Export of internal Abseil changes.

--
bc89d3221e3927d08881d75eeee0e8db862300fa by Benjamin Barenblat <bbaren@google.com>:

Clean up C-style casts in `ABSL_ASSERT`

PiperOrigin-RevId: 241932756

--
17482daae4b3e2fc725b759586590ac466b72a1e by Jon Cohen <cohenjon@google.com>:

Move Gtest-specific CMake code to its own directory

PiperOrigin-RevId: 241920192

--
9ae52b4f665625352c0a789cff884bde492c28f5 by CJ Johnson <johnsoncj@google.com>:

Moves private data methods from InlinedVector to InlinedVector Storage in anticipation of migrating the Rep union type

PiperOrigin-RevId: 241794144

--
95315bc50a61a0aae4f171b44c2312158a43e72e by Jon Cohen <cohenjon@google.com>:

Use /DNOMINMAX in Abseil tests.  This offsets inlcudes of <windows.h> from gtest.

PiperOrigin-RevId: 241790584

--
ee505c7f2ab99d29c165ea21a07190474f64053d by CJ Johnson <johnsoncj@google.com>:

Adds inlined_vector_internal to the deps of inlined_vector in CMakeLists.txt

PiperOrigin-RevId: 241775332

--
94eb5165b49bab59ce7de143be38a4581d5658da by CJ Johnson <johnsoncj@google.com>:

Migrates InlinedVector Storage to class Metadata for compatibility with the eventual member-wise migration to the new exception safe implementation

PiperOrigin-RevId: 241633420

--
f99e172caad1ec8b35bf7bbabaf2833d55a6f055 by Abseil Team <absl-team@google.com>:

Add MSVC specific linker flags only to MSVC builds.

PiperOrigin-RevId: 241615711

--
3ad19d2779281e945bdf56643dc5cee3f730eb4f by Abseil Team <absl-team@google.com>:

Add a comment about per-process randomization of absl::Hash.

PiperOrigin-RevId: 241583697

--
8dfb02d725fee3528351b2da4ed32a7455f9858a by Tom Manshreck <shreck@google.com>:

Internal change

PiperOrigin-RevId: 241564734
GitOrigin-RevId: bc89d3221e3927d08881d75eeee0e8db862300fa
Change-Id: Ibad3da416d08a96ec1f8313f8b519b4270b7e01a
This commit is contained in:
Abseil Team 2019-04-04 08:13:57 -07:00 committed by Gennadiy Rozental
parent 93dfcf74cb
commit 666fc1266b
17 changed files with 634 additions and 573 deletions

View file

@ -90,7 +90,7 @@ endif()
if(BUILD_TESTING)
if(${ABSL_USE_GOOGLETEST_HEAD})
include(CMake/DownloadGTest.cmake)
include(CMake/Googletest/DownloadGTest.cmake)
set(absl_gtest_src_dir ${CMAKE_BINARY_DIR}/googletest-src)
set(absl_gtest_build_dir ${CMAKE_BINARY_DIR}/googletest-build)
endif()

View file

@ -191,10 +191,11 @@ enum LinkerInitialized {
// This macro is inspired by
// https://akrzemi1.wordpress.com/2017/05/18/asserts-in-constexpr-functions/
#if defined(NDEBUG)
#define ABSL_ASSERT(expr) (false ? (void)(expr) : (void)0)
#define ABSL_ASSERT(expr) \
(false ? static_cast<void>(expr) : static_cast<void>(0))
#else
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? (void)0 \
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? static_cast<void>(0) \
: [] { assert(false && #expr); }()) // NOLINT
#endif

View file

@ -123,6 +123,7 @@ cc_library(
copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
deps = [
":compressed_tuple",
"//absl/meta:type_traits",
],
)

View file

@ -115,6 +115,7 @@ absl_cc_library(
COPTS
${ABSL_DEFAULT_COPTS}
DEPS
absl::compressed_tuple
absl::type_traits
PUBLIC
)
@ -129,6 +130,7 @@ absl_cc_library(
DEPS
absl::algorithm
absl::core_headers
absl::inlined_vector_internal
absl::throw_delegate
absl::memory
PUBLIC

