Export of internal Abseil changes

--
38bc0644e17bf9fe4d78d3db92cd06f585b99ba7 by Andy Soffer <asoffer@google.com>:

Change benchmark to be cc_binary instead of cc_test, and fix a bug in the zipf_distribution benchmark in which arguments were passed in the wrong order.

PiperOrigin-RevId: 262227159

--
3b5411d8f285a758a1713f7ef0dbfa3518f2b38b by CJ Johnson <johnsoncj@google.com>:

Updates Simple<*>() overload to match the name schema of the others

PiperOrigin-RevId: 262211217

--
0cb6812cb8b6e3bf0386b9354189ffcf46c4c094 by Andy Soffer <asoffer@google.com>:

Removing period in trailing namespace comments.

PiperOrigin-RevId: 262210952

--
c903feae3a881be81adf37e9fccd558ee3ed1e64 by CJ Johnson <johnsoncj@google.com>:

This is a cleanup on the public header of InlinedVector to be more presentable

PiperOrigin-RevId: 262207691

--
9a94384dc79cdcf38f6153894f337ebb744e2d76 by Tom Manshreck <shreck@google.com>:

Fix incorrect doc on operator()[] for flat_hash_set

PiperOrigin-RevId: 262206962

--
17e88ee10b727af82c04f8150b6d246eaac836cb by Derek Mauro <dmauro@google.com>:

Fix gcc-5 build error

PiperOrigin-RevId: 262198236
GitOrigin-RevId: 38bc0644e17bf9fe4d78d3db92cd06f585b99ba7
Change-Id: I77cababa47ba3ee8b6cebb2c2cfc9f60a331f6b7
This commit is contained in:
Abseil Team 2019-08-07 15:25:26 -07:00 committed by CJ Johnson
parent b49b8d16b6
commit 8efba58a3b
9 changed files with 248 additions and 259 deletions

View file

@ -55,9 +55,9 @@ struct FlatHashSetPolicy;
// following notable differences:
//
// * Requires keys that are CopyConstructible
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the set is provided a compatible heterogeneous
// hashing function and equality operator.
// * Supports heterogeneous lookup, through `find()` and `insert()`, provided
// that the set is provided a compatible heterogeneous hashing function and
// equality operator.
// * Invalidates any references and pointers to elements within the table after
// `rehash()`.
// * Contains a `capacity()` member function indicating the number of element

