refactor(tvix/eval): reorder bytecode operations match by frequency

This reorders the operations in the VM's main `match` statement while
evaluating bytecode according to the frequency with which these
operations appear in some nixpkgs evaluations.

I used raw data that looks like this:
https://gist.github.com/tazjin/63d0788a78eb8575b04defaad4ef610d

This has a small but noticeable impact on evaluation performance.

No operations have changed in any way, this is purely moving code
around.

Change-Id: Iaa4ef4f0577e98144e8905fec88149c41e8c315c
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8262
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: flokli <flokli@flokli.de>
Tested-by: BuildkiteCI
This commit is contained in:
Vincent Ambo 2023-03-12 01:21:05 +03:00 committed by tazjin
parent c37e41d583
commit 94513525b9

View file

@ -382,8 +382,54 @@ impl<'o> VM<'o> {
let op = frame.inc_ip(); let op = frame.inc_ip();
self.observer.observe_execute_op(frame.ip, &op, &self.stack); self.observer.observe_execute_op(frame.ip, &op, &self.stack);
// TODO: might be useful to reorder ops with most frequent ones first
match op { match op {
OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => {
let blueprint = match &frame.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
let thunk = if matches!(op, OpCode::OpThunkClosure(_)) {
debug_assert!(
upvalue_count > 0,
"OpThunkClosure should not be called for plain lambdas"
);
Thunk::new_closure(blueprint)
} else {
Thunk::new_suspended(blueprint, frame.current_light_span())
};
let upvalues = thunk.upvalues_mut();
self.stack.push(Value::Thunk(thunk.clone()));
// From this point on we internally mutate the
// upvalues. The closure (if `is_closure`) is
// already in its stack slot, which means that it
// can capture itself as an upvalue for
// self-recursion.
self.populate_upvalues(&mut frame, upvalue_count, upvalues)?;
}
OpCode::OpForce => {
if let Some(Value::Thunk(_)) = self.stack.last() {
let thunk = match self.stack_pop() {
Value::Thunk(t) => t,
_ => unreachable!(),
};
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("force", gen_span, |co| thunk.force(co));
return Ok(false);
}
}
OpCode::OpGetUpvalue(upv_idx) => {
let value = frame.upvalue(upv_idx).clone();
self.stack.push(value);
}
// Discard the current frame. // Discard the current frame.
OpCode::OpReturn => { OpCode::OpReturn => {
return Ok(true); return Ok(true);
@ -394,10 +440,250 @@ impl<'o> VM<'o> {
self.stack.push(c); self.stack.push(c);
} }
OpCode::OpCall => {
let callable = self.stack_pop();
self.call_value(frame.current_light_span(), Some(frame), callable)?;
// exit this loop and let the outer loop enter the new call
return Ok(true);
}
// Remove the given number of elements from the stack,
// but retain the top value.
OpCode::OpCloseScope(Count(count)) => {
// Immediately move the top value into the right
// position.
let target_idx = self.stack.len() - 1 - count;
self.stack[target_idx] = self.stack_pop();
// Then drop the remaining values.
for _ in 0..(count - 1) {
self.stack.pop();
}
}
OpCode::OpClosure(idx) => {
let blueprint = match &frame.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
debug_assert!(
upvalue_count > 0,
"OpClosure should not be called for plain lambdas"
);
let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count);
self.populate_upvalues(&mut frame, upvalue_count, &mut upvalues)?;
self.stack
.push(Value::Closure(Rc::new(Closure::new_with_upvalues(
Rc::new(upvalues),
blueprint,
))));
}
OpCode::OpAttrsSelect => {
let key = self.stack_pop().to_str().with_span(&frame)?;
let attrs = self.stack_pop().to_attrs().with_span(&frame)?;
match attrs.select(key.as_str()) {
Some(value) => self.stack.push(value.clone()),
None => {
return Err(frame.error(ErrorKind::AttributeNotFound {
name: key.as_str().to_string(),
}))
}
}
}
OpCode::OpJumpIfFalse(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if !self.stack_peek(0).as_bool().with_span(&frame)? {
frame.ip += offset;
}
}
OpCode::OpPop => { OpCode::OpPop => {
self.stack.pop(); self.stack.pop();
} }
OpCode::OpAttrsTrySelect => {
let key = self.stack_pop().to_str().with_span(&frame)?;
let value = match self.stack_pop() {
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
Some(value) => value.clone(),
None => Value::AttrNotFound,
},