View file

@ -70,8 +70,6 @@ class InlinedVector {
N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");
using Storage = inlined_vector_internal::Storage<InlinedVector>;
using Tag = typename Storage::Tag;
using AllocatorAndTag = typename Storage::AllocatorAndTag;
using Allocation = typename Storage::Allocation;
template <typename Iterator>
@ -162,18 +160,19 @@ class InlinedVector {
// Creates a copy of an `other` inlined vector using `other`'s allocator.
InlinedVector(const InlinedVector& other)
: InlinedVector(other, other.allocator()) {}
: InlinedVector(other, other.storage_.GetAllocator()) {}
// Creates a copy of an `other` inlined vector using a specified allocator.
InlinedVector(const InlinedVector& other, const allocator_type& alloc)
: storage_(alloc) {
reserve(other.size());
if (allocated()) {
UninitializedCopy(other.begin(), other.end(), allocated_space());
tag().set_allocated_size(other.size());
if (storage_.GetIsAllocated()) {
UninitializedCopy(other.begin(), other.end(),
storage_.GetAllocatedData());
storage_.SetAllocatedSize(other.size());
} else {
UninitializedCopy(other.begin(), other.end(), inlined_space());
tag().set_inline_size(other.size());
UninitializedCopy(other.begin(), other.end(), storage_.GetInlinedData());
storage_.SetInlinedSize(other.size());
}
}
@ -195,19 +194,20 @@ class InlinedVector {
InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value)
: storage_(other.allocator()) {
if (other.allocated()) {
: storage_(other.storage_.GetAllocator()) {
if (other.storage_.GetIsAllocated()) {
// We can just steal the underlying buffer from the source.
// That leaves the source empty, so we clear its size.
init_allocation(other.allocation());
tag().set_allocated_size(other.size());
other.tag() = Tag();
storage_.InitAllocation(other.storage_.GetAllocation());
storage_.SetAllocatedSize(other.size());
other.storage_.SetInlinedSize(0);
} else {
UninitializedCopy(
std::make_move_iterator(other.inlined_space()),
std::make_move_iterator(other.inlined_space() + other.size()),
inlined_space());
tag().set_inline_size(other.size());
std::make_move_iterator(other.storage_.GetInlinedData()),
std::make_move_iterator(other.storage_.GetInlinedData() +
other.size()),
storage_.GetInlinedData());
storage_.SetInlinedSize(other.size());
}
}
@ -227,26 +227,27 @@ class InlinedVector {
InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
absl::allocator_is_nothrow<allocator_type>::value)
: storage_(alloc) {
if (other.allocated()) {
if (alloc == other.allocator()) {
if (other.storage_.GetIsAllocated()) {
if (alloc == other.storage_.GetAllocator()) {
// We can just steal the allocation from the source.
tag() = other.tag();
init_allocation(other.allocation());
other.tag() = Tag();
storage_.SetAllocatedSize(other.size());
storage_.InitAllocation(other.storage_.GetAllocation());
other.storage_.SetInlinedSize(0);
} else {
// We need to use our own allocator
reserve(other.size());
UninitializedCopy(std::make_move_iterator(other.begin()),
std::make_move_iterator(other.end()),
allocated_space());
tag().set_allocated_size(other.size());
storage_.GetAllocatedData());
storage_.SetAllocatedSize(other.size());
}
} else {
UninitializedCopy(
std::make_move_iterator(other.inlined_space()),
std::make_move_iterator(other.inlined_space() + other.size()),
inlined_space());
tag().set_inline_size(other.size());
std::make_move_iterator(other.storage_.GetInlinedData()),
std::make_move_iterator(other.storage_.GetInlinedData() +
other.size()),
storage_.GetInlinedData());
storage_.SetInlinedSize(other.size());
}
}
@ -264,7 +265,7 @@ class InlinedVector {
// `InlinedVector::size()`
//
// Returns the number of elements in the inlined vector.
size_type size() const noexcept { return tag().size(); }
size_type size() const noexcept { return storage_.GetSize(); }
// `InlinedVector::max_size()`
//
@ -286,7 +287,8 @@ class InlinedVector {
// will no longer be inlined and `capacity()` will equal its capacity on the
// allocated heap.
size_type capacity() const noexcept {
return allocated() ? allocation().capacity() : static_cast<size_type>(N);
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
: static_cast<size_type>(N);
}
// `InlinedVector::data()`
@ -295,14 +297,16 @@ class InlinedVector {
// used to access and modify the contained elements.
// Only results within the range [`0`, `size()`) are defined.
pointer data() noexcept {
return allocated() ? allocated_space() : inlined_space();
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
// Overload of `InlinedVector::data()` to return a `const_pointer` to elements
// of the inlined vector. This pointer can be used to access (but not modify)
// the contained elements.
const_pointer data() const noexcept {
return allocated() ? allocated_space() : inlined_space();
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
// `InlinedVector::operator[]()`
@ -436,7 +440,7 @@ class InlinedVector {
// `InlinedVector::get_allocator()`
//
// Returns a copy of the allocator of the inlined vector.
allocator_type get_allocator() const { return allocator(); }
allocator_type get_allocator() const { return storage_.GetAllocator(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Mutators
@ -477,13 +481,13 @@ class InlinedVector {
InlinedVector& operator=(InlinedVector&& other) {
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
if (other.allocated()) {
if (other.storage_.GetIsAllocated()) {
clear();
tag().set_allocated_size(other.size());
init_allocation(other.allocation());
other.tag() = Tag();
storage_.SetAllocatedSize(other.size());
storage_.InitAllocation(other.storage_.GetAllocation());
other.storage_.SetInlinedSize(0);
} else {
if (allocated()) clear();
if (storage_.GetIsAllocated()) clear();
// Both are inlined now.
if (size() < other.size()) {
auto mid = std::make_move_iterator(other.begin() + size());
@ -494,7 +498,7 @@ class InlinedVector {
std::make_move_iterator(other.end()), begin());
Destroy(new_end, end());
}
tag().set_inline_size(other.size());
storage_.SetInlinedSize(other.size());
}
return *this;
}
@ -511,12 +515,14 @@ class InlinedVector {
// Grow
reserve(n);
std::fill_n(begin(), size(), v);
if (allocated()) {
UninitializedFill(allocated_space() + size(), allocated_space() + n, v);
tag().set_allocated_size(n);
if (storage_.GetIsAllocated()) {
UninitializedFill(storage_.GetAllocatedData() + size(),
storage_.GetAllocatedData() + n, v);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(inlined_space() + size(), inlined_space() + n, v);
tag().set_inline_size(n);
UninitializedFill(storage_.GetInlinedData() + size(),
storage_.GetInlinedData() + n, v);
storage_.SetInlinedSize(n);
}
}
@ -564,12 +570,14 @@ class InlinedVector {
assert(capacity() >= n);
// Fill new space with elements constructed in-place.
if (allocated()) {
UninitializedFill(allocated_space() + s, allocated_space() + n);
tag().set_allocated_size(n);
if (storage_.GetIsAllocated()) {
UninitializedFill(storage_.GetAllocatedData() + s,
storage_.GetAllocatedData() + n);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(inlined_space() + s, inlined_space() + n);
