feat(tazjin/finito): Check in my old Rust state-machine library
I dug through my archives for this and found a version that, while unfortunately not the latest implementation, is close enough to the real thing to show off what Finito did. This is a Postgres-backed state-machine library for complex application logic. I wrote this originally for a work purpose in a previous life, but have always wanted to apply it elsewhere, too. git-subtree-dir: users/tazjin/finito git-subtree-mainline:0380841eb1
git-subtree-split:b748117225
Change-Id: I0de02d6258568447a14870f1a533812a67127763
This commit is contained in:
commit
9e7b81391d
13 changed files with 1279 additions and 0 deletions
4
users/tazjin/finito/.gitignore
vendored
Normal file
4
users/tazjin/finito/.gitignore
vendored
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
.envrc
|
||||||
|
/target/
|
||||||
|
**/*.rs.bk
|
||||||
|
Cargo.lock
|
6
users/tazjin/finito/Cargo.toml
Normal file
6
users/tazjin/finito/Cargo.toml
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
[workspace]
|
||||||
|
members = [
|
||||||
|
"finito-core",
|
||||||
|
"finito-door",
|
||||||
|
"finito-postgres"
|
||||||
|
]
|
27
users/tazjin/finito/README.md
Normal file
27
users/tazjin/finito/README.md
Normal file
|
@ -0,0 +1,27 @@
|
||||||
|
Finito
|
||||||
|
======
|
||||||
|
|
||||||
|
This is a Rust port of the Haskell state-machine library Finito. It is
|
||||||
|
slightly less featureful because it loses the ability to ensure that
|
||||||
|
side-effects are contained and because of a slight reduction in
|
||||||
|
expressivity, which makes it a bit more restrictive.
|
||||||
|
|
||||||
|
However, it still implements the FSM model well enough.
|
||||||
|
|
||||||
|
# Components
|
||||||
|
|
||||||
|
Finito is split up into multiple independent components (note: not all
|
||||||
|
of these exist yet), separating functionality related to FSM
|
||||||
|
persistence from other things.
|
||||||
|
|
||||||
|
* `finito`: Core abstraction implemented by Finito
|
||||||
|
* `finito-door`: Example implementation of a simple, lockable door
|
||||||
|
* `finito-postgres`: Persistent state-machines using Postgres
|
||||||
|
|
||||||
|
**Note**: The `finito` core library does not contain any tests. Its
|
||||||
|
coverage is instead provided by the `finito-door` library, which
|
||||||
|
actually implements an example FSM.
|
||||||
|
|
||||||
|
These are split out because the documentation for `finito-door` is
|
||||||
|
interesting regardless and because other Finito packages also need an
|
||||||
|
example implementation.
|
7
users/tazjin/finito/finito-core/Cargo.toml
Normal file
7
users/tazjin/finito/finito-core/Cargo.toml
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
[package]
|
||||||
|
name = "finito"
|
||||||
|
version = "0.1.0"
|
||||||
|
authors = ["Vincent Ambo <mail@tazj.in>"]
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
serde = "1.0"
|
243
users/tazjin/finito/finito-core/src/lib.rs
Normal file
243
users/tazjin/finito/finito-core/src/lib.rs
Normal file
|
@ -0,0 +1,243 @@
|
||||||
|
//! Finito's core finite-state machine abstraction.
|
||||||
|
//!
|
||||||
|
//! # What & why?
|
||||||
|
//!
|
||||||
|
//! Most processes that occur in software applications can be modeled
|
||||||
|
//! as finite-state machines (FSMs), however the actual states, the
|
||||||
|
//! transitions between them and the model's interaction with the
|
||||||
|
//! external world is often implicit.
|
||||||
|
//!
|
||||||
|
//! Making the states of a process explicit using a simple language
|
||||||
|
//! that works for both software developers and other people who may
|
||||||
|
//! have opinions on processes makes it easier to synchronise thoughts,
|
||||||
|
//! extend software and keep a good level of control over what is going
|
||||||
|
//! on.
|
||||||
|
//!
|
||||||
|
//! This library aims to provide functionality for implementing
|
||||||
|
//! finite-state machines in a way that balances expressivity and
|
||||||
|
//! safety.
|
||||||
|
//!
|
||||||
|
//! Finito does not aim to prevent every possible incorrect
|
||||||
|
//! transition, but aims for somewhere "safe-enough" (please don't
|
||||||
|
//! lynch me) that is still easily understood.
|
||||||
|
//!
|
||||||
|
//! # Conceptual overview
|
||||||
|
//!
|
||||||
|
//! The core idea behind Finito can be expressed in a single line and
|
||||||
|
//! will potentially look familiar if you have used Erlang in a
|
||||||
|
//! previous life. The syntax used here is the type-signature notation
|
||||||
|
//! of Haskell.
|
||||||
|
//!
|
||||||
|
//! ```text
|
||||||
|
//! advance :: state -> event -> (state, [action])
|
||||||
|
//! ```
|
||||||
|
//!
|
||||||
|
//! In short, every FSM is made up of three distinct types:
|
||||||
|
//!
|
||||||
|
//! * a state type representing all possible states of the machine
|
||||||
|
//!
|
||||||
|
//! * an event type representing all possible events in the machine
|
||||||
|
//!
|
||||||
|
//! * an action type representing a description of all possible
|
||||||
|
//! side-effects of the machine
|
||||||
|
//!
|
||||||
|
//! Using the definition above we can now say that a transition in a
|
||||||
|
//! state-machine, involving these three types, takes an initial state
|
||||||
|
//! and an event to apply it to and returns a new state and a list of
|
||||||
|
//! actions to execute.
|
||||||
|
//!
|
||||||
|
//! With this definition most processes can already be modeled quite
|
||||||
|
//! well. Two additional functions are required to make it all work:
|
||||||
|
//!
|
||||||
|
//! ```text
|
||||||
|
//! -- | The ability to cause additional side-effects after entering
|
||||||
|
//! -- a new state.
|
||||||
|
//! > enter :: state -> [action]
|
||||||
|
//! ```
|
||||||
|
//!
|
||||||
|
//! as well as
|
||||||
|
//!
|
||||||
|
//! ```text
|
||||||
|
//! -- | An interpreter for side-effects
|
||||||
|
//! act :: action -> m [event]
|
||||||
|
//! ```
|
||||||
|
//!
|
||||||
|
//! **Note**: This library is based on an original Haskell library. In
|
||||||
|
//! Haskell, side-effects can be controlled via the type system which
|
||||||
|
//! is impossible in Rust.
|
||||||
|
//!
|
||||||
|
//! Some parts of Finito make assumptions about the programmer not
|
||||||
|
//! making certain kinds of mistakes, which are pointed out in the
|
||||||
|
//! documentation. Unfortunately those assumptions are not
|
||||||
|
//! automatically verifiable in Rust.
|
||||||
|
//!
|
||||||
|
//! ## Example
|
||||||
|
//!
|
||||||
|
//! Please consult `finito-door` for an example representing a simple,
|
||||||
|
//! lockable door as a finite-state machine. This gives an overview
|
||||||
|
//! over Finito's primary features.
|
||||||
|
//!
|
||||||
|
//! If you happen to be the kind of person who likes to learn about
|
||||||
|
//! libraries by reading code, you should familiarise yourself with the
|
||||||
|
//! door as it shows up as the example in other finito-related
|
||||||
|
//! libraries, too.
|
||||||
|
//!
|
||||||
|
//! # Persistence, side-effects and mud
|
||||||
|
//!
|
||||||
|
//! These three things are inescapable in the fateful realm of
|
||||||
|
//! computers, but Finito separates them out into separate libraries
|
||||||
|
//! that you can drag in as you need them.