View file

@ -66,8 +66,7 @@ namespace absl {
// designed to cover the same API footprint as covered by `std::vector`.
template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
static_assert(
N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");
static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
using Storage = inlined_vector_internal::Storage<T, N, A>;
using rvalue_reference = typename Storage::rvalue_reference;
@ -84,7 +83,6 @@ class InlinedVector {
template <typename Iterator>
using EnableIfAtLeastForwardIterator = absl::enable_if_t<
inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
template <typename Iterator>
using DisableIfAtLeastForwardIterator = absl::enable_if_t<
!inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
@ -110,7 +108,7 @@ class InlinedVector {
// Creates an empty inlined vector with a value-initialized allocator.
InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
// Creates an empty inlined vector with a specified allocator.
// Creates an empty inlined vector with a copy of `alloc`.
explicit InlinedVector(const allocator_type& alloc) noexcept
: storage_(alloc) {}
@ -128,7 +126,7 @@ class InlinedVector {
storage_.Initialize(CopyValueAdapter(v), n);
}
// Creates an inlined vector of copies of the values in `list`.
// Creates an inlined vector with copies of the elements of `list`.
InlinedVector(std::initializer_list<value_type> list,
const allocator_type& alloc = allocator_type())
: InlinedVector(list.begin(), list.end(), alloc) {}
@ -136,7 +134,7 @@ class InlinedVector {
// Creates an inlined vector with elements constructed from the provided
// forward iterator range [`first`, `last`).
//
// NOTE: The `enable_if` prevents ambiguous interpretation between a call to
// NOTE: the `enable_if` prevents ambiguous interpretation between a call to
// this constructor with two integral arguments and a call to the above
// `InlinedVector(size_type, const_reference)` constructor.
template <typename ForwardIterator,
@ -158,11 +156,12 @@ class InlinedVector {
std::copy(first, last, std::back_inserter(*this));
}
// Creates a copy of an `other` inlined vector using `other`'s allocator.
// Creates an inlined vector by copying the contents of `other` using
// `other`'s allocator.
InlinedVector(const InlinedVector& other)
: InlinedVector(other, *other.storage_.GetAllocPtr()) {}
// Creates a copy of an `other` inlined vector using a specified allocator.
// Creates an inlined vector by copying the contents of `other` using `alloc`.
InlinedVector(const InlinedVector& other, const allocator_type& alloc)
: storage_(alloc) {
if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
@ -173,67 +172,66 @@ class InlinedVector {
}
}
// Creates an inlined vector by moving in the contents of an `other` inlined
// vector without performing any allocations. If `other` contains allocated
// memory, the newly-created instance will take ownership of that memory
// (leaving `other` empty). However, if `other` does not contain allocated
// memory (i.e. is inlined), the new inlined vector will perform element-wise
// move construction of `other`'s elements.
// Creates an inlined vector by moving in the contents of `other` without
// allocating. If `other` contains allocated memory, the newly-created inlined
// vector will take ownership of that memory. However, if `other` does not
// contain allocated memory, the newly-created inlined vector will perform
// element-wise move construction of the contents of `other`.
//
// NOTE: since no allocation is performed for the inlined vector in either
// case, the `noexcept(...)` specification depends on whether moving the
// underlying objects can throw. We assume:
// a) Move constructors should only throw due to allocation failure.
// b) If `value_type`'s move constructor allocates, it uses the same
// allocation function as the `InlinedVector`'s allocator. Thus, the move
// constructor is non-throwing if the allocator is non-throwing or
// `value_type`'s move constructor is specified as `noexcept`.
// underlying objects can throw. It is assumed assumed that...
// a) move constructors should only throw due to allocation failure.
// b) if `value_type`'s move constructor allocates, it uses the same
// allocation function as the inlined vector's allocator.
// Thus, the move constructor is non-throwing if the allocator is non-throwing
// or `value_type`'s move constructor is specified as `noexcept`.
InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value)
: storage_(*other.storage_.GetAllocPtr()) {
if (IsMemcpyOk::value) {
storage_.MemcpyFrom(other.storage_);
other.storage_.SetInlinedSize(0);
} else if (other.storage_.GetIsAllocated()) {
storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
other.storage_.GetAllocatedCapacity());
storage_.SetAllocatedSize(other.storage_.GetSize());
other.storage_.SetInlinedSize(0);
} else {
IteratorValueAdapter<MoveIterator> other_values(
MoveIterator(other.storage_.GetInlinedData()));
inlined_vector_internal::ConstructElements(
storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
other.storage_.GetSize());
storage_.SetInlinedSize(other.storage_.GetSize());
}
}
// Creates an inlined vector by moving in the contents of an `other` inlined
// vector, performing allocations with the specified `alloc` allocator. If
// `other`'s allocator is not equal to `alloc` and `other` contains allocated
// memory, this move constructor will create a new allocation.
// Creates an inlined vector by moving in the contents of `other` with a copy
// of `alloc`.
//
// NOTE: since allocation is performed in this case, this constructor can
// only be `noexcept` if the specified allocator is also `noexcept`. If this
// is the case, or if `other` contains allocated memory, this constructor
// performs element-wise move construction of its contents.
//
// Only in the case where `other`'s allocator is equal to `alloc` and `other`
// contains allocated memory will the newly created inlined vector take
// ownership of `other`'s allocated memory.
// NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