tag().set_inline_size(n);
UninitializedFill(storage_.GetInlinedData() + s,
storage_.GetInlinedData() + n);
storage_.SetInlinedSize(n);
}
}
@ -586,12 +594,14 @@ class InlinedVector {
assert(capacity() >= n);
// Fill new space with copies of `v`.
if (allocated()) {
UninitializedFill(allocated_space() + s, allocated_space() + n, v);
tag().set_allocated_size(n);
if (storage_.GetIsAllocated()) {
UninitializedFill(storage_.GetAllocatedData() + s,
storage_.GetAllocatedData() + n, v);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(inlined_space() + s, inlined_space() + n, v);
tag().set_inline_size(n);
UninitializedFill(storage_.GetInlinedData() + s,
storage_.GetInlinedData() + n, v);
storage_.SetInlinedSize(n);
}
}
@ -688,12 +698,12 @@ class InlinedVector {
return GrowAndEmplaceBack(std::forward<Args>(args)...);
}
pointer space;
if (allocated()) {
tag().set_allocated_size(s + 1);
space = allocated_space();
if (storage_.GetIsAllocated()) {
storage_.SetAllocatedSize(s + 1);
space = storage_.GetAllocatedData();
} else {
tag().set_inline_size(s + 1);
space = inlined_space();
storage_.SetInlinedSize(s + 1);
space = storage_.GetInlinedData();
}
return Construct(space + s, std::forward<Args>(args)...);
}
@ -716,12 +726,13 @@ class InlinedVector {
void pop_back() noexcept {
assert(!empty());
size_type s = size();
if (allocated()) {
Destroy(allocated_space() + s - 1, allocated_space() + s);
tag().set_allocated_size(s - 1);
if (storage_.GetIsAllocated()) {
Destroy(storage_.GetAllocatedData() + s - 1,
storage_.GetAllocatedData() + s);
storage_.SetAllocatedSize(s - 1);
} else {
Destroy(inlined_space() + s - 1, inlined_space() + s);
tag().set_inline_size(s - 1);
Destroy(storage_.GetInlinedData() + s - 1, storage_.GetInlinedData() + s);
storage_.SetInlinedSize(s - 1);
}
}
@ -757,12 +768,12 @@ class InlinedVector {
ptrdiff_t erase_gap = std::distance(range_start, range_end);
if (erase_gap > 0) {
pointer space;
if (allocated()) {
space = allocated_space();
tag().set_allocated_size(s - erase_gap);
if (storage_.GetIsAllocated()) {
space = storage_.GetAllocatedData();
storage_.SetAllocatedSize(s - erase_gap);
} else {
space = inlined_space();
tag().set_inline_size(s - erase_gap);
space = storage_.GetInlinedData();
storage_.SetInlinedSize(s - erase_gap);
}
std::move(range_end, space + s, range_start);
Destroy(space + s - erase_gap, space + s);
@ -776,13 +787,13 @@ class InlinedVector {
// deallocates the heap allocation if the inlined vector was allocated.
void clear() noexcept {
size_type s = size();
if (allocated()) {
Destroy(allocated_space(), allocated_space() + s);
allocation().Dealloc(allocator());
if (storage_.GetIsAllocated()) {
Destroy(storage_.GetAllocatedData(), storage_.GetAllocatedData() + s);
storage_.GetAllocation().Dealloc(storage_.GetAllocator());
} else if (s != 0) { // do nothing for empty vectors
Destroy(inlined_space(), inlined_space() + s);
Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + s);
}
tag() = Tag();
storage_.SetInlinedSize(0);
}
// `InlinedVector::reserve()`
@ -814,7 +825,8 @@ class InlinedVector {
// smaller heap allocation.
void shrink_to_fit() {
const auto s = size();
if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return;
if (ABSL_PREDICT_FALSE(!storage_.GetIsAllocated() || s == capacity()))
return;
if (s <= N) {
// Move the elements to the inlined storage.
@ -829,9 +841,9 @@ class InlinedVector {
// Reallocate storage and move elements.
// We can't simply use the same approach as above, because `assign()` would
// call into `reserve()` internally and reserve larger capacity than we need
Allocation new_allocation(allocator(), s);
UninitializedCopy(std::make_move_iterator(allocated_space()),
std::make_move_iterator(allocated_space() + s),
Allocation new_allocation(storage_.GetAllocator(), s);
UninitializedCopy(std::make_move_iterator(storage_.GetAllocatedData()),
std::make_move_iterator(storage_.GetAllocatedData() + s),
new_allocation.buffer());
ResetAllocation(new_allocation, s);
}
@ -849,67 +861,24 @@ class InlinedVector {
template <typename H, typename TheT, size_t TheN, typename TheA>
friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
const Tag& tag() const { return storage_.allocator_and_tag_.tag(); }
Tag& tag() { return storage_.allocator_and_tag_.tag(); }
Allocation& allocation() {
return reinterpret_cast<Allocation&>(
storage_.rep_.allocation_storage.allocation);
}
const Allocation& allocation() const {
return reinterpret_cast<const Allocation&>(
storage_.rep_.allocation_storage.allocation);
}
void init_allocation(const Allocation& allocation) {
new (static_cast<void*>(std::addressof(
storage_.rep_.allocation_storage.allocation))) Allocation(allocation);
}
// TODO(absl-team): investigate whether the reinterpret_cast is appropriate.
pointer inlined_space() {
return reinterpret_cast<pointer>(
std::addressof(storage_.rep_.inlined_storage.inlined[0]));
}
const_pointer inlined_space() const {
return reinterpret_cast<const_pointer>(
std::addressof(storage_.rep_.inlined_storage.inlined[0]));
}
pointer allocated_space() { return allocation().buffer(); }
const_pointer allocated_space() const { return allocation().buffer(); }
const allocator_type& allocator() const {
return storage_.allocator_and_tag_.allocator();
}
allocator_type& allocator() {
return storage_.allocator_and_tag_.allocator();
}
bool allocated() const { return tag().allocated(); }
void ResetAllocation(Allocation new_allocation, size_type new_size) {
if (allocated()) {
Destroy(allocated_space(), allocated_space() + size());
assert(begin() == allocated_space());
allocation().Dealloc(allocator());
allocation() = new_allocation;
if (storage_.GetIsAllocated()) {
Destroy(storage_.GetAllocatedData(),
storage_.GetAllocatedData() + size());
assert(begin() == storage_.GetAllocatedData());
storage_.GetAllocation().Dealloc(storage_.GetAllocator());
storage_.GetAllocation() = new_allocation;
} else {
Destroy(inlined_space(), inlined_space() + size());
init_allocation(new_allocation); // bug: only init once
Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + size());
storage_.InitAllocation(new_allocation); // bug: only init once
}
tag().set_allocated_size(new_size);
storage_.SetAllocatedSize(new_size);
}
template <typename... Args>
reference Construct(pointer p, Args&&... args) {
std::allocator_traits<allocator_type>::construct(
allocator(), p, std::forward<Args>(args)...);
storage_.GetAllocator(), p, std::forward<Args>(args)...);
return *p;
}
@ -926,7 +895,8 @@ class InlinedVector {
// Destroy [`from`, `to`) in place.
void Destroy(pointer from, pointer to) {
for (pointer cur = from; cur != to; ++cur) {
std::allocator_traits<allocator_type>::destroy(allocator(), cur);
std::allocator_traits<allocator_type>::destroy(storage_.GetAllocator(),
cur);
}
#if !defined(NDEBUG)
// Overwrite unused memory with `0xab` so we can catch uninitialized usage.
@ -946,7 +916,7 @@ class InlinedVector {
const size_type s = size();
assert(s <= capacity());
size_type target = (std::max)(N, s + delta);
size_type target = (std::max)(static_cast<size_type>(N), s + delta);