|
||||||
|
//!
|
||||||
|
//! Currently, those libraries include:
|
||||||
|
//!
|
||||||
|
//! * `finito`: Core components and classes of Finito
|
||||||
|
//!
|
||||||
|
//! * `finito-in-mem`: In-memory implementation of state machines
|
||||||
|
//! that do not need to live longer than an application using
|
||||||
|
//! standard library concurrency primitives.
|
||||||
|
//!
|
||||||
|
//! * `finito-postgres`: Postgres-backed, persistent implementation
|
||||||
|
//! of state machines that, well, do need to live longer. Uses
|
||||||
|
//! Postgres for concurrency synchronisation, so keep that in
|
||||||
|
//! mind.
|
||||||
|
//!
|
||||||
|
//! Which should cover most use-cases. Okay, enough prose, lets dive
|
||||||
|
//! in.
|
||||||
|
//!
|
||||||
|
//! # Does Finito make you want to scream?
|
||||||
|
//!
|
||||||
|
//! Please reach out! I want to know why!
|
||||||
|
|
||||||
|
extern crate serde;
|
||||||
|
|
||||||
|
use serde::Serialize;
|
||||||
|
use serde::de::DeserializeOwned;
|
||||||
|
use std::fmt::Debug;
|
||||||
|
use std::mem;
|
||||||
|
|
||||||
|
/// Primary trait that needs to be implemented for every state type
|
||||||
|
/// representing the states of an FSM.
|
||||||
|
///
|
||||||
|
/// This trait is used to implement transition logic and to "tie the
|
||||||
|
/// room together", with the room being our triplet of types.
|
||||||
|
pub trait FSM where Self: Sized {
|
||||||
|
/// A human-readable string uniquely describing what this FSM
|
||||||
|
/// models. This is used in log messages, database tables and
|
||||||
|
/// various other things throughout Finito.
|
||||||
|
const FSM_NAME: &'static str;
|
||||||
|
|
||||||
|
/// The associated event type of an FSM represents all possible
|
||||||
|
/// events that can occur in the state-machine.
|
||||||
|
type Event;
|
||||||
|
|
||||||
|
/// The associated action type of an FSM represents all possible
|
||||||
|
/// actions that can occur in the state-machine.
|
||||||
|
type Action;
|
||||||
|
|
||||||
|
/// The associated error type of an FSM represents failures that
|
||||||
|
/// can occur during action processing.
|
||||||
|
type Error: Debug;
|
||||||
|
|
||||||
|
/// The associated state type of an FSM describes the state that
|
||||||
|
/// is made available to the implementation of action
|
||||||
|
/// interpretations.
|
||||||
|
type State;
|
||||||
|
|
||||||
|
/// `handle` deals with any incoming events to cause state
|
||||||
|
/// transitions and emit actions. This function is the core logic
|
||||||
|
/// of any state machine.
|
||||||
|
///
|
||||||
|
/// Implementations of this function **must not** cause any
|
||||||
|
/// side-effects to avoid breaking the guarantees of Finitos
|
||||||
|
/// conceptual model.
|
||||||
|
fn handle(self, event: Self::Event) -> (Self, Vec<Self::Action>);
|
||||||
|
|
||||||
|
/// `enter` is called when a new state is entered, allowing a
|
||||||
|
/// state to produce additional side-effects.
|
||||||
|
///
|
||||||
|
/// This is useful for side-effects that event handlers do not
|
||||||
|
/// need to know about and for resting assured that a certain
|
||||||
|
/// action has been caused when a state is entered.
|
||||||
|
///
|
||||||
|
/// FSM state types are expected to be enum (i.e. sum) types. A
|
||||||
|
/// state is considered "new" and enter calls are run if is of a
|
||||||
|
/// different enum variant.
|
||||||
|
fn enter(&self) -> Vec<Self::Action>;
|
||||||
|
|
||||||
|
/// `act` interprets and executes FSM actions. This is the only
|
||||||
|
/// part of an FSM in which side-effects are allowed.
|
||||||
|
fn act(Self::Action, &Self::State) -> Result<Vec<Self::Event>, Self::Error>;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This function is the primary function used to advance a state
|
||||||
|
/// machine. It takes care of both running the event handler as well
|
||||||
|
/// as possible state-enter calls and returning the result.
|
||||||
|
///
|
||||||
|
/// Users of Finito should basically always use this function when
|
||||||
|
/// advancing state-machines manually, and never call FSM-trait
|
||||||
|
/// methods directly.
|
||||||
|
pub fn advance<S: FSM>(state: S, event: S::Event) -> (S, Vec<S::Action>) {
|
||||||
|
// Determine the enum variant of the initial state (used to
|
||||||
|
// trigger enter calls).
|
||||||
|
let old_discriminant = mem::discriminant(&state);
|
||||||
|
|
||||||
|
let (new_state, mut actions) = state.handle(event);
|
||||||
|
|
||||||
|
// Compare the enum variant of the resulting state to the old one
|
||||||
|
// and run `enter` if they differ.
|
||||||
|
let new_discriminant = mem::discriminant(&new_state);
|
||||||
|
let mut enter_actions = if old_discriminant != new_discriminant {
|
||||||
|
new_state.enter()
|
||||||
|
} else {
|
||||||
|
vec![]
|
||||||
|
};
|
||||||
|
|
||||||
|
actions.append(&mut enter_actions);
|
||||||
|
|
||||||
|
(new_state, actions)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This trait is implemented by Finito backends. Backends are
|
||||||
|
/// expected to be able to keep track of the current state of an FSM
|
||||||
|
/// and retrieve it / apply updates transactionally.
|
||||||
|
///
|
||||||
|
/// See the `finito-postgres` and `finito-in-mem` crates for example
|
||||||
|
/// implementations of this trait.
|
||||||
|
///
|
||||||
|
/// Backends must be parameterised over an additional (user-supplied)
|
||||||
|
/// state type which can be used to track application state that must
|
||||||
|
/// be made available to action handlers, for example to pass along
|
||||||
|
/// database connections.
|
||||||
|
pub trait FSMBackend<S: 'static> {
|
||||||
|
/// Key type used to identify individual state machines in this
|
||||||
|
/// backend.
|
||||||
|
///
|
||||||
|
/// TODO: Should be parameterised over FSM type after rustc
|
||||||
|
/// #44265.
|
||||||
|
type Key;
|
||||||
|
|
||||||
|
/// Error type for all potential failures that can occur when
|
||||||
|
/// interacting with this backend.
|
||||||
|
type Error: Debug;
|
||||||
|
|
||||||
|
/// Insert a new state-machine into the backend's storage and
|
||||||
|
/// return its newly allocated key.
|
||||||
|
fn insert_machine<F>(&self, initial: F) -> Result<Self::Key, Self::Error>
|
||||||
|
where F: FSM + Serialize + DeserializeOwned;
|
||||||
|
|
||||||
|
/// Retrieve the current state of an FSM by its key.
|
||||||
|
fn get_machine<F: FSM>(&self, key: Self::Key) -> Result<F, Self::Error>
|
||||||
|
where F: FSM + Serialize + DeserializeOwned;
|
||||||
|
|
||||||
|
/// Advance a state machine by applying an event and persisting it
|
||||||
|
/// as well as any resulting actions.
|
||||||
|
///
|
||||||
|
/// **Note**: Whether actions are automatically executed depends
|
||||||
|
/// on the backend used. Please consult the backend's
|
||||||
|
/// documentation for details.