// contains allocated memory, this move constructor will still allocate. Since
// allocation is performed, this constructor can only be `noexcept` if the
// specified allocator is also `noexcept`.
InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
absl::allocator_is_nothrow<allocator_type>::value)
: storage_(alloc) {
if (IsMemcpyOk::value) {
storage_.MemcpyFrom(other.storage_);
other.storage_.SetInlinedSize(0);
} else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
other.storage_.GetIsAllocated()) {
storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
other.storage_.GetAllocatedCapacity());
storage_.SetAllocatedSize(other.storage_.GetSize());
other.storage_.SetInlinedSize(0);
} else {
storage_.Initialize(
@ -250,7 +248,7 @@ class InlinedVector {
// `InlinedVector::empty()`
//
// Checks if the inlined vector has no elements.
// Returns whether the inlined vector contains no elements.
bool empty() const noexcept { return !size(); }
// `InlinedVector::size()`
@ -260,23 +258,23 @@ class InlinedVector {
// `InlinedVector::max_size()`
//
// Returns the maximum number of elements the vector can hold.
// Returns the maximum number of elements the inlined vector can hold.
size_type max_size() const noexcept {
// One bit of the size storage is used to indicate whether the inlined
// vector is allocated. As a result, the maximum size of the container that
// we can express is half of the max for `size_type`.
// vector contains allocated memory. As a result, the maximum size that the
// inlined vector can express is half of the max for `size_type`.
return (std::numeric_limits<size_type>::max)() / 2;
}
// `InlinedVector::capacity()`
//
// Returns the number of elements that can be stored in the inlined vector
// without requiring a reallocation of underlying memory.
// Returns the number of elements that could be stored in the inlined vector
// without requiring a reallocation.
//
// NOTE: For most inlined vectors, `capacity()` should equal the template
// parameter `N`. For inlined vectors which exceed this capacity, they
// will no longer be inlined and `capacity()` will equal its capacity on the
// allocated heap.
// NOTE: for most inlined vectors, `capacity()` should be equal to the
// template parameter `N`. For inlined vectors which exceed this capacity,
// they will no longer be inlined and `capacity()` will equal the capactity of
// the allocated memory.
size_type capacity() const noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
: storage_.GetInlinedCapacity();
@ -284,56 +282,68 @@ class InlinedVector {
// `InlinedVector::data()`
//
// Returns a `pointer` to elements of the inlined vector. This pointer can be
// used to access and modify the contained elements.
// Only results within the range [`0`, `size()`) are defined.
// Returns a `pointer` to the elements of the inlined vector. This pointer
// can be used to access and modify the contained elements.
//
// NOTE: only elements within [`data()`, `data() + size()`) are valid.
pointer data() noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
// Overload of `InlinedVector::data()` to return a `const_pointer` to elements
// of the inlined vector. This pointer can be used to access (but not modify)
// the contained elements.
// Overload of `InlinedVector::data()` that returns a `const_pointer` to the
// elements of the inlined vector. This pointer can be used to access but not
// modify the contained elements.
//
// NOTE: only elements within [`data()`, `data() + size()`) are valid.
const_pointer data() const noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
// `InlinedVector::operator[]()`
//
// Returns a `reference` to the `i`th element of the inlined vector using the
// array operator.
reference operator[](size_type i) {
assert(i < size());
return data()[i];
}
// Overload of `InlinedVector::operator[]()` to return a `const_reference` to
// the `i`th element of the inlined vector.
const_reference operator[](size_type i) const {
assert(i < size());
return data()[i];
}
// `InlinedVector::at()`
// `InlinedVector::operator[](...)`
//
// Returns a `reference` to the `i`th element of the inlined vector.
reference operator[](size_type i) {
assert(i < size());
return data()[i];
}
// Overload of `InlinedVector::operator[](...)` that returns a
// `const_reference` to the `i`th element of the inlined vector.
const_reference operator[](size_type i) const {
assert(i < size());
return data()[i];
}
// `InlinedVector::at(...)`
//
// Returns a `reference` to the `i`th element of the inlined vector.
//
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
// in both debug and non-debug builds, `std::out_of_range` will be thrown.
reference at(size_type i) {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type)` failed bounds check");
}
return data()[i];
}
// Overload of `InlinedVector::at()` to return a `const_reference` to the
// `i`th element of the inlined vector.
// Overload of `InlinedVector::at(...)` that returns a `const_reference` to
// the `i`th element of the inlined vector.
//
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
// in both debug and non-debug builds, `std::out_of_range` will be thrown.
const_reference at(size_type i) const {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type) const` failed bounds check");
}
return data()[i];
}
@ -342,13 +352,15 @@ class InlinedVector {
// Returns a `reference` to the first element of the inlined vector.
reference front() {
assert(!empty());
return at(0);
}
// Overload of `InlinedVector::front()` returns a `const_reference` to the
// first element of the inlined vector.
// Overload of `InlinedVector::front()` that returns a `const_reference` to
// the first element of the inlined vector.
const_reference front() const {
assert(!empty());
return at(0);
}
@ -357,13 +369,15 @@ class InlinedVector {
// Returns a `reference` to the last element of the inlined vector.
reference back() {
assert(!empty());
return at(size() - 1);
}
// Overload of `InlinedVector::back()` to return a `const_reference` to the
