Export of internal Abseil changes
-- 803abc2dcad8b2354c988e9bf58dac4a17683832 by Gennadiy Rozental <rogeeff@google.com>: Avoid warning when RTTI is not enabled. PiperOrigin-RevId: 294247546 -- 5a7b0b4d07d1d6e56fbb0b0ffbf4f8fcab772dbf by Derek Mauro <dmauro@google.com>: Add a public Abseil FAQ PiperOrigin-RevId: 294226960 -- 6945c4a6df7d7679711fea31aacf4fba6ac7baa1 by Gennadiy Rozental <rogeeff@google.com>: Re-enable type mismatch check, which works in all the cases including shared libraries. We will use RTTI in case when our hand written approximation of it reports a type mismatch. This way we can ensure that if a flag is defined in one shared object and referenced in another we do not report spurious errors. PiperOrigin-RevId: 293905563 GitOrigin-RevId: 803abc2dcad8b2354c988e9bf58dac4a17683832 Change-Id: I1a23776d227ed2734c2e7183323786b7a95c3cc7
This commit is contained in:
parent
d95d156716
commit
bf78e97730
9 changed files with 229 additions and 71 deletions
144
absl/FAQ.md
Normal file
144
absl/FAQ.md
Normal file
|
@ -0,0 +1,144 @@
|
|||
# Abseil FAQ
|
||||
|
||||
## Is Abseil the right home for my utility library?
|
||||
|
||||
Most often the answer to the question is "no." As both the [About
|
||||
Abseil](https://abseil.io/about/) page and our [contributing
|
||||
guidelines](https://github.com/abseil/abseil-cpp/blob/master/CONTRIBUTING.md#contribution-guidelines)
|
||||
explain, Abseil contains a variety of core C++ library code that is widely used
|
||||
at [Google](https://www.google.com/). As such, Abseil's primary purpose is to be
|
||||
used as a dependency by Google's open source C++ projects. While we do hope that
|
||||
Abseil is also useful to the C++ community at large, this added constraint also
|
||||
means that we are unlikely to accept a contribution of utility code that isn't
|
||||
already widely used by Google.
|
||||
|
||||
## How to I set the C++ dialect used to build Abseil?
|
||||
|
||||
The short answer is that whatever mechanism you choose, you need to make sure
|
||||
that you set this option consistently at the global level for your entire
|
||||
project. If, for example, you want to set the C++ dialect to C++17, with
|
||||
[Bazel](https://bazel/build/) as the build system and `gcc` or `clang` as the
|
||||
compiler, there several ways to do this:
|
||||
* Pass `--cxxopt=-std=c++17` on the command line (for example, `bazel build
|
||||
--cxxopt=-std=c++17 ...`)
|
||||
* Set the environment variable `BAZEL_CXXOPTS` (for example,
|
||||
`BAZEL_CXXOPTS=-std=c++17`)
|
||||
* Add `build --cxxopt=-std=c++17` to your [`.bazelrc`
|
||||
file](https://docs.bazel.build/versions/master/guide.html#bazelrc)
|
||||
|
||||
If you are using CMake as the build system, you'll need to add a line like
|
||||
`set(CMAKE_CXX_STANDARD 17)` to your top level `CMakeLists.txt` file. See the
|
||||
[CMake build
|
||||
instructions](https://github.com/abseil/abseil-cpp/blob/master/CMake/README.md)
|
||||
for more information.
|
||||
|
||||
For a longer answer to this question and to understand why some other approaches
|
||||
don't work, see the answer to "What is ABI and why don't you recommend using a
|
||||
pre-compiled version of Abseil?"
|
||||
|
||||
## What is ABI and why don't you recommend using a pre-compiled version of Abseil?
|
||||
|
||||
For the purposes of this discussion, you can think of
|
||||
[ABI](https://en.wikipedia.org/wiki/Application_binary_interface) as the
|
||||
compiled representation of the interfaces in code. This is in contrast to
|
||||
[API](https://en.wikipedia.org/wiki/Application_programming_interface), which
|
||||
you can think of as the interfaces as defined by the code itself. [Abseil has a
|
||||
strong promise of API compatibility, but does not make any promise of ABI
|
||||
compatibility](https://abseil.io/about/compatibility). Let's take a look at what
|
||||
this means in practice.