|
||||||
|
fn advance<'a, F: FSM>(&'a self, key: Self::Key, event: F::Event) -> Result<F, Self::Error>
|
||||||
|
where F: FSM + Serialize + DeserializeOwned,
|
||||||
|
F::State: From<&'a S>,
|
||||||
|
F::Event: Serialize + DeserializeOwned,
|
||||||
|
F::Action: Serialize + DeserializeOwned;
|
||||||
|
}
|
12
users/tazjin/finito/finito-door/Cargo.toml
Normal file
12
users/tazjin/finito/finito-door/Cargo.toml
Normal file
|
@ -0,0 +1,12 @@
|
||||||
|
[package]
|
||||||
|
name = "finito-door"
|
||||||
|
version = "0.1.0"
|
||||||
|
authors = ["Vincent Ambo <mail@tazj.in>"]
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
failure = "0.1"
|
||||||
|
serde = "1.0"
|
||||||
|
serde_derive = "1.0"
|
||||||
|
|
||||||
|
[dependencies.finito]
|
||||||
|
path = "../finito-core"
|
327
users/tazjin/finito/finito-door/src/lib.rs
Normal file
327
users/tazjin/finito/finito-door/src/lib.rs
Normal file
|
@ -0,0 +1,327 @@
|
||||||
|
//! Example implementation of a lockable door in Finito
|
||||||
|
//!
|
||||||
|
//! # What & why?
|
||||||
|
//!
|
||||||
|
//! This module serves as a (hopefully simple) example of how to
|
||||||
|
//! implement finite-state machines using Finito. Note that the
|
||||||
|
//! concepts of Finito itself won't be explained in detail here,
|
||||||
|
//! consult its library documentation for that.
|
||||||
|
//!
|
||||||
|
//! Reading through this module should give you a rough idea of how to
|
||||||
|
//! work with Finito and get you up and running modeling things
|
||||||
|
//! *quickly*.
|
||||||
|
//!
|
||||||
|
//! Note: The generated documentation for this module will display the
|
||||||
|
//! various components of the door, but it will not inform you about
|
||||||
|
//! the actual transition logic and all that stuff. Read the source,
|
||||||
|
//! too!
|
||||||
|
//!
|
||||||
|
//! # The Door
|
||||||
|
//!
|
||||||
|
//! My favourite example when explaining these state-machines
|
||||||
|
//! conceptually has been to use a simple, lockable door. Our door has
|
||||||
|
//! a keypad next to it which can be used to lock the door by entering
|
||||||
|
//! a code, after which the same code must be entered to unlock it
|
||||||
|
//! again.
|
||||||
|
//!
|
||||||
|
//! The door can only be locked if it is closed. Oh, and it has a few
|
||||||
|
//! extra features:
|
||||||
|
//!
|
||||||
|
//! * whenever the door's state changes, an IRC channel receives a
|
||||||
|
//! message about that
|
||||||
|
//!
|
||||||
|
//! * the door calls the police if the code is intered incorrectly more
|
||||||
|
//! than a specified number of times (mhm, lets say, three)
|
||||||
|
//!
|
||||||
|
//! * if the police is called the door can not be interacted with
|
||||||
|
//! anymore (and honestly, for the sake of this example, we don't
|
||||||
|
//! care how its functionality is restored)
|
||||||
|
//!
|
||||||
|
//! ## The Door - Visualized
|
||||||
|
//!
|
||||||
|
//! Here's a rough attempt at drawing a state diagram in ASCII. The
|
||||||
|
//! bracketed words denote states, the arrows denote events:
|
||||||
|
//!
|
||||||
|
//! ```text
|
||||||
|
//! <--Open--- <--Unlock-- correct code? --Unlock-->
|
||||||
|
//! [Opened] [Closed] [Locked] [Disabled]
|
||||||
|
//! --Close--> ----Lock-->
|
||||||
|
//! ```
|
||||||
|
//!
|
||||||
|
//! I'm so sorry for that drawing.
|
||||||
|
//!
|
||||||
|
//! ## The Door - Usage example
|
||||||
|
//!
|
||||||
|
//! An interaction session with our final door could look like this:
|
||||||
|
//!
|
||||||
|
//! ```rust,ignore
|
||||||
|
//! use finito_postgres::{insert_machine, advance};
|
||||||
|
//!
|
||||||
|
//! let door = insert_machine(&conn, &DoorState::Opened)?;
|
||||||
|
//!
|
||||||
|
//! advance(&conn, &door, DoorEvent::Close)?;
|
||||||
|
//! advance(&conn, &door, DoorEvent::Lock(1337))?;
|
||||||
|
//!
|
||||||
|
//! format!("Door is now: {}", get_machine(&conn, &door)?);
|
||||||
|
//! ```
|
||||||
|
//!
|
||||||
|
//! Here we have created, closed and then locked a door and inspected
|
||||||
|
//! its state. We will see that it is locked, has the locking code we
|
||||||
|
//! gave it and three remaining attempts to open it.
|
||||||
|
//!
|
||||||
|
//! Alright, enough foreplay, lets dive in!
|
||||||
|
|
||||||
|
#[macro_use] extern crate serde_derive;
|
||||||
|
|
||||||
|
extern crate failure;
|
||||||
|
extern crate finito;
|
||||||
|
|
||||||
|
use finito::FSM;
|
||||||
|
|
||||||
|
/// Type synonym to represent the code with which the door is locked. This
|
||||||
|
/// exists only for clarity in the signatures below and please do not email me
|
||||||
|
/// about the fact that an integer is not actually a good representation of
|
||||||
|
/// numerical digits. Thanks!
|
||||||
|
type Code = usize;
|
||||||
|
|
||||||
|
/// Type synonym to represent the remaining number of unlock attempts.
|
||||||
|
type Attempts = usize;
|
||||||
|
|
||||||
|
/// This type represents the possible door states and the data that they carry.
|
||||||
|
/// We can infer this from the "diagram" in the documentation above.
|
||||||
|
///
|
||||||
|
/// This type is the one for which `finito::FSM` will be implemented, making it
|
||||||
|
/// the wooden (?) heart of our door.
|
||||||
|
#[derive(Debug, PartialEq, Serialize, Deserialize)]
|
||||||
|
pub enum DoorState {
|
||||||
|
/// In `Opened` state, the door is wide open and anyone who fits through can
|
||||||
|
/// go through.
|
||||||
|
Opened,
|
||||||
|
|
||||||
|
/// In `Closed` state, the door is shut but does not prevent anyone from
|
||||||
|
/// opening it.
|
||||||
|
Closed,
|
||||||
|
|
||||||
|
/// In `Locked` state, the door is locked and waiting for someone to enter
|
||||||
|
/// its locking code on the keypad.
|
||||||
|
///
|
||||||
|
/// This state contains the code that the door is locked with, as well as
|
||||||
|
/// the remaining number of attempts before the door calls the police and
|
||||||
|
/// becomes unusable.
|
||||||
|
Locked { code: Code, attempts: Attempts },
|
||||||
|
|
||||||
|
/// This state represents a disabled door after the police has been called.
|
||||||
|
/// The police will need to unlock it manually!
|
||||||
|
Disabled,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This type represents the events that can occur in our door, i.e. the input
|
||||||
|
/// and interactions it receives.
|
||||||
|
#[derive(Debug, PartialEq, Serialize, Deserialize)]
|
||||||
|
pub enum DoorEvent {
|
||||||
|
/// `Open` means someone is opening the door!
|
||||||
|
Open,
|
||||||
|
|
||||||
|
/// `Close` means, you guessed it, the exact opposite.
|
||||||
|
Close,
|
||||||
|
|
||||||
|
/// `Lock` means somebody has entered a locking code on the
|
||||||
|
/// keypad.
