Export of internal Abseil changes.

--
7fa1107161a03dac53fb84c2b06d8092616c7b13 by Abseil Team <absl-team@google.com>:

Harden the generic stacktrace implementation for use during early program execution

PiperOrigin-RevId: 226375950

--
079f9969329f5eb66f647dd3c44b17541b1bf217 by Matt Kulukundis <kfm@google.com>:

Workaround platforms that have over-aggressive warnings on -Wexit-time-destructors

PiperOrigin-RevId: 226362948

--
1447943f509be681ca5495add0162c750ef237f1 by Matt Kulukundis <kfm@google.com>:

Switch from 64 to size_t atomics so they work on embedded platforms that do not
have 64 bit atomics.

PiperOrigin-RevId: 226210704

--
d14d49837ae2bcde74051e0c79c18ee0f43866b9 by Tom Manshreck <shreck@google.com>:

Develop initial documentation for API breaking changes process:

PiperOrigin-RevId: 226210021

--
7ea3d7fe0e86979dab83a5fc9cc3bf1d6cb3bd53 by Abseil Team <absl-team@google.com>:

Import of CCTZ from GitHub.

PiperOrigin-RevId: 226195522

--
7de873e880d7f016a4fa1e08d626f0535cc470af by Abseil Team <absl-team@google.com>:

Make Abseil LICENSE files newline terminated, with a single
trailing blank line.  Also remove line-ending whitespace.

PiperOrigin-RevId: 226182949

--
7d00643fadfad7f0d992c68bd9d2ed2e5bc960b0 by Matt Kulukundis <kfm@google.com>:

Internal cleanup

PiperOrigin-RevId: 226045282

--
c4a0a11c0ce2875271191e477f3d36eaaeca4613 by Matt Kulukundis <kfm@google.com>:

Internal cleanup

PiperOrigin-RevId: 226038273

--
8ee4ebbb1ae5cda119e436e5ff7e3aa966608c10 by Matt Kulukundis <kfm@google.com>:

Adds a global sampler which tracks a fraction of live tables for collecting
telemetry data.

PiperOrigin-RevId: 226032080

--
d576446f050518cd1b0ae447d682d8552f0e7e30 by Mark Barolak <mbar@google.com>:

Replace an internal CaseEqual function with calls to the identical absl::EqualsIgnoreCase.  This closes out a rather old TODO.

PiperOrigin-RevId: 226024779

--
6b23f1ee028a5ffa608c920424f1220a117a8f3d by Abseil Team <absl-team@google.com>:

Add December 2018 LTS branch to list of LTS branches.

PiperOrigin-RevId: 226011333

--
bb0833a43bdaef4c8c059b17bcd27ba9a085a114 by Mark Barolak <mbar@google.com>:

Explicitly state that when the SimpleAtoi family of functions encounter an error, the value of their output parameter is unspecified.

Also standardize the name of the output parameter to be `out`.

PiperOrigin-RevId: 225997035

--
46c1876b1a248eabda7545daa61a74a4cdfe9077 by Abseil Team <absl-team@google.com>:

Remove deprecated CMake function absl_test, absl_library and absl_header_library

PiperOrigin-RevId: 225950041
GitOrigin-RevId: 7fa1107161a03dac53fb84c2b06d8092616c7b13
Change-Id: I2ca9d3aada9292614527d1339a7557494139b806
This commit is contained in:
Abseil Team 2018-12-20 12:29:59 -08:00 committed by Xiaoyi Zhang
parent 3e2e9b5557
commit 968a34ffda
16 changed files with 1313 additions and 348 deletions

View file

@ -23,53 +23,8 @@ include(AbseilConfigureCopts)
# For example, Visual Studio supports folders. # For example, Visual Studio supports folders.
set(ABSL_IDE_FOLDER Abseil) set(ABSL_IDE_FOLDER Abseil)
# absl_cc_library()
# #
# create a library in the absl namespace
#
# parameters
# SOURCES : sources files for the library
# PUBLIC_LIBRARIES: targets and flags for linking phase
# PRIVATE_COMPILE_FLAGS: compile flags for the library. Will not be exported.
# EXPORT_NAME: export name for the absl:: target export
# TARGET: target name
#
# create a target associated to <NAME>
# libraries are installed under CMAKE_INSTALL_FULL_LIBDIR by default
#
function(absl_library)
cmake_parse_arguments(ABSL_LIB
"DISABLE_INSTALL" # keep that in case we want to support installation one day
"TARGET;EXPORT_NAME"
"SOURCES;PUBLIC_LIBRARIES;PRIVATE_COMPILE_FLAGS"
${ARGN}
)
set(_NAME ${ABSL_LIB_TARGET})
string(TOUPPER ${_NAME} _UPPER_NAME)
add_library(${_NAME} STATIC ${ABSL_LIB_SOURCES})
target_compile_options(${_NAME}
PRIVATE
${ABSL_LIB_PRIVATE_COMPILE_FLAGS}
${ABSL_DEFAULT_COPTS}
)
target_link_libraries(${_NAME} PUBLIC ${ABSL_LIB_PUBLIC_LIBRARIES})
target_include_directories(${_NAME}
PUBLIC ${ABSL_COMMON_INCLUDE_DIRS} ${ABSL_LIB_PUBLIC_INCLUDE_DIRS}
PRIVATE ${ABSL_LIB_PRIVATE_INCLUDE_DIRS}
)
# Add all Abseil targets to a a folder in the IDE for organization.
set_property(TARGET ${_NAME} PROPERTY FOLDER ${ABSL_IDE_FOLDER})
set_property(TARGET ${_NAME} PROPERTY CXX_STANDARD ${ABSL_CXX_STANDARD})
set_property(TARGET ${_NAME} PROPERTY CXX_STANDARD_REQUIRED ON)
if(ABSL_LIB_EXPORT_NAME)
add_library(absl::${ABSL_LIB_EXPORT_NAME} ALIAS ${_NAME})
endif()
endfunction()
# CMake function to imitate Bazel's cc_library rule. # CMake function to imitate Bazel's cc_library rule.
# #
# Parameters: # Parameters:
@ -258,116 +213,10 @@ function(absl_cc_test)
add_test(NAME ${_NAME} COMMAND ${_NAME}) add_test(NAME ${_NAME} COMMAND ${_NAME})
endfunction() endfunction()
#
# header only virtual target creation
#
function(absl_header_library)
cmake_parse_arguments(ABSL_HO_LIB
"DISABLE_INSTALL"
"EXPORT_NAME;TARGET"
"PUBLIC_LIBRARIES;PRIVATE_COMPILE_FLAGS;PUBLIC_INCLUDE_DIRS;PRIVATE_INCLUDE_DIRS"
${ARGN}
)
set(_NAME ${ABSL_HO_LIB_TARGET})
set(__dummy_header_only_lib_file "${CMAKE_CURRENT_BINARY_DIR}/${_NAME}_header_only_dummy.cc")
if(NOT EXISTS ${__dummy_header_only_lib_file})
file(WRITE ${__dummy_header_only_lib_file}
"/* generated file for header-only cmake target */
namespace absl {
// single meaningless symbol
void ${_NAME}__header_fakesym() {}
} // namespace absl
"
)
endif()
add_library(${_NAME} ${__dummy_header_only_lib_file})
target_link_libraries(${_NAME} PUBLIC ${ABSL_HO_LIB_PUBLIC_LIBRARIES})
target_include_directories(${_NAME}
PUBLIC ${ABSL_COMMON_INCLUDE_DIRS} ${ABSL_HO_LIB_PUBLIC_INCLUDE_DIRS}
PRIVATE ${ABSL_HO_LIB_PRIVATE_INCLUDE_DIRS}
)
# Add all Abseil targets to a a folder in the IDE for organization.
set_property(TARGET ${_NAME} PROPERTY FOLDER ${ABSL_IDE_FOLDER})
set_property(TARGET ${_NAME} PROPERTY CXX_STANDARD ${ABSL_CXX_STANDARD})
set_property(TARGET ${_NAME} PROPERTY CXX_STANDARD_REQUIRED ON)
if(ABSL_HO_LIB_EXPORT_NAME)
add_library(absl::${ABSL_HO_LIB_EXPORT_NAME} ALIAS ${_NAME})
endif()
endfunction()
#
# create an abseil unit_test and add it to the executed test list
#
# parameters
# TARGET: target name prefix
# SOURCES: sources files for the tests
# PUBLIC_LIBRARIES: targets and flags for linking phase.
# PRIVATE_COMPILE_FLAGS: compile flags for the test. Will not be exported.
#
# create a target associated to <NAME>_bin
#
# all tests will be register for execution with add_test()
#
# test compilation and execution is disable when ABSL_RUN_TESTS=OFF
#
function(absl_test)
cmake_parse_arguments(ABSL_TEST
""
"TARGET"
"SOURCES;PUBLIC_LIBRARIES;PRIVATE_COMPILE_FLAGS;PUBLIC_INCLUDE_DIRS"
${ARGN}
)
if(ABSL_RUN_TESTS)
set(_NAME "absl_${ABSL_TEST_TARGET}")
string(TOUPPER ${_NAME} _UPPER_NAME)
add_executable(${_NAME} ${ABSL_TEST_SOURCES})
target_compile_options(${_NAME}
PRIVATE
${ABSL_TEST_PRIVATE_COMPILE_FLAGS}
${ABSL_TEST_COPTS}
)
target_link_libraries(${_NAME} PUBLIC ${ABSL_TEST_PUBLIC_LIBRARIES} ${ABSL_TEST_COMMON_LIBRARIES})
target_include_directories(${_NAME}
PUBLIC ${ABSL_COMMON_INCLUDE_DIRS} ${ABSL_TEST_PUBLIC_INCLUDE_DIRS}
PRIVATE ${GMOCK_INCLUDE_DIRS} ${GTEST_INCLUDE_DIRS}
)
# Add all Abseil targets to a a folder in the IDE for organization.
set_property(TARGET ${_NAME} PROPERTY FOLDER ${ABSL_IDE_FOLDER})
set_property(TARGET ${_NAME} PROPERTY CXX_STANDARD ${ABSL_CXX_STANDARD})
set_property(TARGET ${_NAME} PROPERTY CXX_STANDARD_REQUIRED ON)
add_test(NAME ${_NAME} COMMAND ${_NAME})
endif(ABSL_RUN_TESTS)
endfunction()
function(check_target my_target) function(check_target my_target)
if(NOT TARGET ${my_target}) if(NOT TARGET ${my_target})
message(FATAL_ERROR " ABSL: compiling absl requires a ${my_target} CMake target in your project, message(FATAL_ERROR " ABSL: compiling absl requires a ${my_target} CMake target in your project,
see CMake/README.md for more details") see CMake/README.md for more details")
endif(NOT TARGET ${my_target}) endif(NOT TARGET ${my_target})
endfunction() endfunction()

View file

@ -201,4 +201,3 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. limitations under the License.