// Overload of `InlinedVector::back()` that returns a `const_reference` to the
// last element of the inlined vector.
const_reference back() const {
assert(!empty());
return at(size() - 1);
}
@ -372,7 +386,7 @@ class InlinedVector {
// Returns an `iterator` to the beginning of the inlined vector.
iterator begin() noexcept { return data(); }
// Overload of `InlinedVector::begin()` to return a `const_iterator` to
// Overload of `InlinedVector::begin()` that returns a `const_iterator` to
// the beginning of the inlined vector.
const_iterator begin() const noexcept { return data(); }
@ -381,7 +395,7 @@ class InlinedVector {
// Returns an `iterator` to the end of the inlined vector.
iterator end() noexcept { return data() + size(); }
// Overload of `InlinedVector::end()` to return a `const_iterator` to the
// Overload of `InlinedVector::end()` that returns a `const_iterator` to the
// end of the inlined vector.
const_iterator end() const noexcept { return data() + size(); }
@ -400,7 +414,7 @@ class InlinedVector {
// Returns a `reverse_iterator` from the end of the inlined vector.
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
// Overload of `InlinedVector::rbegin()` to return a
// Overload of `InlinedVector::rbegin()` that returns a
// `const_reverse_iterator` from the end of the inlined vector.
const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
@ -411,7 +425,7 @@ class InlinedVector {
// Returns a `reverse_iterator` from the beginning of the inlined vector.
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
// Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
// Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
// from the beginning of the inlined vector.
const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
@ -430,71 +444,75 @@ class InlinedVector {
// `InlinedVector::get_allocator()`
//
// Returns a copy of the allocator of the inlined vector.
// Returns a copy of the inlined vector's allocator.
allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Mutators
// ---------------------------------------------------------------------------
// `InlinedVector::operator=()`
// `InlinedVector::operator=(...)`
//
// Replaces the contents of the inlined vector with copies of the elements in
// the provided `std::initializer_list`.
// Replaces the elements of the inlined vector with copies of the elements of
// `list`.
InlinedVector& operator=(std::initializer_list<value_type> list) {
assign(list.begin(), list.end());
return *this;
}
// Overload of `InlinedVector::operator=()` to replace the contents of the
// inlined vector with the contents of `other`.
// Overload of `InlinedVector::operator=(...)` that replaces the elements of
// the inlined vector with copies of the elements of `other`.
InlinedVector& operator=(const InlinedVector& other) {
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
const_pointer other_data = other.data();
assign(other_data, other_data + other.size());
}
return *this;
}
// Overload of `InlinedVector::operator=()` to replace the contents of the
// inlined vector with the contents of `other`.
// Overload of `InlinedVector::operator=(...)` that moves the elements of
// `other` into the inlined vector.
//
// NOTE: As a result of calling this overload, `other` may be empty or it's
// contents may be left in a moved-from state.
// NOTE: as a result of calling this overload, `other` is left in a valid but
// unspecified state.
InlinedVector& operator=(InlinedVector&& other) {
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
size());
storage_.DeallocateIfAllocated();
storage_.MemcpyFrom(other.storage_);
other.storage_.SetInlinedSize(0);
} else {
storage_.Assign(IteratorValueAdapter<MoveIterator>(
MoveIterator(other.storage_.GetInlinedData())),
other.size());
}
}
return *this;
}
// `InlinedVector::assign()`
// `InlinedVector::assign(...)`
//
// Replaces the contents of the inlined vector with `n` copies of `v`.
void assign(size_type n, const_reference v) {
storage_.Assign(CopyValueAdapter(v), n);
}
// Overload of `InlinedVector::assign()` to replace the contents of the
// inlined vector with copies of the values in the provided
// `std::initializer_list`.
// Overload of `InlinedVector::assign(...)` that replaces the contents of the
// inlined vector with copies of the elements of `list`.
void assign(std::initializer_list<value_type> list) {
assign(list.begin(), list.end());
}
// Overload of `InlinedVector::assign()` to replace the contents of the
// inlined vector with the forward iterator range [`first`, `last`).
// Overload of `InlinedVector::assign(...)` to replace the contents of the
// inlined vector with the range [`first`, `last`).
//
// NOTE: this overload is for iterators that are "forward" category or better.
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
void assign(ForwardIterator first, ForwardIterator last) {
@ -502,8 +520,10 @@ class InlinedVector {
std::distance(first, last));
}
// Overload of `InlinedVector::assign()` to replace the contents of the
// inlined vector with the input iterator range [`first`, `last`).
// Overload of `InlinedVector::assign(...)` to replace the contents of the
// inlined vector with the range [`first`, `last`).
//
// NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
void assign(InputIterator first, InputIterator last) {
@ -517,36 +537,39 @@ class InlinedVector {
std::copy(first, last, std::back_inserter(*this));
}
// `InlinedVector::resize()`
// `InlinedVector::resize(...)`
//
// Resizes the inlined vector to contain `n` elements. If `n` is smaller than
// the inlined vector's current size, extra elements are destroyed. If `n` is
// larger than the initial size, new elements are value-initialized.
// Resizes the inlined vector to contain `n` elements.
//
// NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
// is larger than `size()`, new elements are value-initialized.
void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); }
// Overload of `InlinedVector::resize()` to resize the inlined vector to
// contain `n` elements where, if `n` is larger than `size()`, the new values