_ => Value::AttrNotFound,
};
self.stack.push(value);
}
OpCode::OpGetLocal(StackIdx(local_idx)) => {
let idx = frame.stack_offset + local_idx;
self.stack.push(self.stack[idx].clone());
}
OpCode::OpJumpIfNotFound(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if matches!(self.stack_peek(0), Value::AttrNotFound) {
self.stack_pop();
frame.ip += offset;
}
}
OpCode::OpJump(JumpOffset(offset)) => {
debug_assert!(offset != 0);
frame.ip += offset;
}
OpCode::OpEqual => {
let b = self.stack_pop();
let a = self.stack_pop();
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("nix_eq", gen_span, |co| {
a.nix_eq(b, co, PointerEquality::ForbidAll)
});
return Ok(false);
}
// These assertion operations error out if the stack
// top is not of the expected type. This is necessary
// to implement some specific behaviours of Nix
// exactly.
OpCode::OpAssertBool => {
let val = self.stack_peek(0);
if !val.is_bool() {
return Err(frame.error(ErrorKind::TypeError {
expected: "bool",
actual: val.type_of(),
}));
}
}
OpCode::OpAttrs(Count(count)) => self.run_attrset(&frame, count)?,
OpCode::OpAttrsUpdate => {
let rhs = self.stack_pop().to_attrs().with_span(&frame)?;
let lhs = self.stack_pop().to_attrs().with_span(&frame)?;
self.stack.push(Value::attrs(lhs.update(*rhs)))
}
OpCode::OpInvert => {
let v = self.stack_pop().as_bool().with_span(&frame)?;
self.stack.push(Value::Bool(!v));
}
OpCode::OpList(Count(count)) => {
let list =
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
self.stack.push(Value::List(list));
}
OpCode::OpJumpIfTrue(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if self.stack_peek(0).as_bool().with_span(&frame)? {
frame.ip += offset;
}
}
OpCode::OpHasAttr => {
let key = self.stack_pop().to_str().with_span(&frame)?;
let result = match self.stack_pop() {
Value::Attrs(attrs) => attrs.contains(key.as_str()),
// Nix allows use of `?` on non-set types, but
// always returns false in those cases.
_ => false,
};
self.stack.push(Value::Bool(result));
}
OpCode::OpConcat => {
let rhs = self.stack_pop().to_list().with_span(&frame)?.into_inner();
let lhs = self.stack_pop().to_list().with_span(&frame)?.into_inner();
self.stack.push(Value::List(NixList::from(lhs + rhs)))
}
OpCode::OpResolveWith => {
let ident = self.stack_pop().to_str().with_span(&frame)?;
// Re-enqueue this frame.
let op_span = frame.current_light_span();
self.push_call_frame(span, frame);
// Construct a generator frame doing the lookup in constant
// stack space.
let with_stack_len = self.with_stack.len();
let closed_with_stack_len = self
.last_call_frame()
.map(|frame| frame.upvalues.with_stack_len())
.unwrap_or(0);
self.enqueue_generator("resolve_with", op_span, |co| {
resolve_with(
co,
ident.as_str().to_owned(),
with_stack_len,
closed_with_stack_len,
)
});
return Ok(false);
}
OpCode::OpFinalise(StackIdx(idx)) => {
match &self.stack[frame.stack_offset + idx] {
Value::Closure(_) => panic!("attempted to finalise a closure"),
Value::Thunk(thunk) => thunk.finalise(&self.stack[frame.stack_offset..]),
// In functions with "formals" attributes, it is
// possible for `OpFinalise` to be called on a
// non-capturing value, in which case it is a no-op.
//
// TODO: detect this in some phase and skip the finalise; fail here
_ => { /* TODO: panic here again to catch bugs */ }
}
}
OpCode::OpCoerceToString => {
let value = self.stack_pop();
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("coerce_to_string", gen_span, |co| {
value.coerce_to_string(co, CoercionKind::Weak)
});
return Ok(false);
}
OpCode::OpInterpolate(Count(count)) => self.run_interpolate(&frame, count)?,
OpCode::OpValidateClosedFormals => {
let formals = frame.lambda.formals.as_ref().expect(
"OpValidateClosedFormals called within the frame of a lambda without formals",
);
let args = self.stack_peek(0).to_attrs().with_span(&frame)?;
for arg in args.keys() {
if !formals.contains(arg) {
return Err(frame.error(ErrorKind::UnexpectedArgument {
arg: arg.clone(),
formals_span: formals.span,
}));
}
}
}
OpCode::OpAdd => { OpCode::OpAdd => {
let b = self.stack_pop(); let b = self.stack_pop();
let a = self.stack_pop(); let a = self.stack_pop();
@ -442,11 +728,6 @@ impl<'o> VM<'o> {
self.stack.push(result); self.stack.push(result);
} }
OpCode::OpInvert => {
let v = self.stack_pop().as_bool().with_span(&frame)?;