|
||||
|
||||
You might be tempted to do something like this in a
|
||||
[Bazel](https://bazel.build/) `BUILD` file:
|
||||
|
||||
```
|
||||
# DON'T DO THIS!!!
|
||||
cc_library(
|
||||
name = "my_library",
|
||||
srcs = ["my_library.cc"],
|
||||
copts = ["-std=c++17"], # May create a mixed-mode compile!
|
||||
deps = ["@com_google_absl//absl/strings"],
|
||||
)
|
||||
```
|
||||
|
||||
Applying `-std=c++17` to an individual target in your `BUILD` file is going to
|
||||
compile that specific target in C++17 mode, but it isn't going to ensure the
|
||||
Abseil library is built in C++17 mode, since the Abseil library itself is a
|
||||
different build target. If your code includes an Abseil header, then your
|
||||
program may contain conflicting definitions of the same
|
||||
class/function/variable/enum, etc. As a rule, all compile options that affect
|
||||
the ABI of a program need to be applied to the entire build on a global basis.
|
||||
|
||||
C++ has something called the [One Definition
|
||||
Rule](https://en.wikipedia.org/wiki/One_Definition_Rule) (ODR). C++ doesn't
|
||||
allow multiple definitions of the same class/function/variable/enum, etc. ODR
|
||||
violations sometimes result in linker errors, but linkers do not always catch
|
||||
violations. Uncaught ODR violations can result in strange runtime behaviors or
|
||||
crashes that can be hard to debug.
|
||||
|
||||
If you build the Abseil library and your code using different compile options
|
||||
that affect ABI, there is a good chance you will run afoul of the One Definition
|
||||
Rule. Examples of GCC compile options that affect ABI include (but aren't
|
||||
limited to) language dialect (e.g. `-std=`), optimization level (e.g. `-O2`),
|
||||
code generation flags (e.g. `-fexceptions`), and preprocessor defines
|
||||
(e.g. `-DNDEBUG`).
|
||||
|
||||
If you use a pre-compiled version of Abseil, (for example, from your Linux
|
||||
distribution package manager or from something like
|
||||
[vcpkg](https://github.com/microsoft/vcpkg)) you have to be very careful to
|
||||
ensure ABI compatibility across the components of your program. The only way you
|
||||
can be sure your program is going to be correct regarding ABI is to ensure
|
||||
you've used the exact same compile options as were used to build the
|
||||
pre-compiled library. This does not mean that Abseil cannot work as part of a
|
||||
Linux distribution since a knowledgeable binary packager will have ensured that
|
||||
all packages have been built with consistent compile options. This is one of the
|
||||
reasons we warn against - though do not outright reject - using Abseil as a
|
||||
pre-compiled library.
|
||||
|
||||
Another possible way that you might afoul of ABI issues is if you accidentally
|
||||
include two versions of Abseil in your program. Multiple versions of Abseil can
|
||||
end up within the same binary if your program uses the Abseil library and
|
||||
another library also transitively depends on Abseil (resulting in what is
|
||||
sometimes called the diamond dependency problem). In cases such as this you must
|
||||
structure your build so that all libraries use the same version of Abseil.
|
||||
[Abseil's strong promise of API compatibility between
|
||||
releases](https://abseil.io/about/compatibility) means the latest "HEAD" release
|
||||
of Abseil is almost certainly the right choice if you are doing as we recommend
|
||||
and building all of your code from source.
|
||||
|
||||
For these reasons we recommend you avoid pre-compiled code and build the Abseil
|
||||
library yourself in a consistent manner with the rest of your code.
|
||||
|
||||
## What is "live at head" and how do I do it?
|
||||
|
||||
From Abseil's point-of-view, "live at head" means that every Abseil source
|
||||
release (which happens on an almost daily basis) is either API compatible with
|
||||
the previous release, or comes with an automated tool that you can run over code
|
||||
to make it compatible. In practice, the need to use an automated tool is
|
||||
extremely rare. This means that upgrading from one source release to another
|
||||
should be a routine practice that can and should be performed often.