1
LTS.md
View file

@ -10,4 +10,5 @@ turn, use Abseil. (For more information about our releases, see the
The following lists LTS branches and the dates on which they have been released: The following lists LTS branches and the dates on which they have been released:
* [LTS Branch December 18, 2018](https://github.com/abseil/abseil-cpp/tree/lts_2018_12_18/)
* [LTS Branch June 20, 2018](https://github.com/abseil/abseil-cpp/tree/lts_2018_06_20/) * [LTS Branch June 20, 2018](https://github.com/abseil/abseil-cpp/tree/lts_2018_06_20/)

17
absl/UPGRADES.md Normal file
View file

@ -0,0 +1,17 @@
# C++ Upgrade Tools
Abseil may occassionally release API-breaking changes. As noted in our
[Compatibility Guidelines][compatibility-guide], we will aim to provide a tool
to do the work of effecting such API-breaking changes, when absolutely
necessary.
These tools will be listed on the [C++ Upgrade Tools][upgrade-tools] guide on
http://abseil.io.
For more information, the [C++ Automated Upgrade Guide][api-upgrades-guide]
outlines this process.
[compatibility-guide]: https://abseil.io/about/compatibility
[api-upgrades-guide]: https://abseil.io/docs/cpp/tools/api-upgrades
[upgrade-tools]: https://abseil.io/docs/cpp/tools/upgrades/

View file

@ -436,6 +436,35 @@ cc_library(
copts = ABSL_DEFAULT_COPTS, copts = ABSL_DEFAULT_COPTS,
) )
cc_library(
name = "hashtablez_sampler",
srcs = ["internal/hashtablez_sampler.cc"],
hdrs = ["internal/hashtablez_sampler.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":have_sse",
"//absl/base:core_headers",
"//absl/debugging:stacktrace",
"//absl/memory",
"//absl/synchronization",
"//absl/utility",
],
)
cc_test(
name = "hashtablez_sampler_test",
srcs = ["internal/hashtablez_sampler_test.cc"],
deps = [
":hashtablez_sampler",
":have_sse",
"//absl/base:core_headers",
"//absl/synchronization",
"//absl/synchronization:thread_pool",
"//absl/time",
"@com_google_googletest//:gtest_main",
],
)
cc_library( cc_library(
name = "node_hash_policy", name = "node_hash_policy",
hdrs = ["internal/node_hash_policy.h"], hdrs = ["internal/node_hash_policy.h"],
@ -467,6 +496,7 @@ cc_library(
name = "have_sse", name = "have_sse",
hdrs = ["internal/have_sse.h"], hdrs = ["internal/have_sse.h"],
copts = ABSL_DEFAULT_COPTS, copts = ABSL_DEFAULT_COPTS,
visibility = ["//visibility:private"],
) )
cc_library( cc_library(
@ -479,6 +509,7 @@ cc_library(
":container_memory", ":container_memory",
":hash_policy_traits", ":hash_policy_traits",
":hashtable_debug_hooks", ":hashtable_debug_hooks",
":hashtablez_sampler",
":have_sse", ":have_sse",
":layout", ":layout",
"//absl/base:bits", "//absl/base:bits",

View file

@ -431,6 +431,31 @@ absl_cc_test(
gmock_main gmock_main
) )
absl_cc_library(
NAME
hashtablez_sampler
HDRS
"internal/hashtablez_sampler.h"
SRCS
"internal/hashtablez_sampler.cc"
COPTS
${ABSL_DEFAULT_COPTS}
DEPS
absl::have_sse
absl::synchronization
)
absl_cc_test(
NAME
hashtablez_sampler_test
SRCS
"internal/hashtablez_sampler_test.cc"
DEPS
absl::hashtablez_sampler
absl::have_sse
gmock_main
)
absl_cc_library( absl_cc_library(
NAME NAME
hashtable_debug hashtable_debug
@ -459,7 +484,6 @@ absl_cc_library(
"internal/have_sse.h" "internal/have_sse.h"
COPTS COPTS
${ABSL_DEFAULT_COPTS} ${ABSL_DEFAULT_COPTS}
PUBLIC
) )
absl_cc_library( absl_cc_library(
@ -520,6 +544,7 @@ absl_cc_library(
absl::meta absl::meta
absl::optional absl::optional
absl::utility absl::utility
absl::hashtablez_sampler
PUBLIC PUBLIC
) )