|
||||||
|
Lock(Code),
|
||||||
|
|
||||||
|
/// `Unlock` means someone has attempted to unlock the door.
|
||||||
|
Unlock(Code),
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This type represents the possible actions, a.k.a. everything our door "does"
|
||||||
|
/// that does not just impact itself, a.k.a. side-effects.
|
||||||
|
///
|
||||||
|
/// **Note**: This type by itself *is not* a collection of side-effects, it
|
||||||
|
/// merely describes the side-effects we want to occur (which are then
|
||||||
|
/// interpreted by the machinery later).
|
||||||
|
#[derive(Debug, PartialEq, Serialize, Deserialize)]
|
||||||
|
pub enum DoorAction {
|
||||||
|
/// `NotifyIRC` is used to display some kind of message on the
|
||||||
|
/// aforementioned IRC channel that is, for some reason, very interested in
|
||||||
|
/// the state of the door.
|
||||||
|
NotifyIRC(String),
|
||||||
|
|
||||||
|
/// `CallThePolice` does what you think it does.
|
||||||
|
///
|
||||||
|
/// **Note**: For safety reasons, causing this action is not recommended for
|
||||||
|
/// users inside the US!
|
||||||
|
CallThePolice,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This trait implementation turns our 'DoorState' into a type actually
|
||||||
|
/// representing a finite-state machine. To implement it, we need to do three
|
||||||
|
/// main things:
|
||||||
|
///
|
||||||
|
/// * Define what our associated `Event` and `Action` type should be
|
||||||
|
///
|
||||||
|
/// * Define the event-handling and state-entering logic (i.e. the meat of the
|
||||||
|
/// ... door)
|
||||||
|
///
|
||||||
|
/// * Implement the interpretation of our actions, i.e. implement actual
|
||||||
|
/// side-effects
|
||||||
|
impl FSM for DoorState {
|
||||||
|
const FSM_NAME: &'static str = "door";
|
||||||
|
|
||||||
|
// As you might expect, our `Event` type is 'DoorEvent' and our `Action`
|
||||||
|
// type is 'DoorAction'.
|
||||||
|
type Event = DoorEvent;
|
||||||
|
type Action = DoorAction;
|
||||||
|
type State = ();
|
||||||
|
|
||||||
|
// For error handling, the door simply uses `failure` which provides a
|
||||||
|
// generic, chainable error type. In real-world implementations you may want
|
||||||
|
// to use a custom error type or similar.
|
||||||
|
type Error = failure::Error;
|
||||||
|
|
||||||
|
// The implementation of `handle` provides us with the actual transition
|
||||||
|
// logic of the door.
|
||||||
|
//
|
||||||
|
// The door is conceptually not that complicated so it is relatively short.
|
||||||
|
fn handle(self, event: DoorEvent) -> (Self, Vec<DoorAction>) {
|
||||||
|
match (self, event) {
|
||||||
|
// An opened door can be closed:
|
||||||
|
(DoorState::Opened, DoorEvent::Close) => return (DoorState::Closed, vec![]),
|
||||||
|
|
||||||
|
// A closed door can be opened:
|
||||||
|
(DoorState::Closed, DoorEvent::Open) => return (DoorState::Opened, vec![]),
|
||||||
|
|
||||||
|
// A closed door can also be locked, in which case the locking code
|
||||||
|
// is stored with the next state and the unlock attempts default to
|
||||||
|
// three:
|
||||||
|
(DoorState::Closed, DoorEvent::Lock(code)) => {
|
||||||
|
return (DoorState::Locked { code, attempts: 3 }, vec![])
|
||||||
|
}
|
||||||
|
|
||||||
|
// A locked door receiving an `Unlock`-event can do several
|
||||||
|
// different things ...
|
||||||
|
(DoorState::Locked { code, attempts }, DoorEvent::Unlock(unlock_code)) => {
|
||||||
|
// In the happy case, entry of a correct code leads to the door
|
||||||
|
// becoming unlocked (i.e. transitioning back to `Closed`).
|
||||||
|
if code == unlock_code {
|
||||||
|
return (DoorState::Closed, vec![]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the code wasn't correct and the fraudulent unlocker ran
|
||||||
|
// out of attempts (i.e. there was only one attempt remaining),
|
||||||
|
// it's time for some consequences.
|
||||||
|
if attempts == 1 {
|
||||||
|
return (DoorState::Disabled, vec![DoorAction::CallThePolice]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the code wasn't correct, but there are still some
|
||||||
|
// remaining attempts, the user doesn't have to face the police
|
||||||
|
// quite yet but IRC gets to laugh about it.
|
||||||
|
return (
|
||||||
|
DoorState::Locked {
|
||||||
|
code,
|
||||||
|
attempts: attempts - 1,
|
||||||
|
},
|
||||||
|
vec![DoorAction::NotifyIRC("invalid code entered".into())],
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// This actually already concludes our event-handling logic. Our
|
||||||
|
// uncaring door does absolutely nothing if you attempt to do
|
||||||
|
// something with it that it doesn't support, so the last handler is
|
||||||
|
// a simple fallback.
|
||||||
|
//
|
||||||
|
// In a real-world state machine, especially one that receives
|
||||||
|
// events from external sources, you may want fallback handlers to
|
||||||
|
// actually do something. One example could be creating an action
|
||||||
|
// that logs information about unexpected events, alerts a
|
||||||
|
// monitoring service, or whatever else.
|
||||||
|
(current, _) => (current, vec![]),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// The implementation of `enter` lets door states cause additional actions
|
||||||
|
// they are transitioned to. In the door example we use this only to notify
|
||||||
|
// IRC about what is going on.
|
||||||
|
fn enter(&self) -> Vec<DoorAction> {
|
||||||
|
let msg = match self {
|
||||||
|
DoorState::Opened => "door was opened",
|
||||||
|
DoorState::Closed => "door was closed",
|
||||||
|
DoorState::Locked { .. } => "door was locked",
|
||||||
|
DoorState::Disabled => "door was disabled",
|
||||||
|
};
|
||||||
|
|
||||||
|
vec![DoorAction::NotifyIRC(msg.into())]
|
||||||
|
}
|
||||||
|
|
||||||
|
// The implementation of `act` lets us perform actual side-effects.
|
||||||
|
//
|
||||||
|
// Again, for the sake of educational simplicity, this does not deal with
|
||||||
|
// all potential (or in fact any) error cases that can occur during this toy
|
||||||
|
// implementation of actions.
|
||||||
|
//
|
||||||
|
// Additionally the `act` function can return new events. This is useful for
|
||||||
|
// a sort of "callback-like" pattern (cause an action to fetch some data,
|
||||||
|
// receive it as an event) but is not used in this example.