|
||||
|
||||
We recommend you update to the latest release of Abseil as often as
|
||||
possible. Not only will you pick up bug fixes more quickly, but if you have good
|
||||
automated testing, you will catch and be able to fix any [Hyrum's
|
||||
Law](https://www.hyrumslaw.com/) dependency problems on an incremental basis
|
||||
instead of being overwhelmed by them and having difficulty isolating them if you
|
||||
wait longer between updates.
|
||||
|
||||
If you are using the [Bazel](https://bazel.build/) build system and its
|
||||
[external dependencies](https://docs.bazel.build/versions/master/external.html)
|
||||
feature, updating the
|
||||
[`http_archive`](https://docs.bazel.build/versions/master/repo/http.html#http_archive)
|
||||
rule in your
|
||||
[`WORKSPACE`](https://docs.bazel.build/versions/master/be/workspace.html) for
|
||||
`com_google_abseil` to point to the latest release is all you need to do. You
|
||||
can commit the updated `WORKSPACE` file to your source control every time you
|
||||
update, and if you have good automated testing, you might even consider
|
||||
automating this.
|
||||
|
||||
One thing we don't recommend is using GitHub's `master.zip` files (for example
|
||||
[https://github.com/abseil/abseil-cpp/archive/master.zip](https://github.com/abseil/abseil-cpp/archive/master.zip)),
|
||||
which are always the latest commit in the `master` branch, to implement live at
|
||||
head. Since these `master.zip` URLs are not versioned, you will lose build
|
||||
reproducibility. In addition, some build systems, including Bazel, will simply
|
||||
cache this file, which means you won't actually be updating to the latest
|
||||
release until your cache is cleared or invalidated.
|
|
@ -138,6 +138,7 @@ cc_library(
|
|||
"//absl/flags:__pkg__",
|
||||
],
|
||||
deps = [
|
||||
":config",
|
||||
":marshalling",
|
||||
"//absl/base:config",
|
||||
"//absl/base:core_headers",
|
||||
|
|
|
@ -56,4 +56,12 @@
|
|||
#define ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD 1
|
||||
#endif
|
||||
|
||||
// ABSL_FLAGS_INTERNAL_HAS_RTTI macro is used for selecting if we can use RTTI
|
||||
// for flag type identification.
|
||||
#ifdef ABSL_FLAGS_INTERNAL_HAS_RTTI
|
||||
#error ABSL_FLAGS_INTERNAL_HAS_RTTI cannot be directly set
|
||||
#elif !defined(__GNUC__) || defined(__GXX_RTTI)
|
||||
#define ABSL_FLAGS_INTERNAL_HAS_RTTI 1
|
||||
#endif // !defined(__GNUC__) || defined(__GXX_RTTI)
|
||||
|
||||
#endif // ABSL_FLAGS_CONFIG_H_
|
||||
|
|
|
@ -22,13 +22,6 @@
|
|||
namespace absl {
|
||||
ABSL_NAMESPACE_BEGIN
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define ABSL_FLAGS_GET(T) \
|
||||
T GetFlag(const absl::Flag<T>& flag) { return flag.Get(); }
|
||||
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_GET)
|
||||
#undef ABSL_FLAGS_GET
|
||||
#endif
|
||||
|
||||
// This global mutex protects on-demand construction of flag objects in MSVC
|
||||
// builds.
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
|
|
|
@ -191,21 +191,6 @@ ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
|
|||
return flag.Get();
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
// We want to validate the type mismatch between type definition and
|
||||
// declaration. The lock-free implementation does not allow us to do it,
|
||||
// so in debug builds we always use the slower implementation, which always
|
||||
// validates the type.
|
||||
|
||||
// We currently need an external linkage for built-in types because shared
|
||||
// libraries have different addresses of flags_internal::FlagOps<T> which
|
||||
// might cause log spam when checking the same flag type.