View file

@ -0,0 +1,289 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/hashtablez_sampler.h"
#include <atomic>
#include <cassert>
#include <functional>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/container/internal/have_sse.h"
#include "absl/debugging/stacktrace.h"
#include "absl/memory/memory.h"
#include "absl/synchronization/mutex.h"
namespace absl {
namespace container_internal {
constexpr int HashtablezInfo::kMaxStackDepth;
namespace {
ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{
false
};
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10};
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20};
// Returns the next pseudo-random value.
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48
// This is the lrand64 generator.
uint64_t NextRandom(uint64_t rnd) {
const uint64_t prng_mult = uint64_t{0x5DEECE66D};
const uint64_t prng_add = 0xB;
const uint64_t prng_mod_power = 48;
const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power);
return (prng_mult * rnd + prng_add) & prng_mod_mask;
}
// Generates a geometric variable with the specified mean.
// This is done by generating a random number between 0 and 1 and applying
// the inverse cumulative distribution function for an exponential.
// Specifically: Let m be the inverse of the sample period, then
// the probability distribution function is m*exp(-mx) so the CDF is
// p = 1 - exp(-mx), so
// q = 1 - p = exp(-mx)
// log_e(q) = -mx
// -log_e(q)/m = x
// log_2(q) * (-log_e(2) * 1/m) = x
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
//
int64_t GetGeometricVariable(int64_t mean) {
#if ABSL_HAVE_THREAD_LOCAL
thread_local
#else // ABSL_HAVE_THREAD_LOCAL
// SampleSlow and hence GetGeometricVariable is guarded by a single mutex when
// there are not thread locals. Thus, a single global rng is acceptable for
// that case.
static
#endif // ABSL_HAVE_THREAD_LOCAL
uint64_t rng = []() {
// We don't get well distributed numbers from this so we call
// NextRandom() a bunch to mush the bits around. We use a global_rand
// to handle the case where the same thread (by memory address) gets
// created and destroyed repeatedly.
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
uint64_t r = reinterpret_cast<uint64_t>(&rng) +
global_rand.fetch_add(1, std::memory_order_relaxed);
for (int i = 0; i < 20; ++i) {
r = NextRandom(r);
}
return r;
}();
rng = NextRandom(rng);
// Take the top 26 bits as the random number
// (This plus the 1<<58 sampling bound give a max possible step of
// 5194297183973780480 bytes.)
const uint64_t prng_mod_power = 48; // Number of bits in prng
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN
// under piii debug for some binaries.
double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0;
// Put the computed p-value through the CDF of a geometric.
double interval = (std::log2(q) - 26) * (-std::log(2.0) * mean);
// Very large values of interval overflow int64_t. If we happen to
// hit such improbable condition, we simply cheat and clamp interval
// to largest supported value.
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
return std::numeric_limits<int64_t>::max() / 2;
}
// Small values of interval are equivalent to just sampling next time.
if (interval < 1) {
return 1;
}
return static_cast<int64_t>(interval);
}
} // namespace
HashtablezSampler& HashtablezSampler::Global() {
static auto* sampler = new HashtablezSampler();
return *sampler;
}
HashtablezInfo::HashtablezInfo() { PrepareForSampling(); }
HashtablezInfo::~HashtablezInfo() = default;
void HashtablezInfo::PrepareForSampling() {
capacity.store(0, std::memory_order_relaxed);
size.store(0, std::memory_order_relaxed);
num_erases.store(0, std::memory_order_relaxed);
max_probe_length.store(0, std::memory_order_relaxed);
total_probe_length.store(0, std::memory_order_relaxed);
hashes_bitwise_or.store(0, std::memory_order_relaxed);
hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed);
create_time = absl::Now();
// The inliner makes hardcoded skip_count difficult (especially when combined
// with LTO). We use the ability to exclude stacks by regex when encoding
// instead.
depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth,
/* skip_count= */ 0);
dead = nullptr;
}
HashtablezSampler::HashtablezSampler()
: dropped_samples_(0), size_estimate_(0), all_(nullptr) {
absl::MutexLock l(&graveyard_.init_mu);
graveyard_.dead = &graveyard_;
}
HashtablezSampler::~HashtablezSampler() {
HashtablezInfo* s = all_.load(std::memory_order_acquire);
while (s != nullptr) {
HashtablezInfo* next = s->next;
delete s;
s = next;
}
}
void HashtablezSampler::PushNew(HashtablezInfo* sample) {
sample->next = all_.load(std::memory_order_relaxed);
while (!all_.compare_exchange_weak(sample->next, sample,
std::memory_order_release,
std::memory_order_relaxed)) {
}
}
void HashtablezSampler::PushDead(HashtablezInfo* sample) {
absl::MutexLock graveyard_lock(&graveyard_.init_mu);
absl::MutexLock sample_lock(&sample->init_mu);
sample->dead = graveyard_.dead;
graveyard_.dead = sample;
}
HashtablezInfo* HashtablezSampler::PopDead() {
absl::MutexLock graveyard_lock(&graveyard_.init_mu);
// The list is circular, so eventually it collapses down to
// graveyard_.dead == &graveyard_
// when it is empty.
HashtablezInfo* sample = graveyard_.dead;
if (sample == &graveyard_) return nullptr;
absl::MutexLock sample_lock(&sample->init_mu);
graveyard_.dead = sample->dead;
sample->PrepareForSampling();
return sample;
}
HashtablezInfo* HashtablezSampler::Register() {
int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed);
if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) {
size_estimate_.fetch_sub(1, std::memory_order_relaxed);
dropped_samples_.fetch_add(1, std::memory_order_relaxed);
return nullptr;
}
HashtablezInfo* sample = PopDead();
if (sample == nullptr) {
// Resurrection failed. Hire a new warlock.
sample = new HashtablezInfo();
PushNew(sample);
}
return sample;
}
void HashtablezSampler::Unregister(HashtablezInfo* sample) {
PushDead(sample);
size_estimate_.fetch_sub(1, std::memory_order_relaxed);
}
int64_t HashtablezSampler::Iterate(
const std::function<void(const HashtablezInfo& stack)>& f) {
HashtablezInfo* s = all_.load(std::memory_order_acquire);
while (s != nullptr) {
absl::MutexLock l(&s->init_mu);
if (s->dead == nullptr) {
f(*s);
}
s = s->next;
}
return dropped_samples_.load(std::memory_order_relaxed);
}
HashtablezInfo* SampleSlow(int64_t* next_sample) {
bool first = *next_sample < 0;
*next_sample = GetGeometricVariable(
g_hashtablez_sample_parameter.load(std::memory_order_relaxed));
// g_hashtablez_enabled can be dynamically flipped, we need to set a threshold
// low enough that we will start sampling in a reasonable time, so we just use
// the default sampling rate.
if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr;
// We will only be negative on our first count, so we should just retry in
// that case.
if (first) {
if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr;
return SampleSlow(next_sample);
}
return HashtablezSampler::Global().Register();
}
void UnsampleSlow(HashtablezInfo* info) {
HashtablezSampler::Global().Unregister(info);
}
void RecordInsertSlow(HashtablezInfo* info, size_t hash,
size_t distance_from_desired) {
// SwissTables probe in groups of 16, so scale this to count items probes and
// not offset from desired.
size_t probe_length = distance_from_desired;
#if SWISSTABLE_HAVE_SSE2
probe_length /= 16;
#else
probe_length /= 8;
#endif
info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed);
info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed);
info->max_probe_length.store(
std::max(info->max_probe_length.load(std::memory_order_relaxed),
probe_length),
std::memory_order_relaxed);
info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed);
info->size.fetch_add(1, std::memory_order_relaxed);
}
void SetHashtablezEnabled(bool enabled) {
g_hashtablez_enabled.store(enabled, std::memory_order_release);
}
void SetHashtablezSampleParameter(int32_t rate) {
if (rate > 0) {
g_hashtablez_sample_parameter.store(rate, std::memory_order_release);
} else {
ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld",
static_cast<long long>(rate)); // NOLINT(runtime/int)
}
}
void SetHashtablezMaxSamples(int32_t max) {
if (max > 0) {
g_hashtablez_max_samples.store(max, std::memory_order_release);
} else {
ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld",
static_cast<long long>(max)); // NOLINT(runtime/int)
}
}
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,236 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This is a low level library to sample hashtables and collect runtime
// statistics about them.
//
// `HashtablezSampler` controls the lifecycle of `HashtablezInfo` objects which
// store information about a single sample.
//
// `Record*` methods store information into samples.
// `Sample()` and `Unsample()` make use of a single global sampler with
// properties controlled by the flags hashtablez_enabled,
// hashtablez_sample_rate, and hashtablez_max_samples.
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_
#define ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_
#include <atomic>
#include <functional>
#include <memory>
#include <vector>
#include "absl/base/optimization.h"
#include "absl/synchronization/mutex.h"
#include "absl/utility/utility.h"
namespace absl {
namespace container_internal {
// Stores information about a sampled hashtable. All mutations to this *must*
// be made through `Record*` functions below. All reads from this *must* only
// occur in the callback to `HashtablezSampler::Iterate`.
struct HashtablezInfo {
// Constructs the object but does not fill in any fields.
HashtablezInfo();
~HashtablezInfo();
HashtablezInfo(const HashtablezInfo&) = delete;
HashtablezInfo& operator=(const HashtablezInfo&) = delete;
// Puts the object into a clean state, fills in the logically `const` members,
// blocking for any readers that are currently sampling the object.
void PrepareForSampling() EXCLUSIVE_LOCKS_REQUIRED(init_mu);
// These fields are mutated by the various Record* APIs and need to be
// thread-safe.
std::atomic<size_t> capacity;
std::atomic<size_t> size;
std::atomic<size_t> num_erases;
std::atomic<size_t> max_probe_length;
std::atomic<size_t> total_probe_length;
std::atomic<size_t> hashes_bitwise_or;
std::atomic<size_t> hashes_bitwise_and;
// `HashtablezSampler` maintains intrusive linked lists for all samples. See
// comments on `HashtablezSampler::all_` for details on these. `init_mu`
// guards the ability to restore the sample to a pristine state. This
// prevents races with sampling and resurrecting an object.
absl::Mutex init_mu;
HashtablezInfo* next;
HashtablezInfo* dead GUARDED_BY(init_mu);
// All of the fields below are set by `PrepareForSampling`, they must not be
// mutated in `Record*` functions. They are logically `const` in that sense.
// These are guarded by init_mu, but that is not externalized to clients, who
// can only read them during `HashtablezSampler::Iterate` which will hold the
// lock.
static constexpr int kMaxStackDepth = 64;
absl::Time create_time;
int32_t depth;
void* stack[kMaxStackDepth];
};
inline void RecordStorageChangedSlow(HashtablezInfo* info, size_t size,
size_t capacity) {
info->size.store(size, std::memory_order_relaxed);
info->capacity.store(capacity, std::memory_order_relaxed);
}
void RecordInsertSlow(HashtablezInfo* info, size_t hash,
size_t distance_from_desired);
inline void RecordEraseSlow(HashtablezInfo* info) {
info->size.fetch_sub(1, std::memory_order_relaxed);
info->num_erases.fetch_add(1, std::memory_order_relaxed);
}
HashtablezInfo* SampleSlow(int64_t* next_sample);
void UnsampleSlow(HashtablezInfo* info);
class HashtablezInfoHandle {
public:
explicit HashtablezInfoHandle() : info_(nullptr) {}
explicit HashtablezInfoHandle(HashtablezInfo* info) : info_(info) {}
~HashtablezInfoHandle() {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
UnsampleSlow(info_);
}
HashtablezInfoHandle(const HashtablezInfoHandle&) = delete;
HashtablezInfoHandle& operator=(const HashtablezInfoHandle&) = delete;
HashtablezInfoHandle(HashtablezInfoHandle&& o) noexcept
: info_(absl::exchange(o.info_, nullptr)) {}
HashtablezInfoHandle& operator=(HashtablezInfoHandle&& o) noexcept {
if (ABSL_PREDICT_FALSE(info_ != nullptr)) {
UnsampleSlow(info_);
}
info_ = absl::exchange(o.info_, nullptr);
return *this;
}
inline void RecordStorageChanged(size_t size, size_t capacity) {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordStorageChangedSlow(info_, size, capacity);
}
inline void RecordInsert(size_t hash, size_t distance_from_desired) {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordInsertSlow(info_, hash, distance_from_desired);
}
inline void RecordErase() {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordEraseSlow(info_);
}
friend inline void swap(HashtablezInfoHandle& lhs,
HashtablezInfoHandle& rhs) {
std::swap(lhs.info_, rhs.info_);
}
private:
friend class HashtablezInfoHandlePeer;
HashtablezInfo* info_;
};
// Returns an RAII sampling handle that manages registration and unregistation
// with the global sampler.
inline HashtablezInfoHandle Sample() {
#if ABSL_HAVE_THREAD_LOCAL
thread_local int64_t next_sample = 0;
#else // ABSL_HAVE_THREAD_LOCAL
static auto* mu = new absl::Mutex;
static int64_t next_sample = 0;
absl::MutexLock l(mu);
#endif // ABSL_HAVE_THREAD_LOCAL
if (ABSL_PREDICT_TRUE(--next_sample > 0)) {
return HashtablezInfoHandle(nullptr);
}
return HashtablezInfoHandle(SampleSlow(&next_sample));
}
// Holds samples and their associated stack traces with a soft limit of
// `SetHashtablezMaxSamples()`.
//
// Thread safe.
class HashtablezSampler {
public:
// Returns a global Sampler.
static HashtablezSampler& Global();
HashtablezSampler();
~HashtablezSampler();
// Registers for sampling. Returns an opaque registration info.
HashtablezInfo* Register();
// Unregisters the sample.
void Unregister(HashtablezInfo* sample);
// Iterates over all the registered `StackInfo`s. Returning the number of
// samples that have been dropped.
int64_t Iterate(const std::function<void(const HashtablezInfo& stack)>& f);
private:
void PushNew(HashtablezInfo* sample);
void PushDead(HashtablezInfo* sample);
HashtablezInfo* PopDead();
std::atomic<size_t> dropped_samples_;
std::atomic<size_t> size_estimate_;
// Intrusive lock free linked lists for tracking samples.
//
// `all_` records all samples (they are never removed from this list) and is
// terminated with a `nullptr`.
//
// `graveyard_.dead` is a circular linked list. When it is empty,
// `graveyard_.dead == &graveyard`. The list is circular so that
// every item on it (even the last) has a non-null dead pointer. This allows
// `Iterate` to determine if a given sample is live or dead using only
// information on the sample itself.
//
// For example, nodes [A, B, C, D, E] with [A, C, E] alive and [B, D] dead
// looks like this (G is the Graveyard):
//
// +---+ +---+ +---+ +---+ +---+
// all -->| A |--->| B |--->| C |--->| D |--->| E |
// | | | | | | | | | |
// +---+ | | +->| |-+ | | +->| |-+ | |
// | G | +---+ | +---+ | +---+ | +---+ | +---+
// | | | | | |
// | | --------+ +--------+ |
// +---+ |
// ^ |
// +--------------------------------------+
//
std::atomic<HashtablezInfo*> all_;
HashtablezInfo graveyard_;
};
// Enables or disables sampling for Swiss tables.
void SetHashtablezEnabled(bool enabled);
// Sets the rate at which Swiss tables will be sampled.
void SetHashtablezSampleParameter(int32_t rate);
// Sets a soft max for the number of samples that will be kept.
void SetHashtablezMaxSamples(int32_t max);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_