// Compute new capacity by repeatedly doubling current capacity
// TODO(psrc): Check and avoid overflow?
@ -955,7 +925,7 @@ class InlinedVector {
new_capacity <<= 1;
}
Allocation new_allocation(allocator(), new_capacity);
Allocation new_allocation(storage_.GetAllocator(), new_capacity);
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + s),
@ -987,7 +957,7 @@ class InlinedVector {
}
// Move everyone into the new allocation, leaving a gap of `n` for the
// requested shift.
Allocation new_allocation(allocator(), new_capacity);
Allocation new_allocation(storage_.GetAllocator(), new_capacity);
size_type index = position - begin();
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + index),
@ -1026,7 +996,7 @@ class InlinedVector {
start_used = pos;
start_raw = pos + new_elements_in_used_space;
}
tag().add_size(n);
storage_.AddSize(n);
return std::make_pair(start_used, start_raw);
}
@ -1035,7 +1005,7 @@ class InlinedVector {
assert(size() == capacity());
const size_type s = size();
Allocation new_allocation(allocator(), 2 * capacity());
Allocation new_allocation(storage_.GetAllocator(), 2 * capacity());
reference new_element =
Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);
@ -1049,26 +1019,30 @@ class InlinedVector {
}
void InitAssign(size_type n) {
if (n > N) {
Allocation new_allocation(allocator(), n);
init_allocation(new_allocation);
UninitializedFill(allocated_space(), allocated_space() + n);
tag().set_allocated_size(n);
if (n > static_cast<size_type>(N)) {
Allocation new_allocation(storage_.GetAllocator(), n);
storage_.InitAllocation(new_allocation);
UninitializedFill(storage_.GetAllocatedData(),
storage_.GetAllocatedData() + n);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(inlined_space(), inlined_space() + n);
tag().set_inline_size(n);
UninitializedFill(storage_.GetInlinedData(),
storage_.GetInlinedData() + n);
storage_.SetInlinedSize(n);
}
}
void InitAssign(size_type n, const_reference v) {
if (n > N) {
Allocation new_allocation(allocator(), n);
init_allocation(new_allocation);
UninitializedFill(allocated_space(), allocated_space() + n, v);
tag().set_allocated_size(n);
if (n > static_cast<size_type>(N)) {
Allocation new_allocation(storage_.GetAllocator(), n);
storage_.InitAllocation(new_allocation);
UninitializedFill(storage_.GetAllocatedData(),
storage_.GetAllocatedData() + n, v);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(inlined_space(), inlined_space() + n, v);
tag().set_inline_size(n);
UninitializedFill(storage_.GetInlinedData(),
storage_.GetInlinedData() + n, v);
storage_.SetInlinedSize(n);
}
}
@ -1087,12 +1061,12 @@ class InlinedVector {
reserve(length);
iterator out = begin();
for (; out != end(); ++first, ++out) *out = *first;
if (allocated()) {
if (storage_.GetIsAllocated()) {
UninitializedCopy(first, last, out);
tag().set_allocated_size(length);
storage_.SetAllocatedSize(length);
} else {
UninitializedCopy(first, last, out);
tag().set_inline_size(length);
storage_.SetInlinedSize(length);
}
}
@ -1102,12 +1076,12 @@ class InlinedVector {
auto length = std::distance(first, last);
reserve(size() + length);
if (allocated()) {
UninitializedCopy(first, last, allocated_space() + size());
tag().set_allocated_size(size() + length);
if (storage_.GetIsAllocated()) {
UninitializedCopy(first, last, storage_.GetAllocatedData() + size());
storage_.SetAllocatedSize(size() + length);
} else {
UninitializedCopy(first, last, inlined_space() + size());
tag().set_inline_size(size() + length);
UninitializedCopy(first, last, storage_.GetInlinedData() + size());
storage_.SetInlinedSize(size() + length);
}
}
@ -1145,14 +1119,19 @@ class InlinedVector {
void SwapImpl(InlinedVector& other) {
using std::swap; // Augment ADL with `std::swap`.
if (allocated() && other.allocated()) {
bool is_allocated = storage_.GetIsAllocated();
bool other_is_allocated = other.storage_.GetIsAllocated();
if (is_allocated && other_is_allocated) {
// Both out of line, so just swap the tag, allocation, and allocator.
swap(tag(), other.tag());
swap(allocation(), other.allocation());
swap(allocator(), other.allocator());
storage_.SwapSizeAndIsAllocated(other.storage_);
swap(storage_.GetAllocation(), other.storage_.GetAllocation());
swap(storage_.GetAllocator(), other.storage_.GetAllocator());
return;
}
if (!allocated() && !other.allocated()) {
if (!is_allocated && !other_is_allocated) {
// Both inlined: swap up to smaller size, then move remaining elements.
InlinedVector* a = this;
InlinedVector* b = std::addressof(other);
@ -1164,18 +1143,21 @@ class InlinedVector {
const size_type b_size = b->size();
assert(a_size >= b_size);
// `a` is larger. Swap the elements up to the smaller array size.
std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size,
b->inlined_space());
std::swap_ranges(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + b_size,
b->storage_.GetInlinedData());
// Move the remaining elements:
// [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
b->UninitializedCopy(a->inlined_space() + b_size,
a->inlined_space() + a_size,
b->inlined_space() + b_size);
a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size);
b->UninitializedCopy(a->storage_.GetInlinedData() + b_size,
a->storage_.GetInlinedData() + a_size,
b->storage_.GetInlinedData() + b_size);
a->Destroy(a->storage_.GetInlinedData() + b_size,
a->storage_.GetInlinedData() + a_size);
storage_.SwapSizeAndIsAllocated(other.storage_);
swap(storage_.GetAllocator(), other.storage_.GetAllocator());
swap(a->tag(), b->tag());
swap(a->allocator(), b->allocator());
assert(b->size() == a_size);
assert(a->size() == b_size);
return;
@ -1188,31 +1170,35 @@ class InlinedVector {
// the tags.
InlinedVector* a = this;
InlinedVector* b = std::addressof(other);
if (a->allocated()) {
if (a->storage_.GetIsAllocated()) {
swap(a, b);
}
assert(!a->allocated());
assert(b->allocated());
assert(!a->storage_.GetIsAllocated());
assert(b->storage_.GetIsAllocated());
const size_type a_size = a->size();
const size_type b_size = b->size();
// In an optimized build, `b_size` would be unused.
static_cast<void>(b_size);
// Made Local copies of `size()`, don't need `tag()` accurate anymore
swap(a->tag(), b->tag());
// Made Local copies of `size()`, these can now be swapped
a->storage_.SwapSizeAndIsAllocated(b->storage_);
// Copy `b_allocation` out before `b`'s union gets clobbered by
// `inline_space`
Allocation b_allocation = b->allocation();
Allocation b_allocation = b->storage_.GetAllocation();
b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,
b->inlined_space());
a->Destroy(a->inlined_space(), a->inlined_space() + a_size);
b->UninitializedCopy(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + a_size,
b->storage_.GetInlinedData());
a->Destroy(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + a_size);
a->allocation() = b_allocation;
a->storage_.GetAllocation() = b_allocation;
if (a->allocator() != b->allocator()) {
swap(a->allocator(), b->allocator());
if (a->storage_.GetAllocator() != b->storage_.GetAllocator()) {
swap(a->storage_.GetAllocator(), b->storage_.GetAllocator());
}
assert(b->size() == a_size);