self.stack.push(Value::Bool(!v));
}
OpCode::OpNegate => match self.stack_pop() { OpCode::OpNegate => match self.stack_pop() {
Value::Integer(i) => self.stack.push(Value::Integer(-i)), Value::Integer(i) => self.stack.push(Value::Integer(-i)),
Value::Float(f) => self.stack.push(Value::Float(-f)), Value::Float(f) => self.stack.push(Value::Float(-f)),
@ -458,116 +739,11 @@ impl<'o> VM<'o> {
} }
}, },
OpCode::OpEqual => {
let b = self.stack_pop();
let a = self.stack_pop();
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("nix_eq", gen_span, |co| {
a.nix_eq(b, co, PointerEquality::ForbidAll)
});
return Ok(false);
}
OpCode::OpLess => cmp_op!(self, frame, span, <), OpCode::OpLess => cmp_op!(self, frame, span, <),
OpCode::OpLessOrEq => cmp_op!(self, frame, span, <=), OpCode::OpLessOrEq => cmp_op!(self, frame, span, <=),
OpCode::OpMore => cmp_op!(self, frame, span, >), OpCode::OpMore => cmp_op!(self, frame, span, >),
OpCode::OpMoreOrEq => cmp_op!(self, frame, span, >=), OpCode::OpMoreOrEq => cmp_op!(self, frame, span, >=),
OpCode::OpAttrs(Count(count)) => self.run_attrset(&frame, count)?,
OpCode::OpAttrsUpdate => {
let rhs = self.stack_pop().to_attrs().with_span(&frame)?;
let lhs = self.stack_pop().to_attrs().with_span(&frame)?;
self.stack.push(Value::attrs(lhs.update(*rhs)))
}
OpCode::OpAttrsSelect => {
let key = self.stack_pop().to_str().with_span(&frame)?;
let attrs = self.stack_pop().to_attrs().with_span(&frame)?;
match attrs.select(key.as_str()) {
Some(value) => self.stack.push(value.clone()),
None => {
return Err(frame.error(ErrorKind::AttributeNotFound {
name: key.as_str().to_string(),
}))
}
}
}
OpCode::OpAttrsTrySelect => {
let key = self.stack_pop().to_str().with_span(&frame)?;
let value = match self.stack_pop() {
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
Some(value) => value.clone(),
None => Value::AttrNotFound,
},
_ => Value::AttrNotFound,
};
self.stack.push(value);
}
OpCode::OpHasAttr => {
let key = self.stack_pop().to_str().with_span(&frame)?;
let result = match self.stack_pop() {
Value::Attrs(attrs) => attrs.contains(key.as_str()),
// Nix allows use of `?` on non-set types, but
// always returns false in those cases.
_ => false,
};
self.stack.push(Value::Bool(result));
}
OpCode::OpValidateClosedFormals => {
let formals = frame.lambda.formals.as_ref().expect(
"OpValidateClosedFormals called within the frame of a lambda without formals",
);
let args = self.stack_peek(0).to_attrs().with_span(&frame)?;
for arg in args.keys() {
if !formals.contains(arg) {
return Err(frame.error(ErrorKind::UnexpectedArgument {
arg: arg.clone(),
formals_span: formals.span,
}));
}
}
}
OpCode::OpList(Count(count)) => {
let list =
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
self.stack.push(Value::List(list));
}
OpCode::OpConcat => {
let rhs = self.stack_pop().to_list().with_span(&frame)?.into_inner();
let lhs = self.stack_pop().to_list().with_span(&frame)?.into_inner();
self.stack.push(Value::List(NixList::from(lhs + rhs)))
}
OpCode::OpInterpolate(Count(count)) => self.run_interpolate(&frame, count)?,
OpCode::OpCoerceToString => {
let value = self.stack_pop();
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("coerce_to_string", gen_span, |co| {
value.coerce_to_string(co, CoercionKind::Weak)
});
return Ok(false);
}
OpCode::OpFindFile => match self.stack_pop() { OpCode::OpFindFile => match self.stack_pop() {
Value::UnresolvedPath(path) => { Value::UnresolvedPath(path) => {
let resolved = self let resolved = self
@ -600,193 +776,16 @@ impl<'o> VM<'o> {
} }
}, },
OpCode::OpJump(JumpOffset(offset)) => {
debug_assert!(offset != 0);
frame.ip += offset;
}
OpCode::OpJumpIfTrue(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if self.stack_peek(0).as_bool().with_span(&frame)? {
frame.ip += offset;
}
}
OpCode::OpJumpIfFalse(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if !self.stack_peek(0).as_bool().with_span(&frame)? {
frame.ip += offset;
}
}
OpCode::OpJumpIfNotFound(JumpOffset(offset)) => {
debug_assert!(offset != 0);
if matches!(self.stack_peek(0), Value::AttrNotFound) {
self.stack_pop();
frame.ip += offset;
}
}
// These assertion operations error out if the stack
// top is not of the expected type. This is necessary
// to implement some specific behaviours of Nix
// exactly.
OpCode::OpAssertBool => {