|
||||||
|
fn act(action: DoorAction, _state: &()) -> Result<Vec<DoorEvent>, failure::Error> {
|
||||||
|
match action {
|
||||||
|
DoorAction::NotifyIRC(msg) => {
|
||||||
|
use std::fs::OpenOptions;
|
||||||
|
use std::io::Write;
|
||||||
|
|
||||||
|
let mut file = OpenOptions::new()
|
||||||
|
.append(true)
|
||||||
|
.create(true)
|
||||||
|
.open("/tmp/door-irc.log")?;
|
||||||
|
|
||||||
|
write!(file, "<doorbot> {}\n", msg)?;
|
||||||
|
Ok(vec![])
|
||||||
|
}
|
||||||
|
|
||||||
|
DoorAction::CallThePolice => {
|
||||||
|
// TODO: call the police
|
||||||
|
println!("The police was called! For real!");
|
||||||
|
Ok(vec![])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use finito::advance;
|
||||||
|
|
||||||
|
fn test_fsm<S: FSM>(initial: S, events: Vec<S::Event>) -> (S, Vec<S::Action>) {
|
||||||
|
events.into_iter().fold((initial, vec![]), |(state, mut actions), event| {
|
||||||
|
let (new_state, mut new_actions) = advance(state, event);
|
||||||
|
actions.append(&mut new_actions);
|
||||||
|
(new_state, actions)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_door() {
|
||||||
|
let initial = DoorState::Opened;
|
||||||
|
let events = vec![
|
||||||
|
DoorEvent::Close,
|
||||||
|
DoorEvent::Open,
|
||||||
|
DoorEvent::Close,
|
||||||
|
DoorEvent::Lock(1234),
|
||||||
|
DoorEvent::Unlock(1234),
|
||||||
|
DoorEvent::Lock(4567),
|
||||||
|
DoorEvent::Unlock(1234),
|
||||||
|
];
|
||||||
|
let (final_state, actions) = test_fsm(initial, events);
|
||||||
|
|
||||||
|
assert_eq!(final_state, DoorState::Locked { code: 4567, attempts: 2 });
|
||||||
|
assert_eq!(actions, vec![
|
||||||
|
DoorAction::NotifyIRC("door was closed".into()),
|
||||||
|
DoorAction::NotifyIRC("door was opened".into()),
|
||||||
|
DoorAction::NotifyIRC("door was closed".into()),
|
||||||
|
DoorAction::NotifyIRC("door was locked".into()),
|
||||||
|
DoorAction::NotifyIRC("door was closed".into()),
|
||||||
|
DoorAction::NotifyIRC("door was locked".into()),
|
||||||
|
DoorAction::NotifyIRC("invalid code entered".into()),
|
||||||
|
]);
|
||||||
|
}
|
||||||
|
}
|
25
users/tazjin/finito/finito-postgres/Cargo.toml
Normal file
25
users/tazjin/finito/finito-postgres/Cargo.toml
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
[package]
|
||||||
|
name = "finito-postgres"
|
||||||
|
version = "0.1.0"
|
||||||
|
authors = ["Vincent Ambo <mail@tazj.in>"]
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
chrono = "0.4"
|
||||||
|
postgres-derive = "0.3"
|
||||||
|
serde = "1.0"
|
||||||
|
serde_json = "1.0"
|
||||||
|
r2d2_postgres = "0.14"
|
||||||
|
|
||||||
|
[dependencies.postgres]
|
||||||
|
version = "0.15"
|
||||||
|
features = [ "with-uuid", "with-chrono", "with-serde_json" ]
|
||||||
|
|
||||||
|
[dependencies.uuid]
|
||||||
|
version = "0.5"
|
||||||
|
features = [ "v4" ]
|
||||||
|
|
||||||
|
[dependencies.finito]
|
||||||
|
path = "../finito-core"
|
||||||
|
|
||||||
|
[dev-dependencies.finito-door]
|
||||||
|
path = "../finito-door"
|
|
@ -0,0 +1,4 @@
|
||||||
|
DROP TABLE actions;
|
||||||
|
DROP TYPE ActionStatus;
|
||||||
|
DROP TABLE events;
|
||||||
|
DROP TABLE machines;
|
|
@ -0,0 +1,37 @@
|
||||||
|
-- Creates the initial schema required by finito-postgres.
|
||||||
|
|
||||||
|
CREATE TABLE machines (
|
||||||
|
id UUID PRIMARY KEY,
|
||||||
|
created TIMESTAMPTZ NOT NULL DEFAULT NOW(),
|
||||||
|
fsm TEXT NOT NULL,
|
||||||
|
state JSONB NOT NULL
|
||||||
|
);
|
||||||
|
|
||||||
|
CREATE TABLE events (
|
||||||
|
id UUID PRIMARY KEY,
|
||||||
|
created TIMESTAMPTZ NOT NULL DEFAULT NOW(),
|
||||||
|
fsm TEXT NOT NULL,
|
||||||
|
fsm_id UUID NOT NULL REFERENCES machines(id),
|
||||||
|
event JSONB NOT NULL
|
||||||
|
);
|
||||||
|
CREATE INDEX idx_events_machines ON events(fsm_id);
|
||||||
|
|
||||||
|
CREATE TYPE ActionStatus AS ENUM (
|
||||||
|
'Pending',
|
||||||
|
'Completed',
|
||||||
|
'Failed'
|
||||||
|
);
|
||||||
|
|
||||||
|
CREATE TABLE actions (
|
||||||
|
id UUID PRIMARY KEY,
|
||||||
|
created TIMESTAMPTZ NOT NULL DEFAULT NOW(),
|
||||||
|
fsm TEXT NOT NULL,
|
||||||
|
fsm_id UUID NOT NULL REFERENCES machines(id),
|
||||||
|
event_id UUID NOT NULL REFERENCES events(id),
|
||||||
|
content JSONB NOT NULL,
|
||||||
|
status ActionStatus NOT NULL,
|
||||||
|
error TEXT
|
||||||
|
);
|
||||||
|
|
||||||
|
CREATE INDEX idx_actions_machines ON actions(fsm_id);
|
||||||
|
CREATE INDEX idx_actions_events ON actions(event_id);
|
109
users/tazjin/finito/finito-postgres/src/error.rs
Normal file
109
users/tazjin/finito/finito-postgres/src/error.rs
Normal file
|
@ -0,0 +1,109 @@
|
||||||
|
//! This module defines error types and conversions for issue that can
|
||||||
|
//! occur while dealing with persisted state machines.
|
||||||
|
|
||||||
|
use std::result;
|
||||||
|
use std::fmt;
|
||||||
|
use uuid::Uuid;
|
||||||
|
use std::error::Error as StdError;
|
||||||
|
|
||||||
|
// errors to chain:
|
||||||
|
use postgres::Error as PgError;
|
||||||
|
use r2d2_postgres::r2d2::Error as PoolError;
|
||||||
|
use serde_json::Error as JsonError;
|
||||||
|
|
||||||
|
pub type Result<T> = result::Result<T, Error>;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct Error {
|
||||||
|
pub kind: ErrorKind,
|
||||||
|
pub context: Option<String>,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub enum ErrorKind {
|
||||||
|
/// Errors occuring during JSON serialization of FSM types.
|
||||||
|
Serialization(String),
|
||||||
|
|
||||||
|
/// Errors occuring during communication with the database.
|
||||||
|
Database(String),
|
||||||
|
|
||||||
|
/// Errors with the database connection pool.
|
||||||
|
DBPool(String),
|
||||||
|
|
||||||
|
/// State machine could not be found.
|
||||||
|
FSMNotFound(Uuid),
|
||||||
|
|
||||||
|
/// Action could not be found.