View file

@ -18,7 +18,9 @@
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>
#include "absl/container/internal/compressed_tuple.h"
#include "absl/meta/type_traits.h"
namespace absl {
@ -31,6 +33,8 @@ template <template <typename, size_t, typename> class InlinedVector, typename T,
size_t N, typename A>
class Storage<InlinedVector<T, N, A>> {
public:
class Allocation; // TODO(johnsoncj): Remove after migration
using allocator_type = A;
using value_type = typename allocator_type::value_type;
using pointer = typename allocator_type::pointer;
@ -45,38 +49,63 @@ class Storage<InlinedVector<T, N, A>> {
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
explicit Storage(const allocator_type& a) : allocator_and_tag_(a) {}
explicit Storage(const allocator_type& alloc)
: metadata_(alloc, /* empty and inlined */ 0) {}
// TODO(johnsoncj): Make the below types and members private after migration
size_type GetSize() const { return GetSizeAndIsAllocated() >> 1; }
// Holds whether the vector is allocated or not in the lowest bit and the size
// in the high bits:
// `size_ = (size << 1) | is_allocated;`
class Tag {
size_type size_;
bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; }
public:
Tag() : size_(0) {}
size_type size() const { return size_ / 2; }
void add_size(size_type n) { size_ += n * 2; }
void set_inline_size(size_type n) { size_ = n * 2; }
void set_allocated_size(size_type n) { size_ = (n * 2) + 1; }
bool allocated() const { return size_ % 2; }
};
Allocation& GetAllocation() {
return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation);
}
// Derives from `allocator_type` to use the empty base class optimization.
// If the `allocator_type` is stateless, we can store our instance for free.
class AllocatorAndTag : private allocator_type {
Tag tag_;
const Allocation& GetAllocation() const {
return reinterpret_cast<const Allocation&>(
rep_.allocation_storage.allocation);
}
public:
explicit AllocatorAndTag(const allocator_type& a) : allocator_type(a) {}
Tag& tag() { return tag_; }
const Tag& tag() const { return tag_; }
allocator_type& allocator() { return *this; }
const allocator_type& allocator() const { return *this; }
};
pointer GetInlinedData() {
return reinterpret_cast<pointer>(
std::addressof(rep_.inlined_storage.inlined[0]));
}
const_pointer GetInlinedData() const {
return reinterpret_cast<const_pointer>(
std::addressof(rep_.inlined_storage.inlined[0]));
}
pointer GetAllocatedData() { return GetAllocation().buffer(); }
const_pointer GetAllocatedData() const { return GetAllocation().buffer(); }
size_type GetAllocatedCapacity() const { return GetAllocation().capacity(); }
allocator_type& GetAllocator() { return metadata_.template get<0>(); }
const allocator_type& GetAllocator() const {
return metadata_.template get<0>();
}
void SetAllocatedSize(size_type size) {
GetSizeAndIsAllocated() = (size << 1) | static_cast<size_type>(1);
}
void SetInlinedSize(size_type size) { GetSizeAndIsAllocated() = size << 1; }
void AddSize(size_type count) { GetSizeAndIsAllocated() += count << 1; }
void InitAllocation(const Allocation& allocation) {
new (static_cast<void*>(std::addressof(rep_.allocation_storage.allocation)))
Allocation(allocation);
}
void SwapSizeAndIsAllocated(Storage& other) {
using std::swap;
swap(GetSizeAndIsAllocated(), other.GetSizeAndIsAllocated());
}
// TODO(johnsoncj): Make the below types private after migration
class Allocation {
size_type capacity_;
pointer buffer_;
@ -95,6 +124,13 @@ class Storage<InlinedVector<T, N, A>> {
}
};
private:
size_type& GetSizeAndIsAllocated() { return metadata_.template get<1>(); }
const size_type& GetSizeAndIsAllocated() const {
return metadata_.template get<1>();
}
// Stores either the inlined or allocated representation
union Rep {
using ValueTypeBuffer =
@ -116,7 +152,7 @@ class Storage<InlinedVector<T, N, A>> {
AllocatedRep allocation_storage;
};
AllocatorAndTag allocator_and_tag_;
container_internal::CompressedTuple<allocator_type, size_type> metadata_;
Rep rep_;
};