let val = self.stack_peek(0);
if !val.is_bool() {
return Err(frame.error(ErrorKind::TypeError {
expected: "bool",
actual: val.type_of(),
}));
}
}
// Remove the given number of elements from the stack,
// but retain the top value.
OpCode::OpCloseScope(Count(count)) => {
// Immediately move the top value into the right
// position.
let target_idx = self.stack.len() - 1 - count;
self.stack[target_idx] = self.stack_pop();
// Then drop the remaining values.
for _ in 0..(count - 1) {
self.stack.pop();
}
}
OpCode::OpGetLocal(StackIdx(local_idx)) => {
let idx = frame.stack_offset + local_idx;
self.stack.push(self.stack[idx].clone());
}
OpCode::OpPushWith(StackIdx(idx)) => self.with_stack.push(frame.stack_offset + idx), OpCode::OpPushWith(StackIdx(idx)) => self.with_stack.push(frame.stack_offset + idx),
OpCode::OpPopWith => { OpCode::OpPopWith => {
self.with_stack.pop(); self.with_stack.pop();
} }
OpCode::OpResolveWith => {
let ident = self.stack_pop().to_str().with_span(&frame)?;
// Re-enqueue this frame.
let op_span = frame.current_light_span();
self.push_call_frame(span, frame);
// Construct a generator frame doing the lookup in constant
// stack space.
let with_stack_len = self.with_stack.len();
let closed_with_stack_len = self
.last_call_frame()
.map(|frame| frame.upvalues.with_stack_len())
.unwrap_or(0);
self.enqueue_generator("resolve_with", op_span, |co| {
resolve_with(
co,
ident.as_str().to_owned(),
with_stack_len,
closed_with_stack_len,
)
});
return Ok(false);
}
OpCode::OpAssertFail => { OpCode::OpAssertFail => {
return Err(frame.error(ErrorKind::AssertionFailed)); return Err(frame.error(ErrorKind::AssertionFailed));
} }
OpCode::OpCall => {
let callable = self.stack_pop();
self.call_value(frame.current_light_span(), Some(frame), callable)?;
// exit this loop and let the outer loop enter the new call
return Ok(true);
}
OpCode::OpGetUpvalue(upv_idx) => {
let value = frame.upvalue(upv_idx).clone();
self.stack.push(value);
}
OpCode::OpClosure(idx) => {
let blueprint = match &frame.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
debug_assert!(
upvalue_count > 0,
"OpClosure should not be called for plain lambdas"
);
let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count);
self.populate_upvalues(&mut frame, upvalue_count, &mut upvalues)?;
self.stack
.push(Value::Closure(Rc::new(Closure::new_with_upvalues(
Rc::new(upvalues),
blueprint,
))));
}
OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => {
let blueprint = match &frame.chunk()[idx] {
Value::Blueprint(lambda) => lambda.clone(),
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
};
let upvalue_count = blueprint.upvalue_count;
let thunk = if matches!(op, OpCode::OpThunkClosure(_)) {
debug_assert!(
upvalue_count > 0,
"OpThunkClosure should not be called for plain lambdas"
);
Thunk::new_closure(blueprint)
} else {
Thunk::new_suspended(blueprint, frame.current_light_span())
};
let upvalues = thunk.upvalues_mut();
self.stack.push(Value::Thunk(thunk.clone()));
// From this point on we internally mutate the
// upvalues. The closure (if `is_closure`) is
// already in its stack slot, which means that it
// can capture itself as an upvalue for
// self-recursion.
self.populate_upvalues(&mut frame, upvalue_count, upvalues)?;
}
OpCode::OpForce => {
if let Some(Value::Thunk(_)) = self.stack.last() {
let thunk = match self.stack_pop() {
Value::Thunk(t) => t,
_ => unreachable!(),
};
let gen_span = frame.current_light_span();
self.push_call_frame(span, frame);
self.enqueue_generator("force", gen_span, |co| thunk.force(co));
return Ok(false);
}
}
OpCode::OpFinalise(StackIdx(idx)) => {
match &self.stack[frame.stack_offset + idx] {
Value::Closure(_) => panic!("attempted to finalise a closure"),
Value::Thunk(thunk) => thunk.finalise(&self.stack[frame.stack_offset..]),
// In functions with "formals" attributes, it is
// possible for `OpFinalise` to be called on a
// non-capturing value, in which case it is a no-op.
//
// TODO: detect this in some phase and skip the finalise; fail here
_ => { /* TODO: panic here again to catch bugs */ }
}
}
// Data-carrying operands should never be executed, // Data-carrying operands should never be executed,
// that is a critical error in the VM/compiler. // that is a critical error in the VM/compiler.
OpCode::DataStackIdx(_) OpCode::DataStackIdx(_)