|
||||||
|
ActionNotFound(Uuid),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl fmt::Display for Error {
|
||||||
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||||
|
use ErrorKind::*;
|
||||||
|
let msg = match &self.kind {
|
||||||
|
Serialization(err) =>
|
||||||
|
format!("JSON serialization error: {}", err),
|
||||||
|
|
||||||
|
Database(err) =>
|
||||||
|
format!("PostgreSQL error: {}", err),
|
||||||
|
|
||||||
|
DBPool(err) =>
|
||||||
|
format!("Database connection pool error: {}", err),
|
||||||
|
|
||||||
|
FSMNotFound(id) =>
|
||||||
|
format!("FSM with ID {} not found", id),
|
||||||
|
|
||||||
|
ActionNotFound(id) =>
|
||||||
|
format!("Action with ID {} not found", id),
|
||||||
|
};
|
||||||
|
|
||||||
|
match &self.context {
|
||||||
|
None => write!(f, "{}", msg),
|
||||||
|
Some(ctx) => write!(f, "{}: {}", ctx, msg),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StdError for Error {}
|
||||||
|
|
||||||
|
impl <E: Into<ErrorKind>> From<E> for Error {
|
||||||
|
fn from(err: E) -> Error {
|
||||||
|
Error {
|
||||||
|
kind: err.into(),
|
||||||
|
context: None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<JsonError> for ErrorKind {
|
||||||
|
fn from(err: JsonError) -> ErrorKind {
|
||||||
|
ErrorKind::Serialization(err.to_string())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<PgError> for ErrorKind {
|
||||||
|
fn from(err: PgError) -> ErrorKind {
|
||||||
|
ErrorKind::Database(err.to_string())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<PoolError> for ErrorKind {
|
||||||
|
fn from(err: PoolError) -> ErrorKind {
|
||||||
|
ErrorKind::DBPool(err.to_string())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Helper trait that makes it possible to supply contextual
|
||||||
|
/// information with an error.
|
||||||
|
pub trait ResultExt<T> {
|
||||||
|
fn context<C: fmt::Display>(self, ctx: C) -> Result<T>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl <T, E: Into<Error>> ResultExt<T> for result::Result<T, E> {
|
||||||
|
fn context<C: fmt::Display>(self, ctx: C) -> Result<T> {
|
||||||
|
self.map_err(|err| Error {
|
||||||
|
context: Some(format!("{}", ctx)),
|
||||||
|
.. err.into()
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
431
users/tazjin/finito/finito-postgres/src/lib.rs
Normal file
431
users/tazjin/finito/finito-postgres/src/lib.rs
Normal file
|
@ -0,0 +1,431 @@
|
||||||
|
//! PostgreSQL-backed persistence for Finito state machines
|
||||||
|
//!
|
||||||
|
//! This module implements ... TODO when I can write again.
|
||||||
|
//!
|
||||||
|
//! TODO: events & actions should have `SERIAL` keys
|
||||||
|
|
||||||
|
#[macro_use] extern crate postgres;
|
||||||
|
#[macro_use] extern crate postgres_derive;
|
||||||
|
|
||||||
|
extern crate chrono;
|
||||||
|
extern crate finito;
|
||||||
|
extern crate r2d2_postgres;
|
||||||
|
extern crate serde;
|
||||||
|
extern crate serde_json;
|
||||||
|
extern crate uuid;
|
||||||
|
|
||||||
|
#[cfg(test)] mod tests;
|
||||||
|
#[cfg(test)] extern crate finito_door;
|
||||||
|
|
||||||
|
mod error;
|
||||||
|
pub use error::{Result, Error, ErrorKind};
|
||||||
|
|
||||||
|
use chrono::prelude::{DateTime, Utc};
|
||||||
|
use error::ResultExt;
|
||||||
|
use finito::{FSM, FSMBackend};
|
||||||
|
use postgres::transaction::Transaction;
|
||||||
|
use postgres::GenericConnection;
|
||||||
|
use serde::Serialize;
|
||||||
|
use serde::de::DeserializeOwned;
|
||||||
|
use serde_json::Value;
|
||||||
|
use std::marker::PhantomData;
|
||||||
|
use uuid::Uuid;
|
||||||
|
use r2d2_postgres::{r2d2, PostgresConnectionManager};
|
||||||
|
|
||||||
|
type DBPool = r2d2::Pool<PostgresConnectionManager>;
|
||||||
|
type DBConn = r2d2::PooledConnection<PostgresConnectionManager>;
|
||||||
|
|
||||||
|
/// This struct represents rows in the database table in which events
|
||||||
|
/// are persisted.
|
||||||
|
#[derive(Debug, ToSql, FromSql)]
|
||||||
|
struct EventT {
|
||||||
|
/// ID of the persisted event.
|
||||||
|
id: Uuid,
|
||||||
|
|
||||||
|
/// Timestamp at which the event was stored.
|
||||||
|
created: DateTime<Utc>,
|
||||||
|
|
||||||
|
/// Name of the type of FSM that this state belongs to.
|
||||||
|
fsm: String,
|
||||||
|
|
||||||
|
/// ID of the state machine belonging to this event.
|
||||||
|
fsm_id: Uuid,
|
||||||
|
|
||||||
|
/// Serialised content of the event.
|
||||||
|
event: Value,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This enum represents the possible statuses an action can be in.
|
||||||
|
#[derive(Debug, PartialEq, ToSql, FromSql)]
|
||||||
|
#[postgres(name = "actionstatus")]
|
||||||
|
enum ActionStatus {
|
||||||
|
/// The action was requested but has not run yet.
|
||||||
|
Pending,
|
||||||
|
|
||||||
|
/// The action completed successfully.
|
||||||
|
Completed,
|
||||||
|
|
||||||
|
/// The action failed to run. Information about the error will
|
||||||
|
/// have been persisted in Postgres.
|
||||||
|
Failed,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This struct represents rows in the database table in which actions
|
||||||
|
/// are persisted.
|
||||||
|
#[derive(Debug, ToSql, FromSql)]
|
||||||
|
struct ActionT {
|
||||||
|
/// ID of the persisted event.
|
||||||
|
id: Uuid,
|
||||||
|
|
||||||
|
/// Timestamp at which the event was stored.
|
||||||
|
created: DateTime<Utc>,
|
||||||
|
|
||||||
|
/// Name of the type of FSM that this state belongs to.
|
||||||
|
fsm: String,
|
||||||
|
|
||||||
|
/// ID of the state machine belonging to this event.
|
||||||
|
fsm_id: Uuid,
|
||||||
|
|
||||||
|
/// ID of the event that resulted in this action.
|
||||||
|
event_id: Uuid,
|
||||||
|
|
||||||
|
/// Serialised content of the action.
|
||||||
|
#[postgres(name = "content")] // renamed because 'action' is a keyword in PG
|
||||||
|
action: Value,
|
||||||
|
|
||||||
|
/// Current status of the action.
|
||||||
|
status: ActionStatus,
|
||||||
|
|
||||||
|
/// Detailed (i.e. Debug-trait formatted) error message, if an
|
||||||
|
/// error occured during action processing.
|
||||||
|
error: Option<String>,
|
||||||
|
}
|
||||||
|
|
||||||
|
// The following functions implement the public interface of
|
||||||
|
// `finito-postgres`.
|
||||||
|
|
||||||
|
/// TODO: Write docs for this type, brain does not want to do it right
|
||||||
|
/// now.
|
||||||
|
pub struct FinitoPostgres<S> {
|
||||||
|
state: S,
|
||||||
|
|
||||||
|
db_pool: DBPool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl <S> FinitoPostgres<S> {
|
||||||
|
pub fn new(state: S, db_pool: DBPool, pool_size: usize) -> Self {
|
||||||
|
FinitoPostgres {
|
||||||
|
state, db_pool,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl <State: 'static> FSMBackend<State> for FinitoPostgres<State> {
|
||||||
|
type Key = Uuid;
|
||||||
|
type Error = Error;
|
||||||
|
|
||||||
|
fn insert_machine<S: FSM + Serialize>(&self, initial: S) -> Result<Uuid> {
|
||||||
|
let query = r#"
|
||||||
|
INSERT INTO machines (id, fsm, state)
|
||||||
|
VALUES ($1, $2, $3)
|
||||||
|
"#;
|
||||||
|
|
||||||
|
let id = Uuid::new_v4();
|
||||||
|
let fsm = S::FSM_NAME.to_string();
|
||||||
|
let state = serde_json::to_value(initial).context("failed to serialise FSM")?;
|
||||||
|
|
||||||
|
self.conn()?.execute(query, &[&id, &fsm, &state]).context("failed to insert FSM")?;
|
||||||
|
|
||||||
|
return Ok(id);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_machine<S: FSM + DeserializeOwned>(&self, key: Uuid) -> Result<S> {
|
||||||
|
get_machine_internal(&*self.conn()?, key, false)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Advance a persisted state machine by applying an event, and
|
||||||
|
/// storing the event as well as all resulting actions.
