Complete balanced binary tree problem
Supporting a function that returns true if a tree has no two leaf nodes with depth differences greater than 1.
This commit is contained in:
parent
bb0de3dec2
commit
64bd3f0303
1 changed files with 123 additions and 0 deletions
123
deepmind/balanced-binary-tree.py
Normal file
123
deepmind/balanced-binary-tree.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
import unittest
|
||||
from collections import deque
|
||||
|
||||
|
||||
def is_balanced(node):
|
||||
q, seen, ds = deque(), set(), set()
|
||||
q.append((0, node))
|
||||
while q:
|
||||
d, node = q.popleft()
|
||||
l, r = node.left, node.right
|
||||
seen.add(node)
|
||||
if not l and not r:
|
||||
if d not in ds and len(ds) == 2:
|
||||
return False
|
||||
else:
|
||||
ds.add(d)
|
||||
if l and l not in seen:
|
||||
q.append((d + 1, l))
|
||||
if r and r not in seen:
|
||||
q.append((d + 1, r))
|
||||
return max(ds) - min(ds) <= 1
|
||||
|
||||
|
||||
# Tests
|
||||
class Test(unittest.TestCase):
|
||||
class BinaryTreeNode(object):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def insert_left(self, value):
|
||||
self.left = Test.BinaryTreeNode(value)
|
||||
return self.left
|
||||
|
||||
def insert_right(self, value):
|
||||
self.right = Test.BinaryTreeNode(value)
|
||||
return self.right
|
||||
|
||||
def test_full_tree(self):
|
||||
tree = Test.BinaryTreeNode(5)
|
||||
left = tree.insert_left(8)
|
||||
right = tree.insert_right(6)
|
||||
left.insert_left(1)
|
||||
left.insert_right(2)
|
||||
right.insert_left(3)
|
||||
right.insert_right(4)
|
||||
result = is_balanced(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_both_leaves_at_the_same_depth(self):
|
||||
tree = Test.BinaryTreeNode(3)
|
||||
left = tree.insert_left(4)
|
||||
right = tree.insert_right(2)
|
||||
left.insert_left(1)
|
||||
right.insert_right(9)
|
||||
result = is_balanced(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_leaf_heights_differ_by_one(self):
|
||||
tree = Test.BinaryTreeNode(6)
|
||||
left = tree.insert_left(1)
|
||||
right = tree.insert_right(0)
|
||||
right.insert_right(7)
|
||||
result = is_balanced(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_leaf_heights_differ_by_two(self):
|
||||
tree = Test.BinaryTreeNode(6)
|
||||
left = tree.insert_left(1)
|
||||
right = tree.insert_right(0)
|
||||
right_right = right.insert_right(7)
|
||||
right_right.insert_right(8)
|
||||
result = is_balanced(tree)
|
||||
self.assertFalse(result)
|
||||
|
||||
def test_three_leaves_total(self):
|
||||
tree = Test.BinaryTreeNode(1)
|
||||
left = tree.insert_left(5)
|
||||
right = tree.insert_right(9)
|
||||
right.insert_left(8)
|
||||
right.insert_right(5)
|
||||
result = is_balanced(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_both_subtrees_superbalanced(self):
|
||||
tree = Test.BinaryTreeNode(1)
|
||||
left = tree.insert_left(5)
|
||||
right = tree.insert_right(9)
|
||||
right_left = right.insert_left(8)
|
||||
right.insert_right(5)
|
||||
right_left.insert_left(7)
|
||||
result = is_balanced(tree)
|
||||
self.assertFalse(result)
|
||||
|
||||
def test_both_subtrees_superbalanced_two(self):
|
||||
tree = Test.BinaryTreeNode(1)
|
||||
left = tree.insert_left(2)
|
||||
right = tree.insert_right(4)
|
||||
left.insert_left(3)
|
||||
left_right = left.insert_right(7)
|
||||
left_right.insert_right(8)
|
||||
right_right = right.insert_right(5)
|
||||
right_right_right = right_right.insert_right(6)
|
||||
right_right_right.insert_right(9)
|
||||
result = is_balanced(tree)
|
||||
self.assertFalse(result)
|
||||
|
||||
def test_only_one_node(self):
|
||||
tree = Test.BinaryTreeNode(1)
|
||||
result = is_balanced(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_linked_list_tree(self):
|
||||
tree = Test.BinaryTreeNode(1)
|
||||
right = tree.insert_right(2)
|
||||
right_right = right.insert_right(3)
|
||||
right_right.insert_right(4)
|
||||
result = is_balanced(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
|
||||
unittest.main(verbosity=2)
|
Loading…
Reference in a new issue