Complete the Monad chapter

From "Haskell Programming from First Principles"...

I have completed all of the exercises in the book thus far, but I only recently
dedicated a Haskell module for each chapter. Previously I created ad hoc modules
per exercise, per chapter... it was chaotic.
This commit is contained in:
William Carroll 2020-06-18 11:07:55 +01:00
parent 71e79f5f5d
commit a981bb0d4a

View file

@ -0,0 +1,178 @@
module MonadScratch where
import Data.Function ((&))
import Test.QuickCheck
import Test.QuickCheck.Checkers
import Control.Applicative (liftA2)
import qualified Control.Monad as Monad
--------------------------------------------------------------------------------
bind :: Monad m => (a -> m b) -> m a -> m b
bind f x = Monad.join $ fmap f x
--------------------------------------------------------------------------------
fTrigger :: Functor f => f (Int, String, [Int])
fTrigger = undefined
aTrigger :: Applicative a => a (Int, String, [Int])
aTrigger = undefined
mTrigger :: Monad m => m (Int, String, [Int])
mTrigger = undefined
--------------------------------------------------------------------------------
data Sum a b
= Fst a
| Snd b
deriving (Eq, Show)
instance (Eq a, Eq b) => EqProp (Sum a b) where
(=-=) = eq
instance (Arbitrary a, Arbitrary b) => Arbitrary (Sum a b) where
arbitrary = frequency [ (1, Fst <$> arbitrary)
, (1, Snd <$> arbitrary)
]
instance Functor (Sum a) where
fmap f (Fst x) = Fst x
fmap f (Snd x) = Snd (f x)
instance Applicative (Sum a) where
pure x = Snd x
(Snd f) <*> (Snd x) = Snd (f x)
(Snd f) <*> (Fst x) = Fst x
(Fst x) <*> _ = Fst x
instance Monad (Sum a) where
(Fst x) >>= _ = Fst x
(Snd x) >>= f = f x
--------------------------------------------------------------------------------
data Nope a = NopeDotJpg deriving (Eq, Show)
instance Arbitrary (Nope a) where
arbitrary = pure NopeDotJpg
instance EqProp (Nope a) where
(=-=) = eq
instance Functor Nope where
fmap f _ = NopeDotJpg
instance Applicative Nope where
pure _ = NopeDotJpg
_ <*> _ = NopeDotJpg
instance Monad Nope where
NopeDotJpg >>= f = NopeDotJpg
--------------------------------------------------------------------------------
data BahEither b a
= PLeft a
| PRight b
deriving (Eq, Show)
instance (Arbitrary b, Arbitrary a) => Arbitrary (BahEither b a) where
arbitrary = frequency [ (1, PLeft <$> arbitrary)
, (1, PRight <$> arbitrary)
]
instance (Eq a, Eq b) => EqProp (BahEither a b) where
(=-=) = eq
instance Functor (BahEither b) where
fmap f (PLeft x) = PLeft (f x)
fmap _ (PRight x) = PRight x
instance Applicative (BahEither b) where
pure = PLeft
(PRight x) <*> _ = PRight x
(PLeft f) <*> (PLeft x) = PLeft (f x)
_ <*> (PRight x) = PRight x
instance Monad (BahEither b) where
(PRight x) >>= _ = PRight x
(PLeft x) >>= f = f x
--------------------------------------------------------------------------------
newtype Identity a = Identity a
deriving (Eq, Ord, Show)
instance Functor Identity where
fmap f (Identity x) = Identity (f x)
instance Applicative Identity where
pure = Identity
(Identity f) <*> (Identity x) = Identity (f x)
instance Monad Identity where
(Identity x) >>= f = f x
--------------------------------------------------------------------------------
data List a
= Nil
| Cons a (List a)
deriving (Eq, Show)
instance Arbitrary a => Arbitrary (List a) where
arbitrary = frequency [ (1, pure Nil)
, (1, Cons <$> arbitrary <*> arbitrary)
]
instance Eq a => EqProp (List a) where
(=-=) = eq
fromList :: [a] -> List a
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)
instance Semigroup (List a) where
Nil <> xs = xs
xs <> Nil = xs
(Cons x xs) <> ys =
Cons x (xs <> ys)
instance Functor List where
fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)
instance Applicative List where
pure x = Cons x Nil
Nil <*> _ = Nil
_ <*> Nil = Nil
(Cons f fs) <*> xs =
(f <$> xs) <> (fs <*> xs)
instance Monad List where
Nil >>= _ = Nil
(Cons x xs) >>= f = (f x) <> (xs >>= f)
--------------------------------------------------------------------------------
j :: Monad m => m (m a) -> m a
j = Monad.join
l1 :: Monad m => (a -> b) -> m a -> m b
l1 = Monad.liftM
l2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
l2 = Monad.liftM2
a :: Monad m => m a -> m (a -> b) -> m b
a = flip (<*>)
meh :: Monad m => [a] -> (a -> m b) -> m [b]
meh xs f = flipType $ f <$> xs
flipType :: Monad m => [m a] -> m [a]
flipType [] = pure mempty
flipType (m:ms) =
m >>= (\x -> (x:) <$> flipType ms)