View file

@ -16,11 +16,11 @@ elseif("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(ABSL_DEFAULT_COPTS "${ABSL_CLANG_CL_FLAGS}")
set(ABSL_TEST_COPTS "${ABSL_CLANG_CL_FLAGS};${ABSL_CLANG_CL_TEST_FLAGS}")
set(ABSL_EXCEPTIONS_FLAG "${ABSL_CLANG_CL_EXCEPTIONS_FLAGS}")
set(ABSL_DEFAULT_LINKOPTS "${ABSL_MSVC_LINKOPTS}")
else()
set(ABSL_DEFAULT_COPTS "${ABSL_LLVM_FLAGS}")
set(ABSL_TEST_COPTS "${ABSL_LLVM_FLAGS};${ABSL_LLVM_TEST_FLAGS}")
set(ABSL_EXCEPTIONS_FLAG "${ABSL_LLVM_EXCEPTIONS_FLAGS}")
set(ABSL_DEFAULT_LINKOPTS "${ABSL_MSVC_LINKOPTS}")
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
# AppleClang doesn't have lsan
# https://developer.apple.com/documentation/code_diagnostics

View file

@ -211,4 +211,5 @@ list(APPEND ABSL_MSVC_TEST_FLAGS
"/wd4018"
"/wd4101"
"/wd4503"
"/DNOMINMAX"
)

View file

@ -212,4 +212,5 @@ ABSL_MSVC_TEST_FLAGS = [
"/wd4018",
"/wd4101",
"/wd4503",
"/DNOMINMAX",
]

View file

@ -183,6 +183,7 @@ COPT_VARS = {
"/wd4018", # signed/unsigned mismatch
"/wd4101", # unreferenced local variable
"/wd4503", # decorated name length exceeded, name was truncated
"/DNOMINMAX", # disable the min() and max() macros from <windows.h>
],
"ABSL_MSVC_EXCEPTIONS_FLAGS":
MSVC_STYLE_EXCEPTIONS_FLAGS,

View file

@ -36,6 +36,10 @@
// framework by simply combining its state with the state of known, hashable
// types. Hashing of that combined state is separately done by `absl::Hash`.
//
// One should assume that a hash algorithm is chosen randomly at the start of
// each process. E.g., absl::Hash<int>()(9) in one process and
// absl::Hash<int>()(9) in another process are likely to differ.
//
// Example:
//
// // Suppose we have a class `Circle` for which we want to add hashing

View file

@ -173,6 +173,7 @@ cc_test(
cc_library(
name = "optional",
srcs = ["internal/optional.h"],
hdrs = ["optional.h"],
copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,

View file

@ -174,6 +174,8 @@ absl_cc_library(
optional
HDRS
"optional.h"
SRCS
"internal/optional.h"
COPTS
${ABSL_DEFAULT_COPTS}
DEPS

