<ArrayWatch[]>>::value,
|
||||
"unexpected return type");
|
||||
EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch)));
|
||||
}
|
||||
|
||||
#if 0
|
||||
// TODO(billydonahue): Make a proper NC test.
|
||||
// These tests shouldn't compile.
|
||||
TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) {
|
||||
auto m = MoveOnly();
|
||||
auto p = absl::make_unique<AcceptMoveOnly>(m);
|
||||
}
|
||||
TEST(MakeUniqueTestNC, KnownBoundArray) {
|
||||
auto p = absl::make_unique<ArrayWatch[5]>();
|
||||
}
|
||||
#endif
|
||||
|
||||
TEST(RawPtrTest, RawPointer) {
|
||||
int i = 5;
|
||||
EXPECT_EQ(&i, absl::RawPtr(&i));
|
||||
}
|
||||
|
||||
TEST(RawPtrTest, SmartPointer) {
|
||||
int* o = new int(5);
|
||||
std::unique_ptr<int> p(o);
|
||||
EXPECT_EQ(o, absl::RawPtr(p));
|
||||
}
|
||||
|
||||
class IntPointerNonConstDeref {
|
||||
public:
|
||||
explicit IntPointerNonConstDeref(int* p) : p_(p) {}
|
||||
friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) {
|
||||
return a.p_ != nullptr;
|
||||
}
|
||||
int& operator*() { return *p_; }
|
||||
|
||||
private:
|
||||
std::unique_ptr<int> p_;
|
||||
};
|
||||
|
||||
TEST(RawPtrTest, SmartPointerNonConstDereference) {
|
||||
int* o = new int(5);
|
||||
IntPointerNonConstDeref p(o);
|
||||
EXPECT_EQ(o, absl::RawPtr(p));
|
||||
}
|
||||
|
||||
TEST(RawPtrTest, NullValuedRawPointer) {
|
||||
int* p = nullptr;
|
||||
EXPECT_EQ(nullptr, absl::RawPtr(p));
|
||||
}
|
||||
|
||||
TEST(RawPtrTest, NullValuedSmartPointer) {
|
||||
std::unique_ptr<int> p;
|
||||
EXPECT_EQ(nullptr, absl::RawPtr(p));
|
||||
}
|
||||
|
||||
TEST(RawPtrTest, Nullptr) {
|
||||
auto p = absl::RawPtr(nullptr);
|
||||
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
|
||||
EXPECT_EQ(nullptr, p);
|
||||
}
|
||||
|
||||
TEST(RawPtrTest, Null) {
|
||||
auto p = absl::RawPtr(nullptr);
|
||||
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
|
||||
EXPECT_EQ(nullptr, p);
|
||||
}
|
||||
|
||||
TEST(RawPtrTest, Zero) {
|
||||
auto p = absl::RawPtr(nullptr);
|
||||
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
|
||||
EXPECT_EQ(nullptr, p);
|
||||
}
|
||||
|
||||
TEST(ShareUniquePtrTest, Share) {
|
||||
auto up = absl::make_unique<int>();
|
||||
int* rp = up.get();
|
||||
auto sp = absl::ShareUniquePtr(std::move(up));
|
||||
EXPECT_EQ(sp.get(), rp);
|
||||
}
|
||||
|
||||
TEST(ShareUniquePtrTest, ShareNull) {
|
||||
struct NeverDie {
|
||||
using pointer = void*;
|
||||
void operator()(pointer) {
|
||||
ASSERT_TRUE(false) << "Deleter should not have been called.";
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<void, NeverDie> up;
|
||||
auto sp = absl::ShareUniquePtr(std::move(up));
|
||||
}
|
||||
|
||||
TEST(WeakenPtrTest, Weak) {
|
||||
auto sp = std::make_shared<int>();
|
||||
auto wp = absl::WeakenPtr(sp);
|
||||
EXPECT_EQ(sp.get(), wp.lock().get());
|
||||
sp.reset();
|
||||
EXPECT_TRUE(wp.expired());
|
||||
}
|
||||
|
||||
// Should not compile.