|
||||||
|
///
|
||||||
|
/// This function holds a database-lock on the state's row while
|
||||||
|
/// advancing the machine.
|
||||||
|
///
|
||||||
|
/// **Note**: This function returns the new state of the machine
|
||||||
|
/// immediately after applying the event, however this does not
|
||||||
|
/// necessarily equate to the state of the machine after all related
|
||||||
|
/// processing is finished as running actions may result in additional
|
||||||
|
/// transitions.
|
||||||
|
fn advance<'a, S>(&'a self, key: Uuid, event: S::Event) -> Result<S>
|
||||||
|
where S: FSM + Serialize + DeserializeOwned,
|
||||||
|
S::State: From<&'a State>,
|
||||||
|
S::Event: Serialize + DeserializeOwned,
|
||||||
|
S::Action: Serialize + DeserializeOwned {
|
||||||
|
let conn = self.conn()?;
|
||||||
|
let tx = conn.transaction().context("could not begin transaction")?;
|
||||||
|
let state = get_machine_internal(&tx, key, true)?;
|
||||||
|
|
||||||
|
// Advancing the FSM consumes the event, so it is persisted first:
|
||||||
|
let event_id = insert_event::<_, S>(&tx, key, &event)?;
|
||||||
|
|
||||||
|
// Core advancing logic is run:
|
||||||
|
let (new_state, actions) = finito::advance(state, event);
|
||||||
|
|
||||||
|
// Resulting actions are persisted (TODO: and interpreted)
|
||||||
|
let mut action_ids = vec![];
|
||||||
|
for action in actions {
|
||||||
|
let action_id = insert_action::<_, S>(&tx, key, event_id, &action)?;
|
||||||
|
action_ids.push(action_id);
|
||||||
|
}
|
||||||
|
|
||||||
|
// And finally the state is updated:
|
||||||
|
update_state(&tx, key, &new_state)?;
|
||||||
|
tx.commit().context("could not commit transaction")?;
|
||||||
|
|
||||||
|
self.run_actions::<S>(key, action_ids);
|
||||||
|
|
||||||
|
Ok(new_state)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl <State: 'static> FinitoPostgres<State> {
|
||||||
|
/// Execute several actions at the same time, each in a separate
|
||||||
|
/// thread. Note that actions returning further events, causing
|
||||||
|
/// further transitions, returning further actions and so on will
|
||||||
|
/// potentially cause multiple threads to get created.
|
||||||
|
fn run_actions<'a, S>(&'a self, fsm_id: Uuid, action_ids: Vec<Uuid>) where
|
||||||
|
S: FSM + Serialize + DeserializeOwned,
|
||||||
|
S::Event: Serialize + DeserializeOwned,
|
||||||
|
S::Action: Serialize + DeserializeOwned,
|
||||||
|
S::State: From<&'a State> {
|
||||||
|
let state: S::State = (&self.state).into();
|
||||||
|
let conn = self.conn().expect("TODO");
|
||||||
|
|
||||||
|
for action_id in action_ids {
|
||||||
|
let tx = conn.transaction().expect("TODO");
|
||||||
|
|
||||||
|
// TODO: Determine which concurrency setup we actually want.
|
||||||
|
if let Ok(events) = run_action(tx, action_id, &state, PhantomData::<S>) {
|
||||||
|
for event in events {
|
||||||
|
self.advance::<S>(fsm_id, event).expect("TODO");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Retrieve a single connection from the database connection pool.
|
||||||
|
fn conn(&self) -> Result<DBConn> {
|
||||||
|
self.db_pool.get().context("failed to retrieve connection from pool")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/// Insert a single state-machine into the database and return its
|
||||||
|
/// newly allocated, random UUID.
|
||||||
|
pub fn insert_machine<C, S>(conn: &C, initial: S) -> Result<Uuid> where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM + Serialize {
|
||||||
|
let query = r#"
|
||||||
|
INSERT INTO machines (id, fsm, state)
|
||||||
|
VALUES ($1, $2, $3)
|
||||||
|
"#;
|
||||||
|
|
||||||
|
let id = Uuid::new_v4();
|
||||||
|
let fsm = S::FSM_NAME.to_string();
|
||||||
|
let state = serde_json::to_value(initial).context("failed to serialize FSM")?;
|
||||||
|
|
||||||
|
conn.execute(query, &[&id, &fsm, &state])?;
|
||||||
|
|
||||||
|
return Ok(id);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Insert a single event into the database and return its UUID.
|
||||||
|
fn insert_event<C, S>(conn: &C,
|
||||||
|
fsm_id: Uuid,
|
||||||
|
event: &S::Event) -> Result<Uuid>
|
||||||
|
where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM,
|
||||||
|
S::Event: Serialize {
|
||||||
|
let query = r#"
|
||||||
|
INSERT INTO events (id, fsm, fsm_id, event)
|
||||||
|
VALUES ($1, $2, $3, $4)
|
||||||
|
"#;
|
||||||
|
|
||||||
|
let id = Uuid::new_v4();
|
||||||
|
let fsm = S::FSM_NAME.to_string();
|
||||||
|
let event_value = serde_json::to_value(event)
|
||||||
|
.context("failed to serialize event")?;
|
||||||
|
|
||||||
|
conn.execute(query, &[&id, &fsm, &fsm_id, &event_value])?;
|
||||||
|
return Ok(id)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Insert a single action into the database and return its UUID.
|
||||||
|
fn insert_action<C, S>(conn: &C,
|
||||||
|
fsm_id: Uuid,
|
||||||
|
event_id: Uuid,
|
||||||
|
action: &S::Action) -> Result<Uuid> where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM,
|
||||||
|
S::Action: Serialize {
|
||||||
|
let query = r#"
|
||||||
|
INSERT INTO actions (id, fsm, fsm_id, event_id, content, status)
|
||||||
|
VALUES ($1, $2, $3, $4, $5, $6)
|
||||||
|
"#;
|
||||||
|
|
||||||
|
let id = Uuid::new_v4();
|
||||||
|
let fsm = S::FSM_NAME.to_string();
|
||||||
|
let action_value = serde_json::to_value(action)
|
||||||
|
.context("failed to serialize action")?;
|
||||||
|
|
||||||
|
conn.execute(
|
||||||
|
query,
|
||||||
|
&[&id, &fsm, &fsm_id, &event_id, &action_value, &ActionStatus::Pending]
|
||||||
|
)?;
|
||||||
|
|
||||||
|
return Ok(id)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Update the state of a specified machine.
|
||||||
|
fn update_state<C, S>(conn: &C,
|
||||||
|
fsm_id: Uuid,
|
||||||
|
state: &S) -> Result<()> where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM + Serialize {
|
||||||
|
let query = r#"
|
||||||
|
UPDATE machines SET state = $1 WHERE id = $2
|
||||||
|
"#;
|
||||||
|
|
||||||
|
let state_value = serde_json::to_value(state).context("failed to serialize FSM")?;
|
||||||
|
let res_count = conn.execute(query, &[&state_value, &fsm_id])?;
|
||||||
|
|
||||||
|
if res_count != 1 {
|
||||||
|
Err(ErrorKind::FSMNotFound(fsm_id).into())
|
||||||
|
} else {
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Conditionally alter SQL statement to append locking clause inside
|
||||||
|
/// of a transaction.
|
||||||
|
fn alter_for_update(alter: bool, query: &str) -> String {
|
||||||
|
match alter {
|
||||||
|
false => query.to_string(),
|
||||||
|
true => format!("{} FOR UPDATE", query),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Retrieve the current state of a state machine from the database,
|
||||||
|
/// optionally locking the machine state for the duration of some
|
||||||
|
/// enclosing transaction.
|
||||||
|
fn get_machine_internal<C, S>(conn: &C,
|
||||||
|
id: Uuid,
|
||||||
|
for_update: bool) -> Result<S> where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM + DeserializeOwned {
|
||||||
|
let query = alter_for_update(for_update, r#"
|
||||||
|
SELECT state FROM machines WHERE id = $1
|
||||||
|
"#);
|
||||||
|
|
||||||
|
let rows = conn.query(&query, &[&id]).context("failed to retrieve FSM")?;
|
||||||
|
|
||||||
|
if let Some(row) = rows.into_iter().next() {
|
||||||
|
Ok(serde_json::from_value(row.get(0)).context("failed to deserialize FSM")?)
|
||||||
|
} else {
|
||||||
|
Err(ErrorKind::FSMNotFound(id).into())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Retrieve an action from the database, optionally locking it for
|
||||||
|
/// the duration of some enclosing transaction.
|
||||||
|
fn get_action<C, S>(conn: &C, id: Uuid) -> Result<(ActionStatus, S::Action)> where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM,
|
||||||
|
S::Action: DeserializeOwned {
|
||||||
|
let query = alter_for_update(true, r#"
|
||||||
|
SELECT status, content FROM actions
|
||||||
|
WHERE id = $1 AND fsm = $2
|
||||||
|
"#);
|
||||||
|
|
||||||
|
let rows = conn.query(&query, &[&id, &S::FSM_NAME])?;
|
||||||
|
|
||||||
|
if let Some(row) = rows.into_iter().next() {
|
||||||
|
let action = serde_json::from_value(row.get(1))
|
||||||
|
.context("failed to deserialize FSM action")?;
|
||||||
|
Ok((row.get(0), action))
|
||||||
|
} else {
|
||||||
|
Err(ErrorKind::ActionNotFound(id).into())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Update the status of an action after an attempt to run it.
|
||||||
|
fn update_action_status<C, S>(conn: &C,
|
||||||
|
id: Uuid,
|
||||||
|
status: ActionStatus,
|
||||||
|
error: Option<String>,
|
||||||
|
_fsm: PhantomData<S>) -> Result<()> where
|
||||||
|
C: GenericConnection,
|
||||||
|
S: FSM {
|
||||||
|
let query = r#"
|
||||||
|
UPDATE actions SET status = $1, error = $2
|
||||||
|
WHERE id = $3 AND fsm = $4
|
||||||
|
"#;
|
||||||
|
|
||||||
|
let result = conn.execute(&query, &[&status, &error, &id, &S::FSM_NAME])?;
|
||||||
|
|
||||||
|
if result != 1 {
|
||||||
|
Err(ErrorKind::ActionNotFound(id).into())
|
||||||
|
} else {
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Execute a single action in case it is pending or retryable. Holds
|
||||||
|
/// a lock on the action's database row while performing the action
|
||||||
|
/// and writes back the status afterwards.
|
||||||
|
///
|
||||||
|
/// Should the execution of an action fail cleanly (i.e. without a
|
||||||
|
/// panic), the error will be persisted. Should it fail by panicking
|
||||||
|
/// (which developers should never do explicitly in action
|
||||||
|
/// interpreters) its status will not be changed.
|
||||||
|
fn run_action<S>(tx: Transaction, id: Uuid, state: &S::State, _fsm: PhantomData<S>)
|
||||||
|
-> Result<Vec<S::Event>> where
|
||||||
|
S: FSM,
|
||||||
|
S::Action: DeserializeOwned {
|
||||||
|
let (status, action) = get_action::<Transaction, S>(&tx, id)?;
|
||||||
|
|
||||||
|
let result = match status {
|
||||||
|
ActionStatus::Pending => {
|
||||||
|
match S::act(action, state) {
|
||||||
|
// If the action succeeded, update its status to
|
||||||
|
// completed and return the created events.
|
||||||
|
Ok(events) => {
|
||||||
|
update_action_status(
|
||||||
|
&tx, id, ActionStatus::Completed, None, PhantomData::<S>
|
||||||
|
)?;
|
||||||
|
events
|
||||||
|
},
|
||||||
|
|
||||||
|
// If the action failed, persist the debug message and
|
||||||
|
// return nothing.
|
||||||
|
Err(err) => {
|
||||||
|
let msg = Some(format!("{:?}", err));
|
||||||
|
update_action_status(
|
||||||
|
&tx, id, ActionStatus::Failed, msg, PhantomData::<S>
|
||||||
|
)?;
|
||||||
|
vec![]
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
_ => {
|
||||||
|
// TODO: Currently only pending actions are run because
|
||||||
|
// retryable actions are not yet implemented.
|
||||||
|
vec![]
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
tx.commit().context("failed to commit transaction")?;
|
||||||
|
Ok(result)
|
||||||
|
}
|
47
users/tazjin/finito/finito-postgres/src/tests.rs
Normal file
47
users/tazjin/finito/finito-postgres/src/tests.rs
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
use finito_door::*;
|
||||||
|
use postgres::{Connection, TlsMode};
|
||||||
|
|
||||||
|
// TODO: read config from environment
|
||||||
|
fn open_test_connection() -> Connection {
|
||||||
|
Connection::connect("postgres://finito:finito@localhost/finito", TlsMode::None)
|
||||||
|
.expect("Failed to connect to test database")
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_insert_machine() {
|
||||||
|
let conn = open_test_connection();
|
||||||
|
let initial = DoorState::Opened;
|
||||||
|
let door = insert_machine(&conn, initial).expect("Failed to insert door");
|
||||||
|
let result = get_machine(&conn, &door, false).expect("Failed to fetch door");
|
||||||
|
|
||||||
|
assert_eq!(result, DoorState::Opened, "Inserted door state should match");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_advance() {
|
||||||
|
let conn = open_test_connection();
|
||||||
|
|
||||||
|
let initial = DoorState::Opened;
|
||||||
|
let events = vec![
|
||||||
|
DoorEvent::Close,
|
||||||
|
DoorEvent::Open,
|
||||||
|
DoorEvent::Close,
|
||||||
|
DoorEvent::Lock(1234),
|
||||||
|
DoorEvent::Unlock(1234),
|
||||||
|
DoorEvent::Lock(4567),
|
||||||
|
DoorEvent::Unlock(1234),
|
||||||
|
];
|
||||||
|
|
||||||
|
let door = insert_machine(&conn, initial).expect("Failed to insert door");
|
||||||
|
|
||||||
|
for event in events {
|
||||||
|
advance(&conn, &door, event).expect("Failed to advance door FSM");
|
||||||
|
}
|
||||||
|
|
||||||
|
let result = get_machine(&conn, &door, false).expect("Failed to fetch door");
|
||||||
|
let expected = DoorState::Locked { code: 4567, attempts: 2 };
|
||||||
|
|
||||||
|
assert_eq!(result, expected, "Advanced door state should match");
|
||||||
|
}
|
Loading…
Reference in a new issue