View file

@ -0,0 +1,364 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_TYPES_INTERNAL_OPTIONAL_H_
#define ABSL_TYPES_INTERNAL_OPTIONAL_H_
#include <functional>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/internal/inline_variable.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/utility/utility.h"
namespace absl {
// Forward declaration
template <typename T>
class optional;
namespace optional_internal {
// This tag type is used as a constructor parameter type for `nullopt_t`.
struct init_t {
explicit init_t() = default;
};
struct empty_struct {};
// This class stores the data in optional<T>.
// It is specialized based on whether T is trivially destructible.
// This is the specialization for non trivially destructible type.
template <typename T, bool unused = std::is_trivially_destructible<T>::value>
class optional_data_dtor_base {
struct dummy_type {
static_assert(sizeof(T) % sizeof(empty_struct) == 0, "");
// Use an array to avoid GCC 6 placement-new warning.
empty_struct data[sizeof(T) / sizeof(empty_struct)];
};
protected:
// Whether there is data or not.
bool engaged_;
// Data storage
union {
dummy_type dummy_;
T data_;
};
void destruct() noexcept {
if (engaged_) {
data_.~T();
engaged_ = false;
}
}
// dummy_ must be initialized for constexpr constructor.
constexpr optional_data_dtor_base() noexcept : engaged_(false), dummy_{{}} {}
template <typename... Args>
constexpr explicit optional_data_dtor_base(in_place_t, Args&&... args)
: engaged_(true), data_(absl::forward<Args>(args)...) {}
~optional_data_dtor_base() { destruct(); }
};
// Specialization for trivially destructible type.
template <typename T>
class optional_data_dtor_base<T, true> {
struct dummy_type {
static_assert(sizeof(T) % sizeof(empty_struct) == 0, "");
// Use array to avoid GCC 6 placement-new warning.
empty_struct data[sizeof(T) / sizeof(empty_struct)];
};
protected:
// Whether there is data or not.
bool engaged_;
// Data storage
union {
dummy_type dummy_;
T data_;
};
void destruct() noexcept { engaged_ = false; }
// dummy_ must be initialized for constexpr constructor.
constexpr optional_data_dtor_base() noexcept : engaged_(false), dummy_{{}} {}
template <typename... Args>
constexpr explicit optional_data_dtor_base(in_place_t, Args&&... args)
: engaged_(true), data_(absl::forward<Args>(args)...) {}
};
template <typename T>
class optional_data_base : public optional_data_dtor_base<T> {
protected:
using base = optional_data_dtor_base<T>;
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
using base::base;
#else
optional_data_base() = default;
template <typename... Args>
constexpr explicit optional_data_base(in_place_t t, Args&&... args)
: base(t, absl::forward<Args>(args)...) {}
#endif
template <typename... Args>
void construct(Args&&... args) {
// Use dummy_'s address to work around casting cv-qualified T* to void*.
::new (static_cast<void*>(&this->dummy_)) T(std::forward<Args>(args)...);
this->engaged_ = true;
}
template <typename U>
void assign(U&& u) {
if (this->engaged_) {
this->data_ = std::forward<U>(u);
} else {
construct(std::forward<U>(u));
}
}
};
// TODO(absl-team): Add another class using
// std::is_trivially_move_constructible trait when available to match
// http://cplusplus.github.io/LWG/lwg-defects.html#2900, for types that
// have trivial move but nontrivial copy.
// Also, we should be checking is_trivially_copyable here, which is not
// supported now, so we use is_trivially_* traits instead.
template <typename T,
bool unused = absl::is_trivially_copy_constructible<T>::value&&
absl::is_trivially_copy_assignable<typename std::remove_cv<
T>::type>::value&& std::is_trivially_destructible<T>::value>
class optional_data;
// Trivially copyable types
template <typename T>
class optional_data<T, true> : public optional_data_base<T> {
protected:
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
using optional_data_base<T>::optional_data_base;
#else
optional_data() = default;
template <typename... Args>
constexpr explicit optional_data(in_place_t t, Args&&... args)
: optional_data_base<T>(t, absl::forward<Args>(args)...) {}
#endif
};
template <typename T>
class optional_data<T, false> : public optional_data_base<T> {
protected:
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
using optional_data_base<T>::optional_data_base;
#else
template <typename... Args>
constexpr explicit optional_data(in_place_t t, Args&&... args)
: optional_data_base<T>(t, absl::forward<Args>(args)...) {}
#endif
optional_data() = default;
optional_data(const optional_data& rhs) : optional_data_base<T>() {
if (rhs.engaged_) {
this->construct(rhs.data_);
}
}
optional_data(optional_data&& rhs) noexcept(
absl::default_allocator_is_nothrow::value ||
std::is_nothrow_move_constructible<T>::value)
: optional_data_base<T>() {
if (rhs.engaged_) {
this->construct(std::move(rhs.data_));
}
}
optional_data& operator=(const optional_data& rhs) {
if (rhs.engaged_) {
this->assign(rhs.data_);
} else {
this->destruct();
}
return *this;
}
optional_data& operator=(optional_data&& rhs) noexcept(
std::is_nothrow_move_assignable<T>::value&&
std::is_nothrow_move_constructible<T>::value) {
if (rhs.engaged_) {
this->assign(std::move(rhs.data_));
} else {
this->destruct();
}
return *this;
}
};
// Ordered by level of restriction, from low to high.
// Copyable implies movable.
enum class copy_traits { copyable = 0, movable = 1, non_movable = 2 };
// Base class for enabling/disabling copy/move constructor.
template <copy_traits>
class optional_ctor_base;
template <>
class optional_ctor_base<copy_traits::copyable> {
public:
constexpr optional_ctor_base() = default;
optional_ctor_base(const optional_ctor_base&) = default;
optional_ctor_base(optional_ctor_base&&) = default;
optional_ctor_base& operator=(const optional_ctor_base&) = default;
optional_ctor_base& operator=(optional_ctor_base&&) = default;
};
template <>
class optional_ctor_base<copy_traits::movable> {
public:
constexpr optional_ctor_base() = default;
optional_ctor_base(const optional_ctor_base&) = delete;
optional_ctor_base(optional_ctor_base&&) = default;
optional_ctor_base& operator=(const optional_ctor_base&) = default;
optional_ctor_base& operator=(optional_ctor_base&&) = default;
};
template <>
class optional_ctor_base<copy_traits::non_movable> {
public:
constexpr optional_ctor_base() = default;
optional_ctor_base(const optional_ctor_base&) = delete;
optional_ctor_base(optional_ctor_base&&) = delete;
optional_ctor_base& operator=(const optional_ctor_base&) = default;
optional_ctor_base& operator=(optional_ctor_base&&) = default;
};
// Base class for enabling/disabling copy/move assignment.
template <copy_traits>
class optional_assign_base;
template <>
class optional_assign_base<copy_traits::copyable> {
public:
constexpr optional_assign_base() = default;
optional_assign_base(const optional_assign_base&) = default;
optional_assign_base(optional_assign_base&&) = default;
optional_assign_base& operator=(const optional_assign_base&) = default;
optional_assign_base& operator=(optional_assign_base&&) = default;
};
template <>
class optional_assign_base<copy_traits::movable> {
public:
constexpr optional_assign_base() = default;
optional_assign_base(const optional_assign_base&) = default;
optional_assign_base(optional_assign_base&&) = default;
optional_assign_base& operator=(const optional_assign_base&) = delete;
optional_assign_base& operator=(optional_assign_base&&) = default;
};
template <>
class optional_assign_base<copy_traits::non_movable> {
public:
constexpr optional_assign_base() = default;
optional_assign_base(const optional_assign_base&) = default;
optional_assign_base(optional_assign_base&&) = default;
optional_assign_base& operator=(const optional_assign_base&) = delete;
optional_assign_base& operator=(optional_assign_base&&) = delete;
};
template <typename T>
struct ctor_copy_traits {
static constexpr copy_traits traits =
std::is_copy_constructible<T>::value
? copy_traits::copyable
: std::is_move_constructible<T>::value ? copy_traits::movable
: copy_traits::non_movable;
};
template <typename T>
struct assign_copy_traits {
static constexpr copy_traits traits =
absl::is_copy_assignable<T>::value && std::is_copy_constructible<T>::value
? copy_traits::copyable
: absl::is_move_assignable<T>::value &&
std::is_move_constructible<T>::value
? copy_traits::movable
: copy_traits::non_movable;
};
// Whether T is constructible or convertible from optional<U>.
template <typename T, typename U>
struct is_constructible_convertible_from_optional
: std::integral_constant<
bool, std::is_constructible<T, optional<U>&>::value ||
std::is_constructible<T, optional<U>&&>::value ||
std::is_constructible<T, const optional<U>&>::value ||
std::is_constructible<T, const optional<U>&&>::value ||
std::is_convertible<optional<U>&, T>::value ||
std::is_convertible<optional<U>&&, T>::value ||
std::is_convertible<const optional<U>&, T>::value ||
std::is_convertible<const optional<U>&&, T>::value> {};
// Whether T is constructible or convertible or assignable from optional<U>.
template <typename T, typename U>
struct is_constructible_convertible_assignable_from_optional
: std::integral_constant<
bool, is_constructible_convertible_from_optional<T, U>::value ||
std::is_assignable<T&, optional<U>&>::value ||
std::is_assignable<T&, optional<U>&&>::value ||
std::is_assignable<T&, const optional<U>&>::value ||
std::is_assignable<T&, const optional<U>&&>::value> {};
// Helper function used by [optional.relops], [optional.comp_with_t],
// for checking whether an expression is convertible to bool.
bool convertible_to_bool(bool);
// Base class for std::hash<absl::optional<T>>:
// If std::hash<std::remove_const_t<T>> is enabled, it provides operator() to
// compute the hash; Otherwise, it is disabled.
// Reference N4659 23.14.15 [unord.hash].
template <typename T, typename = size_t>
struct optional_hash_base {
optional_hash_base() = delete;
optional_hash_base(const optional_hash_base&) = delete;
optional_hash_base(optional_hash_base&&) = delete;
optional_hash_base& operator=(const optional_hash_base&) = delete;
optional_hash_base& operator=(optional_hash_base&&) = delete;
};
template <typename T>
struct optional_hash_base<T, decltype(std::hash<absl::remove_const_t<T> >()(
std::declval<absl::remove_const_t<T> >()))> {
using argument_type = absl::optional<T>;
using result_type = size_t;
size_t operator()(const absl::optional<T>& opt) const {
absl::type_traits_internal::AssertHashEnabled<absl::remove_const_t<T>>();
if (opt) {
return std::hash<absl::remove_const_t<T> >()(*opt);
} else {
return static_cast<size_t>(0x297814aaad196e6dULL);
}
}
};
} // namespace optional_internal
} // namespace absl
#endif // ABSL_TYPES_INTERNAL_OPTIONAL_H_