|
||||
/*
|
||||
TEST(RawPtrTest, NotAPointer) {
|
||||
absl::RawPtr(1.5);
|
||||
}
|
||||
*/
|
||||
|
||||
template <typename T>
|
||||
struct SmartPointer {
|
||||
using difference_type = char;
|
||||
};
|
||||
|
||||
struct PointerWith {
|
||||
using element_type = int32_t;
|
||||
using difference_type = int16_t;
|
||||
template <typename U>
|
||||
using rebind = SmartPointer<U>;
|
||||
|
||||
static PointerWith pointer_to(
|
||||
element_type& r) { // NOLINT(runtime/references)
|
||||
return PointerWith{&r};
|
||||
}
|
||||
|
||||
element_type* ptr;
|
||||
};
|
||||
|
||||
template <typename... Args>
|
||||
struct PointerWithout {};
|
||||
|
||||
TEST(PointerTraits, Types) {
|
||||
using TraitsWith = absl::pointer_traits<PointerWith>;
|
||||
EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value));
|
||||
EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value));
|
||||
EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value));
|
||||
EXPECT_TRUE((
|
||||
std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value));
|
||||
|
||||
using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>;
|
||||
EXPECT_TRUE((std::is_same<TraitsWithout::pointer,
|
||||
PointerWithout<double, int>>::value));
|
||||
EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value));
|
||||
EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>,
|
||||
PointerWithout<int64_t, int>>::value));
|
||||
|
||||
using TraitsRawPtr = absl::pointer_traits<char*>;
|
||||
EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value));
|
||||
EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value));
|
||||
EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value));
|
||||
}
|
||||
|
||||
TEST(PointerTraits, Functions) {
|
||||
int i;
|
||||
EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr);
|
||||
EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i));
|
||||
}
|
||||
|
||||
TEST(AllocatorTraits, Typedefs) {
|
||||
struct A {
|
||||
struct value_type {};
|
||||
};
|
||||
EXPECT_TRUE((
|
||||
std::is_same<A,
|
||||
typename absl::allocator_traits<A>::allocator_type>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<A::value_type,
|
||||
typename absl::allocator_traits<A>::value_type>::value));
|
||||
|
||||
struct X {};
|
||||
struct HasPointer {
|
||||
using value_type = X;
|
||||
using pointer = SmartPointer<X>;
|
||||
};
|
||||
EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits<
|
||||
HasPointer>::pointer>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<A::value_type*,
|
||||
typename absl::allocator_traits<A>::pointer>::value));
|
||||
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<
|
||||
SmartPointer<const X>,
|
||||
typename absl::allocator_traits<HasPointer>::const_pointer>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<const A::value_type*,
|
||||
typename absl::allocator_traits<A>::const_pointer>::value));
|
||||
|
||||
struct HasVoidPointer {
|
||||
using value_type = X;
|
||||
struct void_pointer {};
|
||||
};
|
||||
|
||||
EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer,
|
||||
typename absl::allocator_traits<
|
||||
HasVoidPointer>::void_pointer>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<SmartPointer<void>, typename absl::allocator_traits<
|
||||
HasPointer>::void_pointer>::value));
|
||||
|
||||
struct HasConstVoidPointer {
|
||||
using value_type = X;
|
||||
struct const_void_pointer {};
|
||||
};
|
||||
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<HasConstVoidPointer::const_void_pointer,
|
||||
typename absl::allocator_traits<
|
||||
HasConstVoidPointer>::const_void_pointer>::value));
|
||||
EXPECT_TRUE((std::is_same<SmartPointer<const void>,
|
||||
typename absl::allocator_traits<
|
||||
HasPointer>::const_void_pointer>::value));
|
||||
|
||||
struct HasDifferenceType {
|
||||
using value_type = X;
|
||||
using difference_type = int;
|
||||
};
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<int, typename absl::allocator_traits<
|
||||
HasDifferenceType>::difference_type>::value));
|
||||
EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits<
|
||||
HasPointer>::difference_type>::value));
|
||||
|
||||
struct HasSizeType {
|
||||
using value_type = X;
|
||||
using size_type = unsigned int;
|
||||
};
|
||||
EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits<
|
||||
HasSizeType>::size_type>::value));
|
||||
EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits<
|
||||
HasPointer>::size_type>::value));
|
||||
|
||||
struct HasPropagateOnCopy {
|
||||
using value_type = X;
|
||||
struct propagate_on_container_copy_assignment {};
|
||||
};
|
||||
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment,
|
||||
typename absl::allocator_traits<HasPropagateOnCopy>::
|
||||
propagate_on_container_copy_assignment>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<std::false_type,
|
||||
typename absl::allocator_traits<
|
||||
A>::propagate_on_container_copy_assignment>::value));
|
||||
|
||||
struct HasPropagateOnMove {
|
||||
using value_type = X;
|
||||
struct propagate_on_container_move_assignment {};
|
||||
};
|
||||
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment,
|
||||
typename absl::allocator_traits<HasPropagateOnMove>::
|
||||
propagate_on_container_move_assignment>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<std::false_type,
|
||||
typename absl::allocator_traits<
|
||||
A>::propagate_on_container_move_assignment>::value));
|
||||
|
||||
struct HasPropagateOnSwap {
|
||||
using value_type = X;
|
||||
struct propagate_on_container_swap {};
|
||||
};
|
||||
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<HasPropagateOnSwap::propagate_on_container_swap,
|
||||
typename absl::allocator_traits<HasPropagateOnSwap>::
|
||||
propagate_on_container_swap>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<std::false_type, typename absl::allocator_traits<A>::
|
||||
propagate_on_container_swap>::value));
|
||||
|
||||
struct HasIsAlwaysEqual {
|
||||
using value_type = X;
|
||||
struct is_always_equal {};
|
||||
};
|
||||
|
||||
EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal,
|
||||
typename absl::allocator_traits<
|
||||
HasIsAlwaysEqual>::is_always_equal>::value));
|
||||
EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits<
|
||||
A>::is_always_equal>::value));
|
||||
struct NonEmpty {
|
||||
using value_type = X;
|
||||
int i;
|
||||
};
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<std::false_type,
|
||||
absl::allocator_traits<NonEmpty>::is_always_equal>::value));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct Rebound {};
|
||||
|
||||
struct AllocWithRebind {
|
||||
using value_type = int;
|
||||
template <typename T>
|
||||
struct rebind {
|
||||
using other = Rebound<T>;
|
||||
};
|
||||
};
|
||||
|
||||
template <typename T, typename U>
|
||||
struct AllocWithoutRebind {
|
||||
using value_type = int;
|
||||
};
|
||||
|
||||
TEST(AllocatorTraits, Rebind) {
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<Rebound<int>,
|
||||
typename absl::allocator_traits<
|
||||
AllocWithRebind>::template rebind_alloc<int>>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<absl::allocator_traits<Rebound<int>>,
|
||||
typename absl::allocator_traits<
|
||||
AllocWithRebind>::template rebind_traits<int>>::value));
|
||||
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<AllocWithoutRebind<double, char>,
|
||||
typename absl::allocator_traits<AllocWithoutRebind<
|
||||
int, char>>::template rebind_alloc<double>>::value));
|
||||
EXPECT_TRUE(
|
||||
(std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>,
|
||||
typename absl::allocator_traits<AllocWithoutRebind<
|
||||
int, char>>::template rebind_traits<double>>::value));
|
||||
}
|
||||
|
||||
struct TestValue {
|
||||
TestValue() {}
|
||||
explicit TestValue(int* trace) : trace(trace) { ++*trace; }
|
||||
~TestValue() {
|
||||
if (trace) --*trace;
|
||||
}
|
||||
int* trace = nullptr;
|
||||
};
|
||||
|
||||
struct MinimalMockAllocator {
|
||||
MinimalMockAllocator() : value(0) {}
|
||||
explicit MinimalMockAllocator(int value) : value(value) {}
|
||||