|
||||
#define ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT(T) \
|
||||
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
|
||||
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT)
|
||||
#undef ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT
|
||||
#endif
|
||||
|
||||
// SetFlag()
|
||||
//
|
||||
// Sets the value of an `absl::Flag` to the value `v`. Do not construct an
|
||||
|
|
|
@ -387,19 +387,20 @@ TEST_F(FlagTest, TestCustomUDT) {
|
|||
|
||||
// MSVC produces link error on the type mismatch.
|
||||
// Linux does not have build errors and validations work as expected.
|
||||
#if 0 // !defined(_WIN32) && GTEST_HAS_DEATH_TEST
|
||||
#if !defined(_WIN32) && GTEST_HAS_DEATH_TEST
|
||||
|
||||
TEST(Flagtest, TestTypeMismatchValidations) {
|
||||
// For builtin types, GetFlag() only does validation in debug mode.
|
||||
using FlagDeathTest = FlagTest;
|
||||
|
||||
TEST_F(FlagDeathTest, TestTypeMismatchValidations) {
|
||||
EXPECT_DEBUG_DEATH(
|
||||
absl::GetFlag(FLAGS_mistyped_int_flag),
|
||||
static_cast<void>(absl::GetFlag(FLAGS_mistyped_int_flag)),
|
||||
"Flag 'mistyped_int_flag' is defined as one type and declared "
|
||||
"as another");
|
||||
EXPECT_DEATH(absl::SetFlag(&FLAGS_mistyped_int_flag, 0),
|
||||
EXPECT_DEATH(absl::SetFlag(&FLAGS_mistyped_int_flag, 1),
|
||||
"Flag 'mistyped_int_flag' is defined as one type and declared "
|
||||
"as another");
|
||||
|
||||
EXPECT_DEATH(absl::GetFlag(FLAGS_mistyped_string_flag),
|
||||
EXPECT_DEATH(static_cast<void>(absl::GetFlag(FLAGS_mistyped_string_flag)),
|
||||
"Flag 'mistyped_string_flag' is defined as one type and "
|
||||
"declared as another");
|
||||
EXPECT_DEATH(
|
||||
|
|
|
@ -21,9 +21,11 @@
|
|||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <typeinfo>
|
||||
|
||||
#include "absl/base/config.h"
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/flags/config.h"
|
||||
#include "absl/flags/marshalling.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
#include "absl/types/optional.h"
|
||||
|
@ -41,7 +43,10 @@ enum FlagOp {
|
|||
kCopyConstruct,
|
||||
kSizeof,
|
||||
kParse,
|
||||
kUnparse
|
||||
kUnparse,
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
kRuntimeTypeId
|
||||
#endif
|
||||
};
|
||||
using FlagOpFn = void* (*)(FlagOp, const void*, void*);
|
||||
using FlagMarshallingOpFn = void* (*)(FlagOp, const void*, void*, void*);
|
||||
|
@ -84,6 +89,11 @@ void* FlagOps(FlagOp op, const void* v1, void* v2) {
|
|||
return nullptr;
|
||||
case kSizeof:
|
||||
return reinterpret_cast<void*>(sizeof(T));
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
case kRuntimeTypeId:
|
||||
return const_cast<std::type_info*>(&typeid(T));
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -146,6 +156,13 @@ inline size_t Sizeof(FlagOpFn op) {
|
|||
op(flags_internal::kSizeof, nullptr, nullptr)));
|
||||
}
|
||||
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
inline const std::type_info& RuntimeTypeId(FlagOpFn op) {
|
||||
return *static_cast<const std::type_info*>(
|
||||
op(flags_internal::kRuntimeTypeId, nullptr, nullptr));
|
||||
}
|
||||
#endif
|
||||
|
||||
// Handle to FlagState objects. Specific flag state objects will restore state
|
||||
// of a flag produced this flag state from method CommandLineFlag::SaveState().
|
||||
class FlagStateInterface {
|
||||
|
|
|
@ -56,6 +56,14 @@ bool ShouldValidateFlagValue(FlagOpFn flag_type_id) {
|
|||
return true;
|
||||
}
|
||||
|
||||
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
|
||||
bool MatchRuntimeTypeId(FlagOpFn lhs_type_id, FlagOpFn rhs_type_id) {
|
||||
return RuntimeTypeId(lhs_type_id) == RuntimeTypeId(rhs_type_id);
|
||||
}
|
||||
#else
|
||||
bool MatchRuntimeTypeId(FlagOpFn, FlagOpFn) { return true; }
|
||||
#endif
|
||||
|
||||
// RAII helper used to temporarily unlock and relock `absl::Mutex`.