View file

@ -0,0 +1,307 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/hashtablez_sampler.h"
#include <atomic>
#include <limits>
#include <random>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/container/internal/have_sse.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/mutex.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#if SWISSTABLE_HAVE_SSE2
constexpr int kProbeLength = 16;
#else
constexpr int kProbeLength = 8;
#endif
namespace absl {
namespace container_internal {
class HashtablezInfoHandlePeer {
public:
static bool IsSampled(const HashtablezInfoHandle& h) {
return h.info_ != nullptr;
}
static HashtablezInfo* GetInfo(HashtablezInfoHandle* h) { return h->info_; }
};
namespace {
using ::absl::synchronization_internal::ThreadPool;
using ::testing::IsEmpty;
using ::testing::UnorderedElementsAre;
std::vector<size_t> GetSizes(HashtablezSampler* s) {
std::vector<size_t> res;
s->Iterate([&](const HashtablezInfo& info) {
res.push_back(info.size.load(std::memory_order_acquire));
});
return res;
}
HashtablezInfo* Register(HashtablezSampler* s, size_t size) {
auto* info = s->Register();
assert(info != nullptr);
info->size.store(size);
return info;
}
TEST(HashtablezInfoTest, PrepareForSampling) {
absl::Time test_start = absl::Now();
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling();
EXPECT_EQ(info.capacity.load(), 0);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.max_probe_length.load(), 0);
EXPECT_EQ(info.total_probe_length.load(), 0);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0);
EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{});
EXPECT_GE(info.create_time, test_start);
info.capacity.store(1, std::memory_order_relaxed);
info.size.store(1, std::memory_order_relaxed);
info.num_erases.store(1, std::memory_order_relaxed);
info.max_probe_length.store(1, std::memory_order_relaxed);
info.total_probe_length.store(1, std::memory_order_relaxed);
info.hashes_bitwise_or.store(1, std::memory_order_relaxed);
info.hashes_bitwise_and.store(1, std::memory_order_relaxed);
info.create_time = test_start - absl::Hours(20);
info.PrepareForSampling();
EXPECT_EQ(info.capacity.load(), 0);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.max_probe_length.load(), 0);
EXPECT_EQ(info.total_probe_length.load(), 0);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0);
EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{});
EXPECT_GE(info.create_time, test_start);
}
TEST(HashtablezInfoTest, RecordStorageChanged) {
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling();
RecordStorageChangedSlow(&info, 17, 47);
EXPECT_EQ(info.size.load(), 17);
EXPECT_EQ(info.capacity.load(), 47);
RecordStorageChangedSlow(&info, 20, 20);
EXPECT_EQ(info.size.load(), 20);
EXPECT_EQ(info.capacity.load(), 20);
}
TEST(HashtablezInfoTest, RecordInsert) {
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling();
EXPECT_EQ(info.max_probe_length.load(), 0);
RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength);
EXPECT_EQ(info.max_probe_length.load(), 6);
EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000FF00);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0x0000FF00);
RecordInsertSlow(&info, 0x000FF000, 4 * kProbeLength);
EXPECT_EQ(info.max_probe_length.load(), 6);
EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000F000);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0x000FFF00);
RecordInsertSlow(&info, 0x00FF0000, 12 * kProbeLength);
EXPECT_EQ(info.max_probe_length.load(), 12);
EXPECT_EQ(info.hashes_bitwise_and.load(), 0x00000000);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0x00FFFF00);
}
TEST(HashtablezInfoTest, RecordErase) {
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling();
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.size.load(), 0);
RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength);
EXPECT_EQ(info.size.load(), 1);
RecordEraseSlow(&info);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 1);
}
TEST(HashtablezSamplerTest, SmallSampleParameter) {
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
for (int i = 0; i < 1000; ++i) {
int64_t next_sample = 0;
HashtablezInfo* sample = SampleSlow(&next_sample);
EXPECT_GT(next_sample, 0);
EXPECT_NE(sample, nullptr);
UnsampleSlow(sample);
}
}
TEST(HashtablezSamplerTest, LargeSampleParameter) {
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(std::numeric_limits<int32_t>::max());
for (int i = 0; i < 1000; ++i) {
int64_t next_sample = 0;
HashtablezInfo* sample = SampleSlow(&next_sample);
EXPECT_GT(next_sample, 0);
EXPECT_NE(sample, nullptr);
UnsampleSlow(sample);
}
}
TEST(HashtablezSamplerTest, Sample) {
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
int64_t num_sampled = 0;
int64_t total = 0;
double sample_rate;
for (int i = 0; i < 1000000; ++i) {
HashtablezInfoHandle h = Sample();
++total;
if (HashtablezInfoHandlePeer::IsSampled(h)) {
++num_sampled;
}
sample_rate = static_cast<double>(num_sampled) / total;
if (0.005 < sample_rate && sample_rate < 0.015) break;
}
EXPECT_NEAR(sample_rate, 0.01, 0.005);
}
TEST(HashtablezSamplerTest, Handle) {
auto& sampler = HashtablezSampler::Global();
HashtablezInfoHandle h(sampler.Register());
auto* info = HashtablezInfoHandlePeer::GetInfo(&h);
info->hashes_bitwise_and.store(0x12345678, std::memory_order_relaxed);
bool found = false;
sampler.Iterate([&](const HashtablezInfo& h) {
if (&h == info) {
EXPECT_EQ(h.hashes_bitwise_and.load(), 0x12345678);
found = true;
}
});
EXPECT_TRUE(found);
h = HashtablezInfoHandle();
found = false;
sampler.Iterate([&](const HashtablezInfo& h) {
if (&h == info) {
// this will only happen if some other thread has resurrected the info
// the old handle was using.
if (h.hashes_bitwise_and.load() == 0x12345678) {
found = true;
}
}
});
EXPECT_FALSE(found);
}
TEST(HashtablezSamplerTest, Registration) {
HashtablezSampler sampler;
auto* info1 = Register(&sampler, 1);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1));
auto* info2 = Register(&sampler, 2);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1, 2));
info1->size.store(3);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(3, 2));
sampler.Unregister(info1);
sampler.Unregister(info2);
}
TEST(HashtablezSamplerTest, Unregistration) {
HashtablezSampler sampler;
std::vector<HashtablezInfo*> infos;
for (size_t i = 0; i < 3; ++i) {
infos.push_back(Register(&sampler, i));
}
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 1, 2));
sampler.Unregister(infos[1]);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2));
infos.push_back(Register(&sampler, 3));
infos.push_back(Register(&sampler, 4));
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 3, 4));
sampler.Unregister(infos[3]);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 4));
sampler.Unregister(infos[0]);
sampler.Unregister(infos[2]);
sampler.Unregister(infos[4]);
EXPECT_THAT(GetSizes(&sampler), IsEmpty());
}
TEST(HashtablezSamplerTest, MultiThreaded) {
HashtablezSampler sampler;
Notification stop;
ThreadPool pool(10);
for (int i = 0; i < 10; ++i) {
pool.Schedule([&sampler, &stop]() {
std::random_device rd;
std::mt19937 gen(rd());
std::vector<HashtablezInfo*> infoz;
while (!stop.HasBeenNotified()) {
if (infoz.empty()) {
infoz.push_back(sampler.Register());
}
switch (std::uniform_int_distribution<>(0, 2)(gen)) {
case 0: {
infoz.push_back(sampler.Register());
break;
}
case 1: {
size_t p =
std::uniform_int_distribution<>(0, infoz.size() - 1)(gen);
HashtablezInfo* info = infoz[p];
infoz[p] = infoz.back();
infoz.pop_back();
sampler.Unregister(info);
break;
}
case 2: {
absl::Duration oldest = absl::ZeroDuration();
sampler.Iterate([&](const HashtablezInfo& info) {
oldest = std::max(oldest, absl::Now() - info.create_time);
});
ASSERT_GE(oldest, absl::ZeroDuration());
break;
}
}
}
});
}
// The threads will hammer away. Give it a little bit of time for tsan to
// spot errors.
absl::SleepFor(absl::Seconds(3));
stop.Notify();
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -109,6 +109,7 @@
#include "absl/container/internal/container_memory.h" #include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_policy_traits.h" #include "absl/container/internal/hash_policy_traits.h"
#include "absl/container/internal/hashtable_debug_hooks.h" #include "absl/container/internal/hashtable_debug_hooks.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/container/internal/have_sse.h" #include "absl/container/internal/have_sse.h"
#include "absl/container/internal/layout.h" #include "absl/container/internal/layout.h"
#include "absl/memory/memory.h" #include "absl/memory/memory.h"
@ -943,9 +944,10 @@ class raw_hash_set {
// than a full `insert`. // than a full `insert`.
for (const auto& v : that) { for (const auto& v : that) {
const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
const size_t i = find_first_non_full(hash); auto target = find_first_non_full(hash);
set_ctrl(i, H2(hash)); set_ctrl(target.offset, H2(hash));
emplace_at(i, v); emplace_at(target.offset, v);
infoz_.RecordInsert(hash, target.probe_length);
} }
size_ = that.size(); size_ = that.size();
growth_left() -= that.size(); growth_left() -= that.size();
@ -959,6 +961,7 @@ class raw_hash_set {
slots_(absl::exchange(that.slots_, nullptr)), slots_(absl::exchange(that.slots_, nullptr)),
size_(absl::exchange(that.size_, 0)), size_(absl::exchange(that.size_, 0)),
capacity_(absl::exchange(that.capacity_, 0)), capacity_(absl::exchange(that.capacity_, 0)),
infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())),
// Hash, equality and allocator are copied instead of moved because // Hash, equality and allocator are copied instead of moved because
// `that` must be left valid. If Hash is std::function<Key>, moving it // `that` must be left valid. If Hash is std::function<Key>, moving it
// would create a nullptr functor that cannot be called. // would create a nullptr functor that cannot be called.
@ -979,6 +982,7 @@ class raw_hash_set {
std::swap(size_, that.size_); std::swap(size_, that.size_);
std::swap(capacity_, that.capacity_); std::swap(capacity_, that.capacity_);
std::swap(growth_left(), that.growth_left()); std::swap(growth_left(), that.growth_left());
std::swap(infoz_, that.infoz_);
} else { } else {
reserve(that.size()); reserve(that.size());
// Note: this will copy elements of dense_set and unordered_set instead of // Note: this will copy elements of dense_set and unordered_set instead of
@ -1049,6 +1053,7 @@ class raw_hash_set {
growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor); growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor);
} }
assert(empty()); assert(empty());
infoz_.RecordStorageChanged(size_, capacity_);
} }
// This overload kicks in when the argument is an rvalue of insertable and // This overload kicks in when the argument is an rvalue of insertable and
@ -1323,6 +1328,7 @@ class raw_hash_set {
swap(growth_left(), that.growth_left()); swap(growth_left(), that.growth_left());
swap(hash_ref(), that.hash_ref()); swap(hash_ref(), that.hash_ref());
swap(eq_ref(), that.eq_ref()); swap(eq_ref(), that.eq_ref());
swap(infoz_, that.infoz_);
if (AllocTraits::propagate_on_container_swap::value) { if (AllocTraits::propagate_on_container_swap::value) {
swap(alloc_ref(), that.alloc_ref()); swap(alloc_ref(), that.alloc_ref());
} else { } else {
@ -1333,7 +1339,11 @@ class raw_hash_set {
void rehash(size_t n) { void rehash(size_t n) {
if (n == 0 && capacity_ == 0) return; if (n == 0 && capacity_ == 0) return;
if (n == 0 && size_ == 0) return destroy_slots(); if (n == 0 && size_ == 0) {
destroy_slots();
infoz_.RecordStorageChanged(size_, capacity_);
return;
}
auto m = NormalizeCapacity((std::max)(n, NumSlotsFast(size()))); auto m = NormalizeCapacity((std::max)(n, NumSlotsFast(size())));
// n == 0 unconditionally rehashes as per the standard. // n == 0 unconditionally rehashes as per the standard.
if (n == 0 || m > capacity_) { if (n == 0 || m > capacity_) {
@ -1550,10 +1560,15 @@ class raw_hash_set {
set_ctrl(index, was_never_full ? kEmpty : kDeleted); set_ctrl(index, was_never_full ? kEmpty : kDeleted);
growth_left() += was_never_full; growth_left() += was_never_full;
infoz_.RecordErase();
} }
void initialize_slots() { void initialize_slots() {
assert(capacity_); assert(capacity_);
if (slots_ == nullptr) {
infoz_ = Sample();
}
auto layout = MakeLayout(capacity_); auto layout = MakeLayout(capacity_);
char* mem = static_cast<char*>( char* mem = static_cast<char*>(
Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize())); Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize()));
@ -1561,6 +1576,7 @@ class raw_hash_set {
slots_ = layout.template Pointer<1>(mem); slots_ = layout.template Pointer<1>(mem);
reset_ctrl(); reset_ctrl();
growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_; growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_;
infoz_.RecordStorageChanged(size_, capacity_);
} }
void destroy_slots() { void destroy_slots() {
@ -1593,7 +1609,7 @@ class raw_hash_set {
if (IsFull(old_ctrl[i])) { if (IsFull(old_ctrl[i])) {
size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
PolicyTraits::element(old_slots + i)); PolicyTraits::element(old_slots + i));
size_t new_i = find_first_non_full(hash); size_t new_i = find_first_non_full(hash).offset;
set_ctrl(new_i, H2(hash)); set_ctrl(new_i, H2(hash));
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i); PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
} }
@ -1633,7 +1649,7 @@ class raw_hash_set {
if (!IsDeleted(ctrl_[i])) continue; if (!IsDeleted(ctrl_[i])) continue;
size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
PolicyTraits::element(slots_ + i)); PolicyTraits::element(slots_ + i));
size_t new_i = find_first_non_full(hash); size_t new_i = find_first_non_full(hash).offset;
// Verify if the old and new i fall within the same group wrt the hash. // Verify if the old and new i fall within the same group wrt the hash.
// If they do, we don't need to move the object as it falls already in the // If they do, we don't need to move the object as it falls already in the
@ -1706,7 +1722,11 @@ class raw_hash_set {
// - the input is already a set // - the input is already a set
// - there are enough slots // - there are enough slots
// - the element with the hash is not in the table // - the element with the hash is not in the table
size_t find_first_non_full(size_t hash) { struct FindInfo {
size_t offset;
size_t probe_length;
};
FindInfo find_first_non_full(size_t hash) {
auto seq = probe(hash); auto seq = probe(hash);
while (true) { while (true) {
Group g{ctrl_ + seq.offset()}; Group g{ctrl_ + seq.offset()};
@ -1718,11 +1738,11 @@ class raw_hash_set {
// the group. // the group.
// TODO(kfm,sbenza): revisit after we do unconditional mixing // TODO(kfm,sbenza): revisit after we do unconditional mixing
if (ShouldInsertBackwards(hash, ctrl_)) if (ShouldInsertBackwards(hash, ctrl_))
return seq.offset(mask.HighestBitSet()); return {seq.offset(mask.HighestBitSet()), seq.index()};
else else
return seq.offset(mask.LowestBitSet()); return {seq.offset(mask.LowestBitSet()), seq.index()};
#else #else
return seq.offset(mask.LowestBitSet()); return {seq.offset(mask.LowestBitSet()), seq.index()};
#endif #endif
} }
assert(seq.index() < capacity_ && "full table!"); assert(seq.index() < capacity_ && "full table!");
@ -1762,15 +1782,17 @@ class raw_hash_set {
} }
size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
size_t target = find_first_non_full(hash); auto target = find_first_non_full(hash);
if (ABSL_PREDICT_FALSE(growth_left() == 0 && !IsDeleted(ctrl_[target]))) { if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
!IsDeleted(ctrl_[target.offset]))) {
rehash_and_grow_if_necessary(); rehash_and_grow_if_necessary();
target = find_first_non_full(hash); target = find_first_non_full(hash);
} }
++size_; ++size_;
growth_left() -= IsEmpty(ctrl_[target]); growth_left() -= IsEmpty(ctrl_[target.offset]);
set_ctrl(target, H2(hash)); set_ctrl(target.offset, H2(hash));
return target; infoz_.RecordInsert(hash, target.probe_length);
return target.offset;
} }
// Constructs the value in the space pointed by the iterator. This only works // Constructs the value in the space pointed by the iterator. This only works
@ -1847,6 +1869,7 @@ class raw_hash_set {
slot_type* slots_ = nullptr; // [capacity * slot_type] slot_type* slots_ = nullptr; // [capacity * slot_type]
size_t size_ = 0; // number of full slots size_t size_ = 0; // number of full slots
size_t capacity_ = 0; // total number of slots size_t capacity_ = 0; // total number of slots
HashtablezInfoHandle infoz_;
absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher, absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher,
key_equal, allocator_type> key_equal, allocator_type>
settings_{0, hasher{}, key_equal{}, allocator_type{}}; settings_{0, hasher{}, key_equal{}, allocator_type{}};