// will be copy-constructed from `v`.
// Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
// contain `n` elements.
//
// NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
// is larger than `size()`, new elements are copied-constructed from `v`.
void resize(size_type n, const_reference v) {
storage_.Resize(CopyValueAdapter(v), n);
}
// `InlinedVector::insert()`
// `InlinedVector::insert(...)`
//
// Copies `v` into `pos`, returning an `iterator` pointing to the newly
// Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
// inserted element.
iterator insert(const_iterator pos, const_reference v) {
return emplace(pos, v);
}
// Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning
// an iterator pointing to the newly inserted element.
// Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
// move semantics, returning an `iterator` to the newly inserted element.
iterator insert(const_iterator pos, rvalue_reference v) {
return emplace(pos, std::move(v));
}
// Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
// of `v` starting at `pos`. Returns an `iterator` pointing to the first of
// Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
// of `v` starting at `pos`, returning an `iterator` pointing to the first of
// the newly inserted elements.
iterator insert(const_iterator pos, size_type n, const_reference v) {
assert(pos >= begin());
@ -560,19 +583,18 @@ class InlinedVector {
}
}
// Overload of `InlinedVector::insert()` for copying the contents of the
// `std::initializer_list` into the vector starting at `pos`. Returns an
// `iterator` pointing to the first of the newly inserted elements.
// Overload of `InlinedVector::insert(...)` that inserts copies of the
// elements of `list` starting at `pos`, returning an `iterator` pointing to
// the first of the newly inserted elements.
iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
return insert(pos, list.begin(), list.end());
}
// Overload of `InlinedVector::insert()` for inserting elements constructed
// from the forward iterator range [`first`, `last`). Returns an `iterator`
// pointing to the first of the newly inserted elements.
// Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
// `last`) starting at `pos`, returning an `iterator` pointing to the first
// of the newly inserted elements.
//
// NOTE: The `enable_if` is intended to disambiguate the two three-argument
// overloads of `insert()`.
// NOTE: this overload is for iterators that are "forward" category or better.
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
iterator insert(const_iterator pos, ForwardIterator first,
@ -588,9 +610,11 @@ class InlinedVector {
}
}
// Overload of `InlinedVector::insert()` for inserting elements constructed
// from the input iterator range [`first`, `last`). Returns an `iterator`
// pointing to the first of the newly inserted elements.
// Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
// `last`) starting at `pos`, returning an `iterator` pointing to the first
// of the newly inserted elements.
//
// NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
@ -605,10 +629,10 @@ class InlinedVector {
return iterator(data() + index);
}
// `InlinedVector::emplace()`
// `InlinedVector::emplace(...)`
//
// Constructs and inserts an object in the inlined vector at the given `pos`,
// returning an `iterator` pointing to the newly emplaced element.
// Constructs and inserts an element using `args...` in the inlined vector at
// `pos`, returning an `iterator` pointing to the newly emplaced element.
template <typename... Args>
iterator emplace(const_iterator pos, Args&&... args) {
assert(pos >= begin());
@ -621,30 +645,29 @@ class InlinedVector {
1);
}
// `InlinedVector::emplace_back()`
// `InlinedVector::emplace_back(...)`
//
// Constructs and appends a new element to the end of the inlined vector,
// returning a `reference` to the emplaced element.
// Constructs and inserts an element using `args...` in the inlined vector at
// `end()`, returning a `reference` to the newly emplaced element.
template <typename... Args>
reference emplace_back(Args&&... args) {
return storage_.EmplaceBack(std::forward<Args>(args)...);
}
// `InlinedVector::push_back()`
// `InlinedVector::push_back(...)`
//
// Appends a copy of `v` to the end of the inlined vector.
// Inserts a copy of `v` in the inlined vector at `end()`.
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
// Overload of `InlinedVector::push_back()` for moving `v` into a newly
// appended element.
// Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
// using move semantics.
void push_back(rvalue_reference v) {
static_cast<void>(emplace_back(std::move(v)));
}
// `InlinedVector::pop_back()`
//
// Destroys the element at the end of the inlined vector and shrinks the size
// by `1` (unless the inlined vector is empty, in which case this is a no-op).
// Destroys the element at `back()`, reducing the size by `1`.
void pop_back() noexcept {
assert(!empty());
@ -652,12 +675,12 @@ class InlinedVector {
storage_.SubtractSize(1);
}
// `InlinedVector::erase()`
// `InlinedVector::erase(...)`
//
// Erases the element at `pos` of the inlined vector, returning an `iterator`
// pointing to the first element following the erased element.
// Erases the element at `pos`, returning an `iterator` pointing to where the
// erased element was located.
//
// NOTE: May return the end iterator, which is not dereferencable.
// NOTE: may return `end()`, which is not dereferencable.
iterator erase(const_iterator pos) {
assert(pos >= begin());
assert(pos < end());
@ -665,10 +688,11 @@ class InlinedVector {
return storage_.Erase(pos, pos + 1);
}
// Overload of `InlinedVector::erase()` for erasing all elements in the
// range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
// to the first element following the range erased or the end iterator if `to`
// was the end iterator.
// Overload of `InlinedVector::erase(...)` that erases every element in the
// range [`from`, `to`), returning an `iterator` pointing to where the first
// erased element was located.
//
// NOTE: may return `end()`, which is not dereferencable.
iterator erase(const_iterator from, const_iterator to) {
assert(from >= begin());
assert(from <= to);
@ -683,8 +707,8 @@ class InlinedVector {
// `InlinedVector::clear()`
//
// Destroys all elements in the inlined vector, sets the size of `0` and
// deallocates the heap allocation if the inlined vector was allocated.
// Destroys all elements in the inlined vector, setting the size to `0` and
// deallocating any held memory.
void clear() noexcept {
inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
size());
@ -692,37 +716,31 @@ class InlinedVector {
storage_.SetInlinedSize(0);
}
// `InlinedVector::reserve()`
// `InlinedVector::reserve(...)`
//
// Enlarges the underlying representation of the inlined vector so it can hold
// at least `n` elements. This method does not change `size()` or the actual
// contents of the vector.
//
// NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
// effects. Otherwise, `reserve()` will reallocate, performing an n-time
// element-wise move of everything contained.
// Ensures that there is enough room for at least `n` elements.
void reserve(size_type n) { storage_.Reserve(n); }
// `InlinedVector::shrink_to_fit()`
//
// Reduces memory usage by freeing unused memory. After this call, calls to
// Reduces memory usage by freeing unused memory. After being called, calls to
// `capacity()` will be equal to `max(N, size())`.
//
// If `size() <= N` and the elements are currently stored on the heap, they
// will be moved to the inlined storage and the heap memory will be
// deallocated.
// If `size() <= N` and the inlined vector contains allocated memory, the
// elements will all be moved to the inlined space and the allocated memory
// will be deallocated.
//
// If `size() > N` and `size() < capacity()` the elements will be moved to a
// smaller heap allocation.
// If `size() > N` and `size() < capacity()`, the elements will be moved to a
// smaller allocation.
void shrink_to_fit() {
if (storage_.GetIsAllocated()) {
storage_.ShrinkToFit();
}
}
// `InlinedVector::swap()`
// `InlinedVector::swap(...)`
//
// Swaps the contents of this inlined vector with the contents of `other`.
// Swaps the contents of the inlined vector with `other`.
void swap(InlinedVector& other) {
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
storage_.Swap(std::addressof(other.storage_));
@ -740,93 +758,86 @@ class InlinedVector {
// InlinedVector Non-Member Functions
// -----------------------------------------------------------------------------
// `swap()`
// `swap(...)`
//
// Swaps the contents of two inlined vectors. This convenience function
// simply calls `InlinedVector::swap()`.
// Swaps the contents of two inlined vectors.
template <typename T, size_t N, typename A>
void swap(absl::InlinedVector<T, N, A>& a,
absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
// `operator==()`
// `operator==(...)`
//
// Tests the equivalency of the contents of two inlined vectors.
// Tests for value-equality of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator==(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
auto a_size = a.size();
auto b_data = b.data();
auto b_size = b.size();
return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size);
return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
}
// `operator!=()`
// `operator!=(...)`
//
// Tests the inequality of the contents of two inlined vectors.
// Tests for value-inequality of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator!=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(a == b);
}
// `operator<()`
// `operator<(...)`
//
// Tests whether the contents of one inlined vector are less than the contents
// of another through a lexicographical comparison operation.
// Tests whether the value of an inlined vector is less than the value of
// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator<(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
auto a_size = a.size();
auto b_data = b.data();
auto b_size = b.size();
return std::lexicographical_compare(a_data, a_data + a_size, b_data,
b_data + b_size);
return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
b_data + b.size());
}
// `operator>()`
// `operator>(...)`
//
// Tests whether the contents of one inlined vector are greater than the
// contents of another through a lexicographical comparison operation.
// Tests whether the value of an inlined vector is greater than the value of
// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator>(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return b < a;
}
// `operator<=()`
// `operator<=(...)`
//
// Tests whether the contents of one inlined vector are less than or equal to
// the contents of another through a lexicographical comparison operation.
// Tests whether the value of an inlined vector is less than or equal to the
// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator<=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(b < a);
}
// `operator>=()`
// `operator>=(...)`
//
// Tests whether the contents of one inlined vector are greater than or equal to
// the contents of another through a lexicographical comparison operation.
// Tests whether the value of an inlined vector is greater than or equal to the
// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator>=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(a < b);
}
// `AbslHashValue()`
// `AbslHashValue(...)`
//
// Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally
// call this function directly.
template <typename H, typename TheT, size_t TheN, typename TheA>
H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) {
auto a_data = a.data();
auto a_size = a.size();
return H::combine(H::combine_contiguous(std::move(h), a_data, a_size),
a_size);
// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
// call this directly.
template <typename H, typename T, size_t N, typename A>
H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
auto size = a.size();
return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
}
} // namespace absl