|
||||
// This is used when we need to ensure that locks are released while
|
||||
// invoking user supplied callbacks and then reacquired, since callbacks may
|
||||
|
@ -133,6 +141,18 @@ void FlagImpl::Destroy() {
|
|||
is_data_guard_inited_ = false;
|
||||
}
|
||||
|
||||
void FlagImpl::AssertValidType(const flags_internal::FlagOpFn op) const {
|
||||
// `op` is the unmarshaling operation corresponding to the declaration
|
||||
// visibile at the call site. `op_` is the Flag's defined unmarshalling
|
||||
// operation. They must match for this operation to be well-defined.
|
||||
if (ABSL_PREDICT_FALSE(op != op_) && !MatchRuntimeTypeId(op, op_)) {
|
||||
ABSL_INTERNAL_LOG(
|
||||
FATAL,
|
||||
absl::StrCat("Flag '", Name(),
|
||||
"' is defined as one type and declared as another"));
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<void, DynValueDeleter> FlagImpl::MakeInitValue() const {
|
||||
void* res = nullptr;
|
||||
if (DefaultKind() == FlagDefaultKind::kDynamicValue) {
|
||||
|
@ -219,7 +239,7 @@ bool FlagImpl::RestoreState(const void* value, bool modified,
|
|||
if (counter_ == counter) return false;
|
||||
}
|
||||
|
||||
Write(value, op_);
|
||||
Write(value);
|
||||
|
||||
{
|
||||
absl::MutexLock l(DataGuard());
|
||||
|
@ -254,18 +274,9 @@ bool FlagImpl::TryParse(void** dst, absl::string_view value,
|
|||
return true;
|
||||
}
|
||||
|
||||
void FlagImpl::Read(void* dst, const flags_internal::FlagOpFn dst_op) const {
|
||||
void FlagImpl::Read(void* dst) const {
|
||||
absl::ReaderMutexLock l(DataGuard());
|
||||
|
||||
// `dst_op` is the unmarshaling operation corresponding to the declaration
|
||||
// visibile at the call site. `op` is the Flag's defined unmarshalling
|
||||
// operation. They must match for this operation to be well-defined.
|
||||
if (ABSL_PREDICT_FALSE(dst_op != op_)) {
|
||||
ABSL_INTERNAL_LOG(
|
||||
ERROR,
|
||||
absl::StrCat("Flag '", Name(),
|
||||
"' is defined as one type and declared as another"));
|
||||
}
|
||||
CopyConstruct(op_, value_.dynamic, dst);
|
||||
}
|
||||
|
||||
|
@ -286,19 +297,9 @@ void FlagImpl::StoreAtomic() {
|
|||
#endif
|
||||
}
|
||||
|
||||
void FlagImpl::Write(const void* src, const flags_internal::FlagOpFn src_op) {
|
||||
void FlagImpl::Write(const void* src) {
|
||||
absl::MutexLock l(DataGuard());
|
||||
|
||||
// `src_op` is the marshalling operation corresponding to the declaration
|
||||
// visible at the call site. `op` is the Flag's defined marshalling operation.
|
||||
// They must match for this operation to be well-defined.
|
||||
if (ABSL_PREDICT_FALSE(src_op != op_)) {
|
||||
ABSL_INTERNAL_LOG(
|
||||
ERROR,
|
||||
absl::StrCat("Flag '", Name(),
|
||||
"' is defined as one type and declared as another"));
|
||||
}
|
||||
|
||||
if (ShouldValidateFlagValue(op_)) {
|
||||
void* obj = Clone(op_, src);
|
||||
std::string ignored_error;
|
||||
|
|
|
@ -301,41 +301,44 @@ class FlagImpl {
|
|||
bool IsSpecifiedOnCommandLine() const ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
std::string DefaultValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
std::string CurrentValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
void Read(void* dst, const FlagOpFn dst_op) const
|
||||
ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
void Read(void* dst) const ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
// Attempts to parse supplied `value` std::string. If parsing is successful, then
|
||||
// it replaces `dst` with the new value.