View file

@ -342,6 +342,7 @@ TEST(Table, EmptyFunctorOptimization) {
size_t size; size_t size;
size_t capacity; size_t capacity;
size_t growth_left; size_t growth_left;
void* infoz;
}; };
struct StatelessHash { struct StatelessHash {
size_t operator()(absl::string_view) const { return 0; } size_t operator()(absl::string_view) const { return 0; }
@ -1798,6 +1799,27 @@ TEST(TableDeathTest, EraseOfEndAsserts) {
EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg); EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg);
} }
TEST(RawHashSamplerTest, Sample) {
// Enable the feature even if the prod default is off.
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
auto& sampler = HashtablezSampler::Global();
size_t start_size = 0;
start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
std::vector<IntTable> tables;
for (int i = 0; i < 1000000; ++i) {
tables.emplace_back();
tables.back().insert(1);
}
size_t end_size = 0;
end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; });
EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()),
0.01, 0.005);
}
#ifdef ADDRESS_SANITIZER #ifdef ADDRESS_SANITIZER
TEST(Sanitizer, PoisoningUnused) { TEST(Sanitizer, PoisoningUnused) {
IntTable t; IntTable t;

View file

@ -12,13 +12,47 @@
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_GENERIC_INL_H_ #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_GENERIC_INL_H_
#include <execinfo.h> #include <execinfo.h>
#include <atomic>
#include <cstring> #include <cstring>
#include "absl/debugging/stacktrace.h" #include "absl/debugging/stacktrace.h"
// Sometimes, we can try to get a stack trace from within a stack
// trace, because we don't block signals inside this code (which would be too
// expensive: the two extra system calls per stack trace do matter here).
// That can cause a self-deadlock.
// Protect against such reentrant call by failing to get a stack trace.
//
// We use __thread here because the code here is extremely low level -- it is
// called while collecting stack traces from within malloc and mmap, and thus
// can not call anything which might call malloc or mmap itself.
static __thread int recursive = 0;
// The stack trace function might be invoked very early in the program's
// execution (e.g. from the very first malloc if using tcmalloc). Also, the
// glibc implementation itself will trigger malloc the first time it is called.
// As such, we suppress usage of backtrace during this early stage of execution.
static std::atomic<bool> disable_stacktraces(true); // Disabled until healthy.
// Waiting until static initializers run seems to be late enough.
// This file is included into stacktrace.cc so this will only run once.
static int stacktraces_enabler = []() {
void* unused_stack[1];
// Force the first backtrace to happen early to get the one-time shared lib
// loading (allocation) out of the way. After the first call it is much safer
// to use backtrace from a signal handler if we crash somewhere later.
backtrace(unused_stack, 1);
disable_stacktraces.store(false, std::memory_order_relaxed);
return 0;
}();
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count, static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
const void *ucp, int *min_dropped_frames) { const void *ucp, int *min_dropped_frames) {
if (recursive || disable_stacktraces.load(std::memory_order_relaxed)) {
return 0;
}
++recursive;
static_cast<void>(ucp); // Unused. static_cast<void>(ucp); // Unused.
static const int kStackLength = 64; static const int kStackLength = 64;
void * stack[kStackLength]; void * stack[kStackLength];
@ -46,6 +80,8 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
} }
} }
--recursive;
return result_count; return result_count;
} }