View file

@ -35,8 +35,7 @@
#ifndef ABSL_TYPES_OPTIONAL_H_
#define ABSL_TYPES_OPTIONAL_H_
#include "absl/base/config.h"
#include "absl/memory/memory.h"
#include "absl/base/config.h" // TODO(calabrese) IWYU removal?
#include "absl/utility/utility.h"
#ifdef ABSL_HAVE_STD_OPTIONAL
@ -56,7 +55,6 @@ using std::nullopt;
#include <cassert>
#include <functional>
#include <initializer_list>
#include <new>
#include <type_traits>
#include <utility>
@ -64,6 +62,7 @@ using std::nullopt;
#include "absl/base/internal/inline_variable.h"
#include "absl/meta/type_traits.h"
#include "absl/types/bad_optional_access.h"
#include "absl/types/internal/optional.h"
// ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
//
@ -95,6 +94,22 @@ using std::nullopt;
namespace absl {
// nullopt_t
//
// Class type for `absl::nullopt` used to indicate an `absl::optional<T>` type
// that does not contain a value.
struct nullopt_t {
// It must not be default-constructible to avoid ambiguity for opt = {}.
explicit constexpr nullopt_t(optional_internal::init_t) noexcept {}
};
// nullopt
//
// A tag constant of type `absl::nullopt_t` used to indicate an empty
// `absl::optional` in certain functions, such as construction or assignment.
ABSL_INTERNAL_INLINE_CONSTEXPR(nullopt_t, nullopt,
nullopt_t(optional_internal::init_t()));
// -----------------------------------------------------------------------------
// absl::optional
// -----------------------------------------------------------------------------
@ -124,361 +139,7 @@ namespace absl {
// a) move constructors should only throw due to allocation failure and
// b) if T's move constructor allocates, it uses the same allocation
// function as the default allocator.
template <typename T>
class optional;
namespace optional_internal {
// This tag type is used as a constructor parameter type for `nullopt_t`.
struct init_t {
explicit init_t() = default;
};
} // namespace optional_internal
// nullopt_t
//
// Class type for `absl::nullopt` used to indicate an `absl::optional<T>` type
// that does not contain a value.
struct nullopt_t {
// It must not be default-constructible to avoid ambiguity for opt = {}.
explicit constexpr nullopt_t(optional_internal::init_t) noexcept {}
};
// nullopt
//
// A tag constant of type `absl::nullopt_t` used to indicate an empty
// `absl::optional` in certain functions, such as construction or assignment.
ABSL_INTERNAL_INLINE_CONSTEXPR(nullopt_t, nullopt,
nullopt_t(optional_internal::init_t()));
namespace optional_internal {
struct empty_struct {};
// This class stores the data in optional<T>.
// It is specialized based on whether T is trivially destructible.
// This is the specialization for non trivially destructible type.
template <typename T, bool unused = std::is_trivially_destructible<T>::value>
class optional_data_dtor_base {
struct dummy_type {
static_assert(sizeof(T) % sizeof(empty_struct) == 0, "");
// Use an array to avoid GCC 6 placement-new warning.
empty_struct data[sizeof(T) / sizeof(empty_struct)];
};
protected:
// Whether there is data or not.
bool engaged_;
// Data storage
union {
dummy_type dummy_;
T data_;
};
void destruct() noexcept {
if (engaged_) {
data_.~T();
engaged_ = false;
}
}
// dummy_ must be initialized for constexpr constructor.
constexpr optional_data_dtor_base() noexcept : engaged_(false), dummy_{{}} {}
template <typename... Args>
constexpr explicit optional_data_dtor_base(in_place_t, Args&&... args)
: engaged_(true), data_(absl::forward<Args>(args)...) {}
~optional_data_dtor_base() { destruct(); }
};
// Specialization for trivially destructible type.
template <typename T>
class optional_data_dtor_base<T, true> {
struct dummy_type {
static_assert(sizeof(T) % sizeof(empty_struct) == 0, "");
// Use array to avoid GCC 6 placement-new warning.
empty_struct data[sizeof(T) / sizeof(empty_struct)];
};
protected:
// Whether there is data or not.
bool engaged_;
// Data storage
union {
dummy_type dummy_;
T data_;
};
void destruct() noexcept { engaged_ = false; }
// dummy_ must be initialized for constexpr constructor.
constexpr optional_data_dtor_base() noexcept : engaged_(false), dummy_{{}} {}
template <typename... Args>
constexpr explicit optional_data_dtor_base(in_place_t, Args&&... args)
: engaged_(true), data_(absl::forward<Args>(args)...) {}
};
template <typename T>
class optional_data_base : public optional_data_dtor_base<T> {
protected:
using base = optional_data_dtor_base<T>;
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
using base::base;
#else
optional_data_base() = default;
template <typename... Args>
constexpr explicit optional_data_base(in_place_t t, Args&&... args)
: base(t, absl::forward<Args>(args)...) {}
#endif
template <typename... Args>
void construct(Args&&... args) {
// Use dummy_'s address to work around casting cv-qualified T* to void*.
::new (static_cast<void*>(&this->dummy_)) T(std::forward<Args>(args)...);
this->engaged_ = true;
}
template <typename U>
void assign(U&& u) {
if (this->engaged_) {
this->data_ = std::forward<U>(u);
} else {
construct(std::forward<U>(u));
}
}
};
// TODO(absl-team): Add another class using
// std::is_trivially_move_constructible trait when available to match
// http://cplusplus.github.io/LWG/lwg-defects.html#2900, for types that
// have trivial move but nontrivial copy.
// Also, we should be checking is_trivially_copyable here, which is not
// supported now, so we use is_trivially_* traits instead.
template <typename T,
bool unused = absl::is_trivially_copy_constructible<T>::value&&
absl::is_trivially_copy_assignable<typename std::remove_cv<
T>::type>::value&& std::is_trivially_destructible<T>::value>
class optional_data;
// Trivially copyable types
template <typename T>
class optional_data<T, true> : public optional_data_base<T> {
protected:
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
using optional_data_base<T>::optional_data_base;
#else
optional_data() = default;
template <typename... Args>
constexpr explicit optional_data(in_place_t t, Args&&... args)
: optional_data_base<T>(t, absl::forward<Args>(args)...) {}
#endif
};
template <typename T>
class optional_data<T, false> : public optional_data_base<T> {
protected:
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
using optional_data_base<T>::optional_data_base;
#else
template <typename... Args>
constexpr explicit optional_data(in_place_t t, Args&&... args)
: optional_data_base<T>(t, absl::forward<Args>(args)...) {}
#endif
optional_data() = default;
optional_data(const optional_data& rhs) : optional_data_base<T>() {
if (rhs.engaged_) {
this->construct(rhs.data_);
}
}
optional_data(optional_data&& rhs) noexcept(
absl::default_allocator_is_nothrow::value ||
std::is_nothrow_move_constructible<T>::value)
: optional_data_base<T>() {
if (rhs.engaged_) {
this->construct(std::move(rhs.data_));
}
}
optional_data& operator=(const optional_data& rhs) {
if (rhs.engaged_) {
this->assign(rhs.data_);
} else {
this->destruct();
}
return *this;
}
optional_data& operator=(optional_data&& rhs) noexcept(
std::is_nothrow_move_assignable<T>::value&&
std::is_nothrow_move_constructible<T>::value) {
if (rhs.engaged_) {
this->assign(std::move(rhs.data_));
} else {
this->destruct();
}
return *this;
}
};
// Ordered by level of restriction, from low to high.
// Copyable implies movable.
enum class copy_traits { copyable = 0, movable = 1, non_movable = 2 };
// Base class for enabling/disabling copy/move constructor.
template <copy_traits>
class optional_ctor_base;
template <>
class optional_ctor_base<copy_traits::copyable> {
public:
constexpr optional_ctor_base() = default;
optional_ctor_base(const optional_ctor_base&) = default;
optional_ctor_base(optional_ctor_base&&) = default;
optional_ctor_base& operator=(const optional_ctor_base&) = default;
optional_ctor_base& operator=(optional_ctor_base&&) = default;
};
template <>
class optional_ctor_base<copy_traits::movable> {
public:
constexpr optional_ctor_base() = default;
optional_ctor_base(const optional_ctor_base&) = delete;
optional_ctor_base(optional_ctor_base&&) = default;
optional_ctor_base& operator=(const optional_ctor_base&) = default;
optional_ctor_base& operator=(optional_ctor_base&&) = default;
};
template <>
class optional_ctor_base<copy_traits::non_movable> {
public:
constexpr optional_ctor_base() = default;
optional_ctor_base(const optional_ctor_base&) = delete;
optional_ctor_base(optional_ctor_base&&) = delete;
optional_ctor_base& operator=(const optional_ctor_base&) = default;
optional_ctor_base& operator=(optional_ctor_base&&) = default;
};
// Base class for enabling/disabling copy/move assignment.
template <copy_traits>
class optional_assign_base;
template <>
class optional_assign_base<copy_traits::copyable> {
public:
constexpr optional_assign_base() = default;
optional_assign_base(const optional_assign_base&) = default;
optional_assign_base(optional_assign_base&&) = default;
optional_assign_base& operator=(const optional_assign_base&) = default;
optional_assign_base& operator=(optional_assign_base&&) = default;
};
template <>
class optional_assign_base<copy_traits::movable> {
public:
constexpr optional_assign_base() = default;
optional_assign_base(const optional_assign_base&) = default;
optional_assign_base(optional_assign_base&&) = default;
optional_assign_base& operator=(const optional_assign_base&) = delete;
optional_assign_base& operator=(optional_assign_base&&) = default;
};
template <>
class optional_assign_base<copy_traits::non_movable> {
public:
constexpr optional_assign_base() = default;
optional_assign_base(const optional_assign_base&) = default;
optional_assign_base(optional_assign_base&&) = default;
optional_assign_base& operator=(const optional_assign_base&) = delete;
optional_assign_base& operator=(optional_assign_base&&) = delete;
};
template <typename T>
struct ctor_copy_traits {
static constexpr copy_traits traits =
std::is_copy_constructible<T>::value
? copy_traits::copyable
: std::is_move_constructible<T>::value ? copy_traits::movable
: copy_traits::non_movable;
};
template <typename T>
struct assign_copy_traits {
static constexpr copy_traits traits =
absl::is_copy_assignable<T>::value && std::is_copy_constructible<T>::value
? copy_traits::copyable
: absl::is_move_assignable<T>::value &&
std::is_move_constructible<T>::value
? copy_traits::movable
: copy_traits::non_movable;
};
// Whether T is constructible or convertible from optional<U>.
template <typename T, typename U>
struct is_constructible_convertible_from_optional
: std::integral_constant<
bool, std::is_constructible<T, optional<U>&>::value ||
std::is_constructible<T, optional<U>&&>::value ||
std::is_constructible<T, const optional<U>&>::value ||
std::is_constructible<T, const optional<U>&&>::value ||
std::is_convertible<optional<U>&, T>::value ||
std::is_convertible<optional<U>&&, T>::value ||
std::is_convertible<const optional<U>&, T>::value ||
std::is_convertible<const optional<U>&&, T>::value> {};
// Whether T is constructible or convertible or assignable from optional<U>.
template <typename T, typename U>
struct is_constructible_convertible_assignable_from_optional
: std::integral_constant<
bool, is_constructible_convertible_from_optional<T, U>::value ||
std::is_assignable<T&, optional<U>&>::value ||
std::is_assignable<T&, optional<U>&&>::value ||
std::is_assignable<T&, const optional<U>&>::value ||
std::is_assignable<T&, const optional<U>&&>::value> {};
// Helper function used by [optional.relops], [optional.comp_with_t],
// for checking whether an expression is convertible to bool.
bool convertible_to_bool(bool);
// Base class for std::hash<absl::optional<T>>:
// If std::hash<std::remove_const_t<T>> is enabled, it provides operator() to
// compute the hash; Otherwise, it is disabled.
// Reference N4659 23.14.15 [unord.hash].
template <typename T, typename = size_t>
struct optional_hash_base {
optional_hash_base() = delete;
optional_hash_base(const optional_hash_base&) = delete;
optional_hash_base(optional_hash_base&&) = delete;
optional_hash_base& operator=(const optional_hash_base&) = delete;
optional_hash_base& operator=(optional_hash_base&&) = delete;
};
template <typename T>
struct optional_hash_base<T, decltype(std::hash<absl::remove_const_t<T> >()(
std::declval<absl::remove_const_t<T> >()))> {
using argument_type = absl::optional<T>;
using result_type = size_t;
size_t operator()(const absl::optional<T>& opt) const {
absl::type_traits_internal::AssertHashEnabled<absl::remove_const_t<T>>();
if (opt) {
return std::hash<absl::remove_const_t<T> >()(*opt);
} else {
return static_cast<size_t>(0x297814aaad196e6dULL);
}
}
};
} // namespace optional_internal
// -----------------------------------------------------------------------------
// absl::optional class definition
// -----------------------------------------------------------------------------
template <typename T>
class optional : private optional_internal::optional_data<T>,
private optional_internal::optional_ctor_base<