MinimalMockAllocator(const MinimalMockAllocator& other)
|
||||
: value(other.value) {}
|
||||
using value_type = TestValue;
|
||||
MOCK_METHOD1(allocate, value_type*(size_t));
|
||||
MOCK_METHOD2(deallocate, void(value_type*, size_t));
|
||||
|
||||
int value;
|
||||
};
|
||||
|
||||
TEST(AllocatorTraits, FunctionsMinimal) {
|
||||
int trace = 0;
|
||||
int hint;
|
||||
TestValue x(&trace);
|
||||
MinimalMockAllocator mock;
|
||||
using Traits = absl::allocator_traits<MinimalMockAllocator>;
|
||||
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
|
||||
EXPECT_CALL(mock, deallocate(&x, 7));
|
||||
|
||||
EXPECT_EQ(&x, Traits::allocate(mock, 7));
|
||||
Traits::allocate(mock, 7, static_cast<const void*>(&hint));
|
||||
EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast<const void*>(&hint)));
|
||||
Traits::deallocate(mock, &x, 7);
|
||||
|
||||
EXPECT_EQ(1, trace);
|
||||
Traits::construct(mock, &x, &trace);
|
||||
EXPECT_EQ(2, trace);
|
||||
Traits::destroy(mock, &x);
|
||||
EXPECT_EQ(1, trace);
|
||||
|
||||
EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue),
|
||||
Traits::max_size(mock));
|
||||
|
||||
EXPECT_EQ(0, mock.value);
|
||||
EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value);
|
||||
}
|
||||
|
||||
struct FullMockAllocator {
|
||||
FullMockAllocator() : value(0) {}
|
||||
explicit FullMockAllocator(int value) : value(value) {}
|
||||
FullMockAllocator(const FullMockAllocator& other) : value(other.value) {}
|
||||
using value_type = TestValue;
|
||||
MOCK_METHOD1(allocate, value_type*(size_t));
|
||||
MOCK_METHOD2(allocate, value_type*(size_t, const void*));
|
||||
MOCK_METHOD2(construct, void(value_type*, int*));
|
||||
MOCK_METHOD1(destroy, void(value_type*));
|
||||
MOCK_CONST_METHOD0(max_size, size_t());
|
||||
MOCK_CONST_METHOD0(select_on_container_copy_construction,
|
||||
FullMockAllocator());
|
||||
|
||||
int value;
|
||||
};
|
||||
|
||||
TEST(AllocatorTraits, FunctionsFull) {
|
||||
int trace = 0;
|
||||
int hint;
|
||||
TestValue x(&trace), y;
|
||||
FullMockAllocator mock;
|
||||
using Traits = absl::allocator_traits<FullMockAllocator>;
|
||||
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
|
||||
EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y));
|
||||
EXPECT_CALL(mock, construct(&x, &trace));
|
||||
EXPECT_CALL(mock, destroy(&x));
|
||||
EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17));
|
||||
EXPECT_CALL(mock, select_on_container_copy_construction())
|
||||
.WillRepeatedly(Return(FullMockAllocator(23)));
|
||||
|
||||
EXPECT_EQ(&x, Traits::allocate(mock, 7));
|
||||
EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint)));
|
||||
|
||||
EXPECT_EQ(1, trace);
|
||||
Traits::construct(mock, &x, &trace);
|
||||
EXPECT_EQ(1, trace);
|
||||
Traits::destroy(mock, &x);
|
||||
EXPECT_EQ(1, trace);
|
||||
|
||||
EXPECT_EQ(17, Traits::max_size(mock));
|
||||
|
||||
EXPECT_EQ(0, mock.value);
|
||||
EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value);
|
||||
}
|
||||
|
||||
TEST(AllocatorNoThrowTest, DefaultAllocator) {
|
||||
#if ABSL_ALLOCATOR_NOTHROW
|
||||
EXPECT_TRUE(absl::default_allocator_is_nothrow::value);
|
||||
#else
|
||||
EXPECT_FALSE(absl::default_allocator_is_nothrow::value);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(AllocatorNoThrowTest, StdAllocator) {
|
||||
#if ABSL_ALLOCATOR_NOTHROW
|
||||
EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value);
|
||||
#else
|
||||
EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(AllocatorNoThrowTest, CustomAllocator) {
|
||||
struct NoThrowAllocator {
|
||||
using is_nothrow = std::true_type;
|
||||
};
|
||||
struct CanThrowAllocator {
|
||||
using is_nothrow = std::false_type;
|
||||
};
|
||||
struct UnspecifiedAllocator {
|
||||
};
|
||||
EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value);
|
||||
EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value);
|
||||
EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);
|
||||
}
|
||||
|
||||
} // namespace
|
Loading…
Add table
Add a link
Reference in a new issue