View file

@ -35,17 +35,18 @@
#include "absl/strings/ascii.h" #include "absl/strings/ascii.h"
#include "absl/strings/charconv.h" #include "absl/strings/charconv.h"
#include "absl/strings/internal/memutil.h" #include "absl/strings/internal/memutil.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h" #include "absl/strings/str_cat.h"
namespace absl { namespace absl {
bool SimpleAtof(absl::string_view str, float* value) { bool SimpleAtof(absl::string_view str, float* out) {
*value = 0.0; *out = 0.0;
str = StripAsciiWhitespace(str); str = StripAsciiWhitespace(str);
if (!str.empty() && str[0] == '+') { if (!str.empty() && str[0] == '+') {
str.remove_prefix(1); str.remove_prefix(1);
} }
auto result = absl::from_chars(str.data(), str.data() + str.size(), *value); auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
if (result.ec == std::errc::invalid_argument) { if (result.ec == std::errc::invalid_argument) {
return false; return false;
} }
@ -56,22 +57,22 @@ bool SimpleAtof(absl::string_view str, float* value) {
// from_chars() with DR 3801's current wording will return max() on // from_chars() with DR 3801's current wording will return max() on
// overflow. SimpleAtof returns infinity instead. // overflow. SimpleAtof returns infinity instead.
if (result.ec == std::errc::result_out_of_range) { if (result.ec == std::errc::result_out_of_range) {
if (*value > 1.0) { if (*out > 1.0) {
*value = std::numeric_limits<float>::infinity(); *out = std::numeric_limits<float>::infinity();
} else if (*value < -1.0) { } else if (*out < -1.0) {
*value = -std::numeric_limits<float>::infinity(); *out = -std::numeric_limits<float>::infinity();
} }
} }
return true; return true;
} }
bool SimpleAtod(absl::string_view str, double* value) { bool SimpleAtod(absl::string_view str, double* out) {
*value = 0.0; *out = 0.0;
str = StripAsciiWhitespace(str); str = StripAsciiWhitespace(str);
if (!str.empty() && str[0] == '+') { if (!str.empty() && str[0] == '+') {
str.remove_prefix(1); str.remove_prefix(1);
} }
auto result = absl::from_chars(str.data(), str.data() + str.size(), *value); auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
if (result.ec == std::errc::invalid_argument) { if (result.ec == std::errc::invalid_argument) {
return false; return false;
} }
@ -82,10 +83,10 @@ bool SimpleAtod(absl::string_view str, double* value) {
// from_chars() with DR 3801's current wording will return max() on // from_chars() with DR 3801's current wording will return max() on
// overflow. SimpleAtod returns infinity instead. // overflow. SimpleAtod returns infinity instead.
if (result.ec == std::errc::result_out_of_range) { if (result.ec == std::errc::result_out_of_range) {
if (*value > 1.0) { if (*out > 1.0) {
*value = std::numeric_limits<double>::infinity(); *out = std::numeric_limits<double>::infinity();
} else if (*value < -1.0) { } else if (*out < -1.0) {
*value = -std::numeric_limits<double>::infinity(); *out = -std::numeric_limits<double>::infinity();
} }
} }
return true; return true;
@ -93,14 +94,6 @@ bool SimpleAtod(absl::string_view str, double* value) {
namespace { namespace {
// TODO(rogeeff): replace with the real released thing once we figure out what
// it is.
inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) {
return (piece1.size() == piece2.size() &&
0 == strings_internal::memcasecmp(piece1.data(), piece2.data(),
piece1.size()));
}
// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
// range 0 <= i < 100, and buf must have space for two characters. Example: // range 0 <= i < 100, and buf must have space for two characters. Example:
// char buf[2]; // char buf[2];
@ -136,18 +129,18 @@ inline void PutTwoDigits(size_t i, char* buf) {
} // namespace } // namespace
bool SimpleAtob(absl::string_view str, bool* value) { bool SimpleAtob(absl::string_view str, bool* out) {
ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr."); ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
if (CaseEqual(str, "true") || CaseEqual(str, "t") || if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
CaseEqual(str, "yes") || CaseEqual(str, "y") || EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
CaseEqual(str, "1")) { EqualsIgnoreCase(str, "1")) {
*value = true; *out = true;
return true; return true;
} }
if (CaseEqual(str, "false") || CaseEqual(str, "f") || if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
CaseEqual(str, "no") || CaseEqual(str, "n") || EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
CaseEqual(str, "0")) { EqualsIgnoreCase(str, "0")) {
*value = false; *out = false;
return true; return true;
} }
return false; return false;

View file

@ -44,7 +44,8 @@ namespace absl {
// Converts the given string into an integer value, returning `true` if // Converts the given string into an integer value, returning `true` if
// successful. The string must reflect a base-10 integer (optionally followed or // successful. The string must reflect a base-10 integer (optionally followed or
// preceded by ASCII whitespace) whose value falls within the range of the // preceded by ASCII whitespace) whose value falls within the range of the
// integer type. // integer type. If any errors are encountered, this function returns `false`,
// leaving `out` in an unspecified state.
template <typename int_type> template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out); ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out);
@ -53,24 +54,28 @@ ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out);
// Converts the given string (optionally followed or preceded by ASCII // Converts the given string (optionally followed or preceded by ASCII
// whitespace) into a float, which may be rounded on overflow or underflow. // whitespace) into a float, which may be rounded on overflow or underflow.
// See http://en.cppreference.com/w/c/string/byte/strtof for details about the // See http://en.cppreference.com/w/c/string/byte/strtof for details about the
// allowed formats for `str`. // allowed formats for `str`. If any errors are encountered, this function
ABSL_MUST_USE_RESULT bool SimpleAtof(absl::string_view str, float* value); // returns `false`, leaving `out` in an unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtof(absl::string_view str, float* out);
// SimpleAtod() // SimpleAtod()
// //
// Converts the given string (optionally followed or preceded by ASCII // Converts the given string (optionally followed or preceded by ASCII
// whitespace) into a double, which may be rounded on overflow or underflow. // whitespace) into a double, which may be rounded on overflow or underflow.
// See http://en.cppreference.com/w/c/string/byte/strtof for details about the // See http://en.cppreference.com/w/c/string/byte/strtof for details about the
// allowed formats for `str`. // allowed formats for `str`. If any errors are encountered, this function
ABSL_MUST_USE_RESULT bool SimpleAtod(absl::string_view str, double* value); // returns `false`, leaving `out` in an unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtod(absl::string_view str, double* out);
// SimpleAtob() // SimpleAtob()
// //
// Converts the given string into a boolean, returning `true` if successful. // Converts the given string into a boolean, returning `true` if successful.
// The following case-insensitive strings are interpreted as boolean `true`: // The following case-insensitive strings are interpreted as boolean `true`:
// "true", "t", "yes", "y", "1". The following case-insensitive strings // "true", "t", "yes", "y", "1". The following case-insensitive strings
// are interpreted as boolean `false`: "false", "f", "no", "n", "0". // are interpreted as boolean `false`: "false", "f", "no", "n", "0". If any
ABSL_MUST_USE_RESULT bool SimpleAtob(absl::string_view str, bool* value); // errors are encountered, this function returns `false`, leaving `out` in an
// unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtob(absl::string_view str, bool* out);
} // namespace absl } // namespace absl