|
||||
bool TryParse(void** dst, absl::string_view value, std::string* err) const
|
||||
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
|
||||
|
||||
#ifndef NDEBUG
|
||||
template <typename T>
|
||||
void Get(T* dst) const {
|
||||
Read(dst, &FlagOps<T>);
|
||||
}
|
||||
#else
|
||||
template <typename T, typename std::enable_if<
|
||||
!IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
|
||||
void Get(T* dst) const {
|
||||
Read(dst, &FlagOps<T>);
|
||||
AssertValidType(&flags_internal::FlagOps<T>);
|
||||
Read(dst);
|
||||
}
|
||||
// Overload for `GetFlag()` for types that support lock-free reads.
|
||||
template <typename T, typename std::enable_if<IsAtomicFlagTypeTrait<T>::value,
|
||||
int>::type = 0>
|
||||
void Get(T* dst) const {
|
||||
using U = BestAtomicType<T>;
|
||||
const typename U::type r = value_.atomics.template load<T>();
|
||||
// For flags of types which can be accessed "atomically" we want to avoid
|
||||
// slowing down flag value access due to type validation. That's why
|
||||
// this validation is hidden behind !NDEBUG
|
||||
#ifndef NDEBUG
|
||||
AssertValidType(&flags_internal::FlagOps<T>);
|
||||
#endif
|
||||
using U = flags_internal::BestAtomicType<T>;
|
||||
typename U::type r = value_.atomics.template load<T>();
|
||||
if (r != U::AtomicInit()) {
|
||||
std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
|
||||
} else {
|
||||
Read(dst, &FlagOps<T>);
|
||||
Read(dst);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
template <typename T>
|
||||
void Set(const T& src) {
|
||||
AssertValidType(&flags_internal::FlagOps<T>);
|
||||
Write(&src);
|
||||
}
|
||||
|
||||
// Mutating access methods
|
||||
void Write(const void* src, const FlagOpFn src_op)
|
||||
ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
|
||||
ValueSource source, std::string* err)
|
||||
ABSL_LOCKS_EXCLUDED(*DataGuard());
|
||||
|
@ -383,6 +386,13 @@ class FlagImpl {
|
|||
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
|
||||
return static_cast<FlagDefaultKind>(def_kind_);
|
||||
}
|
||||
// Used in read/write operations to validate source/target has correct type.
|
||||
// For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
|
||||
// absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
|
||||
// int. To do that we pass the "assumed" type id (which is deduced from type
|
||||
// int) as an argument `op`, which is in turn is validated against the type id
|
||||
// stored in flag object by flag definition statement.
|
||||
void AssertValidType(const flags_internal::FlagOpFn op) const;
|
||||
|
||||
// Immutable flag's state.
|
||||
|
||||
|
@ -461,9 +471,7 @@ class Flag final : public flags_internal::CommandLineFlag {
|
|||
impl_.Get(&u.value);
|
||||
return std::move(u.value);
|
||||
}
|
||||
|
||||
void Set(const T& v) { impl_.Write(&v, &FlagOps<T>); }
|
||||
|
||||
void Set(const T& v) { impl_.Set(v); }
|
||||
void SetCallback(const FlagCallbackFunc mutation_callback) {
|
||||
impl_.SetCallback(mutation_callback);
|
||||
}
|
||||
|
@ -509,10 +517,10 @@ class Flag final : public flags_internal::CommandLineFlag {
|
|||
|
||||
void Destroy() override { impl_.Destroy(); }
|
||||
|
||||
void Read(void* dst) const override { impl_.Read(dst, &FlagOps<T>); }
|
||||
void Read(void* dst) const override { impl_.Read(dst); }
|
||||
FlagOpFn TypeId() const override { return &FlagOps<T>; }
|
||||
|
||||
// Flag's implementation with value type abstracted out.
|
||||
// Flag's data
|
||||
FlagImpl impl_;
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue