Complete exercises from Applicative chapter

From "Haskell Programming from First Principles"...
This commit is contained in:
William Carroll 2020-06-18 11:07:03 +01:00
parent 406764f552
commit 71e79f5f5d

View file

@ -0,0 +1,213 @@
module ApplicativeScratch where
import Data.Function ((&))
import Control.Applicative (liftA3)
import qualified Data.List as List
import qualified GHC.Base as Base
--------------------------------------------------------------------------------
-- xs :: [(Integer, Integer)]
-- xs = zip [1..3] [4..6]
-- added :: Maybe Integer
-- added =
-- (+3) <$> (lookup 3 xs)
--------------------------------------------------------------------------------
-- y :: Maybe Integer
-- y = lookup 3 xs
-- z :: Maybe Integer
-- z = lookup 2 xs
-- tupled :: Maybe (Integer, Integer)
-- tupled = Base.liftA2 (,) y z
--------------------------------------------------------------------------------
-- x :: Maybe Int
-- x = List.elemIndex 3 [1..5]
-- y :: Maybe Int
-- y = List.elemIndex 4 [1..5]
-- maxed :: Maybe Int
-- maxed = Base.liftA2 max x y
--------------------------------------------------------------------------------
xs = [1..3]
ys = [4..6]
x :: Maybe Integer
x = lookup 3 $ zip xs ys
y :: Maybe Integer
y = lookup 2 $ zip xs ys
summed :: Maybe Integer
summed = sum <$> Base.liftA2 (,) x y
--------------------------------------------------------------------------------
newtype Identity a = Identity a deriving (Eq, Show)
instance Functor Identity where
fmap f (Identity x) = Identity (f x)
instance Applicative Identity where
pure = Identity
(Identity f) <*> (Identity x) = Identity (f x)
--------------------------------------------------------------------------------
newtype Constant a b =
Constant { getConstant :: a }
deriving (Eq, Ord, Show)
instance Functor (Constant a) where
fmap _ (Constant x) = Constant x
instance Monoid a => Applicative (Constant a) where
pure _ = Constant mempty
(Constant x) <*> (Constant y) = Constant (x <> y)
--------------------------------------------------------------------------------
one = const <$> Just "Hello" <*> Just "World"
two :: Maybe (Integer, Integer, String, [Integer])
two = (,,,) <$> (Just 90)
<*> (Just 10)
<*> (Just "Tierness")
<*> (Just [1..3])
--------------------------------------------------------------------------------
data List a = Nil | Cons a (List a) deriving (Eq, Show)
instance Semigroup (List a) where
Nil <> xs = xs
xs <> Nil = xs
(Cons x xs) <> ys = Cons x (xs <> ys)
instance Functor List where
fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)
instance Applicative List where
pure x = Cons x Nil
Nil <*> _ = Nil
_ <*> Nil = Nil
(Cons f fs) <*> xs =
(f <$> xs) <> (fs <*> xs)
toList :: List a -> [a]
toList Nil = []
toList (Cons x xs) = x : toList xs
fromList :: [a] -> List a
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)
--------------------------------------------------------------------------------
newtype ZipList' a =
ZipList' [a]
deriving (Eq, Show)
-- instance Eq a => EqProp (ZipList' a) where
-- (ZipList' lhs) =-= (ZipList' rhs) =
-- (take 1000 lhs) `eq` (take 1000 rhs)
instance Functor ZipList' where
fmap f (ZipList' xs) = ZipList' $ fmap f xs
instance Applicative ZipList' where
pure x = ZipList' (repeat x)
(ZipList' fs) <*> (ZipList' xs) =
ZipList' $ zipWith ($) fs xs
--------------------------------------------------------------------------------
data Validation e a
= Failure e
| Success a
deriving (Eq, Show)
instance Functor (Validation e) where
fmap f (Failure x) = Failure x
fmap f (Success x) = Success (f x)
instance Monoid e => Applicative (Validation e) where
pure = undefined
(Success f) <*> (Success x) = Success (f x)
_ <*> (Failure x) = Failure x
(Failure x) <*> _ = Failure x
data Error
= DivideByZero
| StackOverflow
deriving (Eq, Show)
--------------------------------------------------------------------------------
stops :: String
stops = "pbtdkg"
vowels :: String
vowels = "aeiou"
combos :: [a] -> [b] -> [c] -> [(a, b, c)]
combos xs ys zs =
liftA3 (,,) xs ys zs
--------------------------------------------------------------------------------
data Pair a = Pair a a deriving Show
instance Functor Pair where
fmap f (Pair x y) = Pair (f x) (f y)
instance Applicative Pair where
pure x = Pair x x
(Pair f g) <*> (Pair x y) = Pair (f x) (g x)
p :: Pair Integer
p = Pair 1 2
--------------------------------------------------------------------------------
data Two a b = Two a b
instance Functor (Two a) where
fmap f (Two x y) = Two x (f y)
instance Monoid a => Applicative (Two a) where
pure x = Two mempty x
_ <*> _ = undefined
--------------------------------------------------------------------------------
data Three a b c = Three a b c
instance Functor (Three a b) where
fmap f (Three x y z) = Three x y (f z)
instance (Monoid a, Monoid b) => Applicative (Three a b) where
pure x = Three mempty mempty x
(Three a b f) <*> (Three x y z) = Three (a <> x) (b <> y) (f z)
--------------------------------------------------------------------------------
data Three' a b = Three' a b b
instance Functor (Three' a) where
fmap f (Three' x y z) = Three' x (f y) (f z)
instance Monoid a => Applicative (Three' a) where
pure x = Three' mempty x x
(Three' a f g) <*> (Three' x y z) = Three' (a <> x) (f y) (g z)