View file

@ -149,15 +149,25 @@ char* FormatOffset(char* ep, int offset, const char* mode) {
offset = -offset; // bounded by 24h so no overflow offset = -offset; // bounded by 24h so no overflow
sign = '-'; sign = '-';
} }
char sep = mode[0]; const int seconds = offset % 60;
if (sep != '\0' && mode[1] == '*') { const int minutes = (offset /= 60) % 60;
ep = Format02d(ep, offset % 60); const int hours = offset /= 60;
const char sep = mode[0];
const bool ext = (sep != '\0' && mode[1] == '*');
const bool ccc = (ext && mode[2] == ':');
if (ext && (!ccc || seconds != 0)) {
ep = Format02d(ep, seconds);
*--ep = sep; *--ep = sep;
} else {
// If we're not rendering seconds, sub-minute negative offsets
// should get a positive sign (e.g., offset=-10s => "+00:00").
if (hours == 0 && minutes == 0) sign = '+';
} }
int minutes = offset / 60; if (!ccc || minutes != 0 || seconds != 0) {
ep = Format02d(ep, minutes % 60); ep = Format02d(ep, minutes);
if (sep != '\0') *--ep = sep; if (sep != '\0') *--ep = sep;
ep = Format02d(ep, minutes / 60); }
ep = Format02d(ep, hours);
*--ep = sign; *--ep = sign;
return ep; return ep;
} }
@ -384,6 +394,44 @@ std::string format(const std::string& format, const time_point<seconds>& tp,
continue; continue;
} }
// More complex specifiers that we handle ourselves.
if (*cur == ':' && cur + 1 != end) {
if (*(cur + 1) == 'z') {
// Formats %:z.
if (cur - 1 != pending) {
FormatTM(&result, std::string(pending, cur - 1), tm);
}
bp = FormatOffset(ep, al.offset, ":");
result.append(bp, static_cast<std::size_t>(ep - bp));
pending = cur += 2;
continue;
}
if (*(cur + 1) == ':' && cur + 2 != end) {
if (*(cur + 2) == 'z') {
// Formats %::z.
if (cur - 1 != pending) {
FormatTM(&result, std::string(pending, cur - 1), tm);
}
bp = FormatOffset(ep, al.offset, ":*");
result.append(bp, static_cast<std::size_t>(ep - bp));
pending = cur += 3;
continue;
}
if (*(cur + 2) == ':' && cur + 3 != end) {
if (*(cur + 3) == 'z') {
// Formats %:::z.
if (cur - 1 != pending) {
FormatTM(&result, std::string(pending, cur - 1), tm);
}
bp = FormatOffset(ep, al.offset, ":*:");
result.append(bp, static_cast<std::size_t>(ep - bp));
pending = cur += 4;
continue;
}
}
}
}
// Loop if there is no E modifier. // Loop if there is no E modifier.
if (*cur != 'E' || ++cur == end) continue; if (*cur != 'E' || ++cur == end) continue;
@ -668,17 +716,27 @@ bool parse(const std::string& format, const std::string& input,
&percent_s); &percent_s);
if (data != nullptr) saw_percent_s = true; if (data != nullptr) saw_percent_s = true;
continue; continue;
case ':':
if (fmt[0] == 'z' ||
(fmt[0] == ':' &&
(fmt[1] == 'z' || (fmt[1] == ':' && fmt[2] == 'z')))) {
data = ParseOffset(data, ":", &offset);
if (data != nullptr) saw_offset = true;
fmt += (fmt[0] == 'z') ? 1 : (fmt[1] == 'z') ? 2 : 3;
continue;
}
break;
case '%': case '%':
data = (*data == '%' ? data + 1 : nullptr); data = (*data == '%' ? data + 1 : nullptr);
continue; continue;
case 'E': case 'E':
if (*fmt == 'z' || (*fmt == '*' && *(fmt + 1) == 'z')) { if (fmt[0] == 'z' || (fmt[0] == '*' && fmt[1] == 'z')) {
data = ParseOffset(data, ":", &offset); data = ParseOffset(data, ":", &offset);
if (data != nullptr) saw_offset = true; if (data != nullptr) saw_offset = true;
fmt += (*fmt == 'z') ? 1 : 2; fmt += (fmt[0] == 'z') ? 1 : 2;
continue; continue;
} }
if (*fmt == '*' && *(fmt + 1) == 'S') { if (fmt[0] == '*' && fmt[1] == 'S') {
data = ParseInt(data, 2, 0, 60, &tm.tm_sec); data = ParseInt(data, 2, 0, 60, &tm.tm_sec);
if (data != nullptr && *data == '.') { if (data != nullptr && *data == '.') {
data = ParseSubSeconds(data + 1, &subseconds); data = ParseSubSeconds(data + 1, &subseconds);
@ -686,14 +744,14 @@ bool parse(const std::string& format, const std::string& input,
fmt += 2; fmt += 2;
continue; continue;
} }
if (*fmt == '*' && *(fmt + 1) == 'f') { if (fmt[0] == '*' && fmt[1] == 'f') {
if (data != nullptr && std::isdigit(*data)) { if (data != nullptr && std::isdigit(*data)) {
data = ParseSubSeconds(data, &subseconds); data = ParseSubSeconds(data, &subseconds);
} }
fmt += 2; fmt += 2;
continue; continue;
} }
if (*fmt == '4' && *(fmt + 1) == 'Y') { if (fmt[0] == '4' && fmt[1] == 'Y') {
const char* bp = data; const char* bp = data;
data = ParseInt(data, 4, year_t{-999}, year_t{9999}, &year); data = ParseInt(data, 4, year_t{-999}, year_t{9999}, &year);
if (data != nullptr) { if (data != nullptr) {