View file

@ -71,14 +71,12 @@ template <typename AllocatorType, typename ValueType, typename ValueAdapter,
typename SizeType>
void ConstructElements(AllocatorType* alloc_ptr, ValueType* construct_first,
ValueAdapter* values_ptr, SizeType construct_size) {
// If any construction fails, all completed constructions are rolled back.
for (SizeType i = 0; i < construct_size; ++i) {
ABSL_INTERNAL_TRY {
values_ptr->ConstructNext(alloc_ptr, construct_first + i);
}
ABSL_INTERNAL_CATCH_ANY {
inlined_vector_internal::DestroyElements(alloc_ptr, construct_first, i);
ABSL_INTERNAL_RETHROW;
}
}
@ -171,6 +169,12 @@ class AllocationTransaction {
explicit AllocationTransaction(AllocatorType* alloc_ptr)
: alloc_data_(*alloc_ptr, nullptr) {}
~AllocationTransaction() {
if (DidAllocate()) {
AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());
}
}
AllocationTransaction(const AllocationTransaction&) = delete;
void operator=(const AllocationTransaction&) = delete;
@ -185,12 +189,6 @@ class AllocationTransaction {
return GetData();
}
~AllocationTransaction() {
if (DidAllocate()) {
AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());
}
}
private:
container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;
size_type capacity_ = 0;
@ -205,9 +203,21 @@ class ConstructionTransaction {
explicit ConstructionTransaction(AllocatorType* alloc_ptr)
: alloc_data_(*alloc_ptr, nullptr) {}
~ConstructionTransaction() {
if (DidConstruct()) {
inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),
GetData(), GetSize());
}
}
ConstructionTransaction(const ConstructionTransaction&) = delete;
void operator=(const ConstructionTransaction&) = delete;
AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }
pointer& GetData() { return alloc_data_.template get<1>(); }
size_type& GetSize() { return size_; }
bool DidConstruct() { return GetData() != nullptr; }
template <typename ValueAdapter>
void Construct(pointer data, ValueAdapter* values_ptr, size_type size) {
inlined_vector_internal::ConstructElements(std::addressof(GetAllocator()),
@ -220,18 +230,7 @@ class ConstructionTransaction {
GetSize() = 0;
}
~ConstructionTransaction() {
if (GetData() != nullptr) {
inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),
GetData(), GetSize());
}
}
private:
AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }
pointer& GetData() { return alloc_data_.template get<1>(); }
size_type& GetSize() { return size_; }
container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;
size_type size_ = 0;
};
@ -345,6 +344,7 @@ class Storage {
void SubtractSize(size_type count) {
assert(count <= GetSize());
GetSizeAndIsAllocated() -= count << 1;
}
@ -533,22 +533,14 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void {
if (new_size > storage_view.capacity) {
size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size);
pointer new_data = allocation_tx.Allocate(new_capacity);
// Construct new objects in `new_data`
construct_loop = {new_data + storage_view.size,
new_size - storage_view.size};
// Move all existing objects into `new_data`
move_construct_loop = {new_data, storage_view.size};
// Destroy all existing objects in `storage_view.data`
destroy_loop = {storage_view.data, storage_view.size};
} else if (new_size > storage_view.size) {
// Construct new objects in `storage_view.data`
construct_loop = {storage_view.data + storage_view.size,
new_size - storage_view.size};
} else {
// Destroy end `storage_view.size - new_size` objects in `storage_view.data`
destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};
}
@ -797,8 +789,6 @@ auto Storage<T, N, A>::ShrinkToFit() -> void {
&move_values, storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
// Writing to inlined data will trample on the existing state, thus it needs
// to be restored when a construction fails.
SetAllocatedData(storage_view.data, storage_view.capacity);
ABSL_INTERNAL_RETHROW;
}
@ -822,13 +812,8 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
assert(this != other_storage_ptr);
if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
// Both are allocated, thus we can swap the allocations at the top level.
swap(data_.allocated, other_storage_ptr->data_.allocated);
} else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
// Both are inlined, thus element-wise swap up to smaller size, then move
// the remaining elements.
Storage* small_ptr = this;
Storage* large_ptr = other_storage_ptr;
if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr);
@ -850,11 +835,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
large_ptr->GetInlinedData() + small_ptr->GetSize(),
large_ptr->GetSize() - small_ptr->GetSize());
} else {
// One is allocated and the other is inlined, thus we first move the
// elements from the inlined instance to the inlined space in the allocated
// instance and then we can finish by having the other vector take on the
// allocation.
Storage* allocated_ptr = this;
Storage* inlined_ptr = other_storage_ptr;
if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
@ -872,8 +852,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
&move_values, inlined_ptr->GetSize());
}
ABSL_INTERNAL_CATCH_ANY {
// Writing to inlined data will trample on the existing state, thus it
// needs to be restored when a construction fails.
allocated_ptr->SetAllocatedData(allocated_storage_view.data,
allocated_storage_view.capacity);
ABSL_INTERNAL_RETHROW;
@ -887,7 +865,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
allocated_storage_view.capacity);
}
// All cases swap the size, `is_allocated` boolean and the allocator.
swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
swap(*GetAllocPtr(), *other_storage_ptr->GetAllocPtr());
}