View file

@ -436,51 +436,165 @@ TEST(Format, CompareExtendSecondsVsSubseconds) {
} }
TEST(Format, ExtendedOffset) { TEST(Format, ExtendedOffset) {
auto tp = chrono::system_clock::from_time_t(0); const auto tp = chrono::system_clock::from_time_t(0);
time_zone tz = utc_time_zone(); auto tz = fixed_time_zone(absl::time_internal::cctz::seconds::zero());
TestFormatSpecifier(tp, tz, "%z", "+0000");
TestFormatSpecifier(tp, tz, "%:z", "+00:00");
TestFormatSpecifier(tp, tz, "%Ez", "+00:00"); TestFormatSpecifier(tp, tz, "%Ez", "+00:00");
EXPECT_TRUE(load_time_zone("America/New_York", &tz)); tz = fixed_time_zone(chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%Ez", "-05:00"); TestFormatSpecifier(tp, tz, "%z", "+0000");
TestFormatSpecifier(tp, tz, "%:z", "+00:00");
TestFormatSpecifier(tp, tz, "%Ez", "+00:00");
EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz)); tz = fixed_time_zone(-chrono::seconds(56)); // NOTE: +00:00
TestFormatSpecifier(tp, tz, "%Ez", "-08:00"); TestFormatSpecifier(tp, tz, "%z", "+0000");
TestFormatSpecifier(tp, tz, "%:z", "+00:00");
TestFormatSpecifier(tp, tz, "%Ez", "+00:00");
EXPECT_TRUE(load_time_zone("Australia/Sydney", &tz)); tz = fixed_time_zone(chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%Ez", "+10:00"); TestFormatSpecifier(tp, tz, "%z", "+0034");
TestFormatSpecifier(tp, tz, "%:z", "+00:34");
TestFormatSpecifier(tp, tz, "%Ez", "+00:34");
EXPECT_TRUE(load_time_zone("Africa/Monrovia", &tz)); tz = fixed_time_zone(-chrono::minutes(34));
// The true offset is -00:44:30 but %z only gives (truncated) minutes. TestFormatSpecifier(tp, tz, "%z", "-0034");
TestFormatSpecifier(tp, tz, "%z", "-0044"); TestFormatSpecifier(tp, tz, "%:z", "-00:34");
TestFormatSpecifier(tp, tz, "%Ez", "-00:44"); TestFormatSpecifier(tp, tz, "%Ez", "-00:34");
tz = fixed_time_zone(chrono::minutes(34) + chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%z", "+0034");
TestFormatSpecifier(tp, tz, "%:z", "+00:34");
TestFormatSpecifier(tp, tz, "%Ez", "+00:34");
tz = fixed_time_zone(-chrono::minutes(34) - chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%z", "-0034");
TestFormatSpecifier(tp, tz, "%:z", "-00:34");
TestFormatSpecifier(tp, tz, "%Ez", "-00:34");
tz = fixed_time_zone(chrono::hours(12));
TestFormatSpecifier(tp, tz, "%z", "+1200");
TestFormatSpecifier(tp, tz, "%:z", "+12:00");
TestFormatSpecifier(tp, tz, "%Ez", "+12:00");
tz = fixed_time_zone(-chrono::hours(12));
TestFormatSpecifier(tp, tz, "%z", "-1200");
TestFormatSpecifier(tp, tz, "%:z", "-12:00");
TestFormatSpecifier(tp, tz, "%Ez", "-12:00");
tz = fixed_time_zone(chrono::hours(12) + chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%z", "+1200");
TestFormatSpecifier(tp, tz, "%:z", "+12:00");
TestFormatSpecifier(tp, tz, "%Ez", "+12:00");
tz = fixed_time_zone(-chrono::hours(12) - chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%z", "-1200");
TestFormatSpecifier(tp, tz, "%:z", "-12:00");
TestFormatSpecifier(tp, tz, "%Ez", "-12:00");
tz = fixed_time_zone(chrono::hours(12) + chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%z", "+1234");
TestFormatSpecifier(tp, tz, "%:z", "+12:34");
TestFormatSpecifier(tp, tz, "%Ez", "+12:34");
tz = fixed_time_zone(-chrono::hours(12) - chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%z", "-1234");
TestFormatSpecifier(tp, tz, "%:z", "-12:34");
TestFormatSpecifier(tp, tz, "%Ez", "-12:34");
tz = fixed_time_zone(chrono::hours(12) + chrono::minutes(34) +
chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%z", "+1234");
TestFormatSpecifier(tp, tz, "%:z", "+12:34");
TestFormatSpecifier(tp, tz, "%Ez", "+12:34");
tz = fixed_time_zone(-chrono::hours(12) - chrono::minutes(34) -
chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%z", "-1234");
TestFormatSpecifier(tp, tz, "%:z", "-12:34");
TestFormatSpecifier(tp, tz, "%Ez", "-12:34");
} }
TEST(Format, ExtendedSecondOffset) { TEST(Format, ExtendedSecondOffset) {
const time_zone utc = utc_time_zone(); const auto tp = chrono::system_clock::from_time_t(0);
time_point<chrono::seconds> tp;
time_zone tz;
EXPECT_TRUE(load_time_zone("America/New_York", &tz)); auto tz = fixed_time_zone(absl::time_internal::cctz::seconds::zero());
tp = convert(civil_second(1883, 11, 18, 16, 59, 59), utc); TestFormatSpecifier(tp, tz, "%E*z", "+00:00:00");
if (tz.lookup(tp).offset == -5 * 60 * 60) { TestFormatSpecifier(tp, tz, "%::z", "+00:00:00");
// It looks like the tzdata is only 32 bit (probably macOS), TestFormatSpecifier(tp, tz, "%:::z", "+00");
// which bottoms out at 1901-12-13T20:45:52+00:00.
} else {
TestFormatSpecifier(tp, tz, "%E*z", "-04:56:02");
TestFormatSpecifier(tp, tz, "%Ez", "-04:56");
}
tp += chrono::seconds(1);
TestFormatSpecifier(tp, tz, "%E*z", "-05:00:00");
EXPECT_TRUE(load_time_zone("Europe/Moscow", &tz)); tz = fixed_time_zone(chrono::seconds(56));
tp = convert(civil_second(1919, 6, 30, 23, 59, 59), utc); TestFormatSpecifier(tp, tz, "%E*z", "+00:00:56");
if (VersionCmp(tz, "2016g") >= 0) { TestFormatSpecifier(tp, tz, "%::z", "+00:00:56");
TestFormatSpecifier(tp, tz, "%E*z", "+04:31:19"); TestFormatSpecifier(tp, tz, "%:::z", "+00:00:56");
TestFormatSpecifier(tp, tz, "%Ez", "+04:31");
} tz = fixed_time_zone(-chrono::seconds(56));
tp += chrono::seconds(1); TestFormatSpecifier(tp, tz, "%E*z", "-00:00:56");
TestFormatSpecifier(tp, tz, "%E*z", "+04:00:00"); TestFormatSpecifier(tp, tz, "%::z", "-00:00:56");
TestFormatSpecifier(tp, tz, "%:::z", "-00:00:56");
tz = fixed_time_zone(chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%E*z", "+00:34:00");
TestFormatSpecifier(tp, tz, "%::z", "+00:34:00");
TestFormatSpecifier(tp, tz, "%:::z", "+00:34");
tz = fixed_time_zone(-chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%E*z", "-00:34:00");
TestFormatSpecifier(tp, tz, "%::z", "-00:34:00");
TestFormatSpecifier(tp, tz, "%:::z", "-00:34");
tz = fixed_time_zone(chrono::minutes(34) + chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%E*z", "+00:34:56");
TestFormatSpecifier(tp, tz, "%::z", "+00:34:56");
TestFormatSpecifier(tp, tz, "%:::z", "+00:34:56");
tz = fixed_time_zone(-chrono::minutes(34) - chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%E*z", "-00:34:56");
TestFormatSpecifier(tp, tz, "%::z", "-00:34:56");
TestFormatSpecifier(tp, tz, "%:::z", "-00:34:56");
tz = fixed_time_zone(chrono::hours(12));
TestFormatSpecifier(tp, tz, "%E*z", "+12:00:00");
TestFormatSpecifier(tp, tz, "%::z", "+12:00:00");
TestFormatSpecifier(tp, tz, "%:::z", "+12");
tz = fixed_time_zone(-chrono::hours(12));
TestFormatSpecifier(tp, tz, "%E*z", "-12:00:00");
TestFormatSpecifier(tp, tz, "%::z", "-12:00:00");
TestFormatSpecifier(tp, tz, "%:::z", "-12");
tz = fixed_time_zone(chrono::hours(12) + chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%E*z", "+12:00:56");
TestFormatSpecifier(tp, tz, "%::z", "+12:00:56");
TestFormatSpecifier(tp, tz, "%:::z", "+12:00:56");
tz = fixed_time_zone(-chrono::hours(12) - chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%E*z", "-12:00:56");
TestFormatSpecifier(tp, tz, "%::z", "-12:00:56");
TestFormatSpecifier(tp, tz, "%:::z", "-12:00:56");
tz = fixed_time_zone(chrono::hours(12) + chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%E*z", "+12:34:00");
TestFormatSpecifier(tp, tz, "%::z", "+12:34:00");
TestFormatSpecifier(tp, tz, "%:::z", "+12:34");
tz = fixed_time_zone(-chrono::hours(12) - chrono::minutes(34));
TestFormatSpecifier(tp, tz, "%E*z", "-12:34:00");
TestFormatSpecifier(tp, tz, "%::z", "-12:34:00");
TestFormatSpecifier(tp, tz, "%:::z", "-12:34");
tz = fixed_time_zone(chrono::hours(12) + chrono::minutes(34) +
chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%E*z", "+12:34:56");
TestFormatSpecifier(tp, tz, "%::z", "+12:34:56");
TestFormatSpecifier(tp, tz, "%:::z", "+12:34:56");
tz = fixed_time_zone(-chrono::hours(12) - chrono::minutes(34) -
chrono::seconds(56));
TestFormatSpecifier(tp, tz, "%E*z", "-12:34:56");
TestFormatSpecifier(tp, tz, "%::z", "-12:34:56");
TestFormatSpecifier(tp, tz, "%:::z", "-12:34:56");
} }
TEST(Format, ExtendedYears) { TEST(Format, ExtendedYears) {
@ -1160,25 +1274,6 @@ TEST(Parse, ExtendedOffset) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<absl::time_internal::cctz::seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// %z against +-HHMM.
EXPECT_TRUE(parse("%z", "+0000", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%z", "-1234", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp);
EXPECT_TRUE(parse("%z", "+1234", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp);
EXPECT_FALSE(parse("%z", "-123", utc, &tp));
// %z against +-HH.
EXPECT_TRUE(parse("%z", "+00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%z", "-12", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 0, 0), utc), tp);
EXPECT_TRUE(parse("%z", "+12", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 12, 0, 0), utc), tp);
EXPECT_FALSE(parse("%z", "-1", utc, &tp));
// %Ez against +-HH:MM.
EXPECT_TRUE(parse("%Ez", "+00:00", utc, &tp)); EXPECT_TRUE(parse("%Ez", "+00:00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "-12:34", utc, &tp)); EXPECT_TRUE(parse("%Ez", "-12:34", utc, &tp));
@ -1187,91 +1282,70 @@ TEST(Parse, ExtendedOffset) {
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp);
EXPECT_FALSE(parse("%Ez", "-12:3", utc, &tp)); EXPECT_FALSE(parse("%Ez", "-12:3", utc, &tp));
// %Ez against +-HHMM. for (auto fmt : {"%Ez", "%z"}) {
EXPECT_TRUE(parse("%Ez", "+0000", utc, &tp)); EXPECT_TRUE(parse(fmt, "+0000", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "-1234", utc, &tp)); EXPECT_TRUE(parse(fmt, "-1234", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "+1234", utc, &tp)); EXPECT_TRUE(parse(fmt, "+1234", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp);
EXPECT_FALSE(parse("%Ez", "-123", utc, &tp)); EXPECT_FALSE(parse(fmt, "-123", utc, &tp));
// %Ez against +-HH. EXPECT_TRUE(parse(fmt, "+00", utc, &tp));
EXPECT_TRUE(parse("%Ez", "+00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "-12", utc, &tp)); EXPECT_TRUE(parse(fmt, "-12", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 0, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "+12", utc, &tp)); EXPECT_TRUE(parse(fmt, "+12", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 12, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 12, 0, 0), utc), tp);
EXPECT_FALSE(parse("%Ez", "-1", utc, &tp)); EXPECT_FALSE(parse(fmt, "-1", utc, &tp));
}
} }
TEST(Parse, ExtendedSecondOffset) { TEST(Parse, ExtendedSecondOffset) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<absl::time_internal::cctz::seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// %Ez against +-HH:MM:SS. for (auto fmt : {"%Ez", "%E*z", "%:z", "%::z", "%:::z"}) {
EXPECT_TRUE(parse("%Ez", "+00:00:00", utc, &tp)); EXPECT_TRUE(parse(fmt, "+00:00:00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "-12:34:56", utc, &tp)); EXPECT_TRUE(parse(fmt, "-12:34:56", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 56), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 56), utc), tp);
EXPECT_TRUE(parse("%Ez", "+12:34:56", utc, &tp)); EXPECT_TRUE(parse(fmt, "+12:34:56", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 25, 4), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 25, 4), utc), tp);
EXPECT_FALSE(parse("%Ez", "-12:34:5", utc, &tp)); EXPECT_FALSE(parse(fmt, "-12:34:5", utc, &tp));
// %Ez against +-HHMMSS. EXPECT_TRUE(parse(fmt, "+000000", utc, &tp));
EXPECT_TRUE(parse("%Ez", "+000000", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%Ez", "-123456", utc, &tp)); EXPECT_TRUE(parse(fmt, "-123456", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 56), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 56), utc), tp);
EXPECT_TRUE(parse("%Ez", "+123456", utc, &tp)); EXPECT_TRUE(parse(fmt, "+123456", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 25, 4), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 25, 4), utc), tp);
EXPECT_FALSE(parse("%Ez", "-12345", utc, &tp)); EXPECT_FALSE(parse(fmt, "-12345", utc, &tp));
// %E*z against +-HH:MM:SS. EXPECT_TRUE(parse(fmt, "+00:00", utc, &tp));
EXPECT_TRUE(parse("%E*z", "+00:00:00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "-12:34:56", utc, &tp)); EXPECT_TRUE(parse(fmt, "-12:34", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 56), utc), tp);
EXPECT_TRUE(parse("%E*z", "+12:34:56", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 25, 4), utc), tp);
EXPECT_FALSE(parse("%E*z", "-12:34:5", utc, &tp));
// %E*z against +-HHMMSS.
EXPECT_TRUE(parse("%E*z", "+000000", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "-123456", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 56), utc), tp);
EXPECT_TRUE(parse("%E*z", "+123456", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 25, 4), utc), tp);
EXPECT_FALSE(parse("%E*z", "-12345", utc, &tp));
// %E*z against +-HH:MM.
EXPECT_TRUE(parse("%E*z", "+00:00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "-12:34", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "+12:34", utc, &tp)); EXPECT_TRUE(parse(fmt, "+12:34", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp);
EXPECT_FALSE(parse("%E*z", "-12:3", utc, &tp)); EXPECT_FALSE(parse(fmt, "-12:3", utc, &tp));
// %E*z against +-HHMM. EXPECT_TRUE(parse(fmt, "+0000", utc, &tp));
EXPECT_TRUE(parse("%E*z", "+0000", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "-1234", utc, &tp)); EXPECT_TRUE(parse(fmt, "-1234", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 34, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "+1234", utc, &tp)); EXPECT_TRUE(parse(fmt, "+1234", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 11, 26, 0), utc), tp);
EXPECT_FALSE(parse("%E*z", "-123", utc, &tp)); EXPECT_FALSE(parse(fmt, "-123", utc, &tp));
// %E*z against +-HH. EXPECT_TRUE(parse(fmt, "+00", utc, &tp));
EXPECT_TRUE(parse("%E*z", "+00", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 0, 0, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "-12", utc, &tp)); EXPECT_TRUE(parse(fmt, "-12", utc, &tp));
EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1970, 1, 1, 12, 0, 0), utc), tp);
EXPECT_TRUE(parse("%E*z", "+12", utc, &tp)); EXPECT_TRUE(parse(fmt, "+12", utc, &tp));
EXPECT_EQ(convert(civil_second(1969, 12, 31, 12, 0, 0), utc), tp); EXPECT_EQ(convert(civil_second(1969, 12, 31, 12, 0, 0), utc), tp);
EXPECT_FALSE(parse("%E*z", "-1", utc, &tp)); EXPECT_FALSE(parse(fmt, "-1", utc, &tp));
}
} }
TEST(Parse, ExtendedYears) { TEST(Parse, ExtendedYears) {