View file

@ -368,9 +368,9 @@ BENCHMARK_TAGS = [
]
# Benchmarks for various methods / test utilities
cc_test(
cc_binary(
name = "benchmarks",
size = "small",
testonly = 1,
srcs = [
"benchmarks.cc",
],

View file

@ -25,7 +25,6 @@
#include <type_traits>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/base/macros.h"
#include "absl/meta/type_traits.h"
#include "absl/random/bernoulli_distribution.h"
@ -40,6 +39,7 @@
#include "absl/random/uniform_int_distribution.h"
#include "absl/random/uniform_real_distribution.h"
#include "absl/random/zipf_distribution.h"
#include "benchmark/benchmark.h"
namespace {
@ -221,12 +221,12 @@ void BM_Poisson(benchmark::State& state) {
BM_Dist<Engine, Dist>(state, a);
}
template <typename Engine, typename Dist, int V = 1, int Q = 2>
template <typename Engine, typename Dist, int Q = 2, int V = 1>
void BM_Zipf(benchmark::State& state) {
using value_type = typename Dist::result_type;
volatile double v = V;
volatile double q = Q;
BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), v, q);
volatile double v = V;
BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v);
}
template <typename Engine, typename Dist>
@ -333,8 +333,8 @@ void BM_Thread(benchmark::State& state) {
absl::log_uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>); \
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 3, \
2); \
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2, \
3); \
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution, \
257305); \
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution, \

View file

@ -437,6 +437,6 @@ IntType Zipf(URBG&& urbg, // NOLINT(runtime/references)
distribution_t, format_t>(&urbg, hi, q, v);
}
} // namespace absl.
} // namespace absl
#endif // ABSL_RANDOM_DISTRIBUTIONS_H_

View file

@ -28,7 +28,8 @@
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, ".*")
#else
#define ABSL_EXPECT_DEATH_IF_SUPPORTED EXPECT_DEATH_IF_SUPPORTED
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, regex)
#endif
namespace {

View file

@ -264,6 +264,6 @@ std::basic_istream<CharT, Traits>& operator>>(
return is;
}
} // namespace absl.
} // namespace absl
#endif // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_

View file

@ -47,7 +47,7 @@ namespace absl {
// integer type. If any errors are encountered, this function returns `false`,
// leaving `out` in an unspecified state.
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out);
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out);
// SimpleAtof()
//
@ -180,8 +180,8 @@ ABSL_MUST_USE_RESULT bool safe_strtoi_base(absl::string_view s, int_type* out,
// preceded by ASCII whitespace, with a value in the range of the corresponding
// integer type.
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out) {
return numbers_internal::safe_strtoi_base(s, out, 10);
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out) {
return numbers_internal::safe_strtoi_base(str, out, 10);
}
} // namespace absl