Solve InterviewCake's bst-checker problem
Write a function that returns true if a given binary tree is a valid binary search tree (i.e. if all of root's left nodes are less than root.value, all of root's right nodes are greater than root.value, and both left and right subtrees are also valid binary search trees).
This commit is contained in:
parent
47a11b76a2
commit
56d8d1d7b2
2 changed files with 112 additions and 2 deletions
110
scratch/deepmind/part_two/bst-checker.py
Normal file
110
scratch/deepmind/part_two/bst-checker.py
Normal file
|
@ -0,0 +1,110 @@
|
|||
import unittest
|
||||
from collections import deque
|
||||
|
||||
|
||||
# While this function solves the problem, it uses O(n) space since we're storing
|
||||
# all of the less-thans and greater-thans.
|
||||
def is_binary_search_tree_first_attempt(root):
|
||||
q = deque()
|
||||
q.append((set(), set(), root))
|
||||
|
||||
while q:
|
||||
lts, gts, node = q.popleft()
|
||||
|
||||
if not all([node.value < lt for lt in lts]):
|
||||
return False
|
||||
if not all([node.value > gt for gt in gts]):
|
||||
return False
|
||||
|
||||
if node.left:
|
||||
q.append((lts | {node.value}, gts, node.left))
|
||||
if node.right:
|
||||
q.append((lts, gts | {node.value}, node.right))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# While I did not originally solve this problem this way, when I learned that I
|
||||
# could condense the space of my solution's runtime, I wrote this.
|
||||
def is_binary_search_tree(root):
|
||||
q = deque()
|
||||
q.append((None, None, root))
|
||||
|
||||
while q:
|
||||
lt, gt, node = q.popleft()
|
||||
|
||||
if not lt is None and node.value >= lt:
|
||||
return False
|
||||
if not gt is None and node.value <= gt:
|
||||
return False
|
||||
|
||||
if node.left:
|
||||
q.append((node.value, gt, node.left))
|
||||
if node.right:
|
||||
q.append((lt, node.value, node.right))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# Tests
|
||||
class Test(unittest.TestCase):
|
||||
class BinaryTreeNode(object):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def insert_left(self, value):
|
||||
self.left = Test.BinaryTreeNode(value)
|
||||
return self.left
|
||||
|
||||
def insert_right(self, value):
|
||||
self.right = Test.BinaryTreeNode(value)
|
||||
return self.right
|
||||
|
||||
def test_valid_full_tree(self):
|
||||
tree = Test.BinaryTreeNode(50)
|
||||
left = tree.insert_left(30)
|
||||
right = tree.insert_right(70)
|
||||
left.insert_left(10)
|
||||
left.insert_right(40)
|
||||
right.insert_left(60)
|
||||
right.insert_right(80)
|
||||
result = is_binary_search_tree(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_both_subtrees_valid(self):
|
||||
tree = Test.BinaryTreeNode(50)
|
||||
left = tree.insert_left(30)
|
||||
right = tree.insert_right(80)
|
||||
left.insert_left(20)
|
||||
left.insert_right(60)
|
||||
right.insert_left(70)
|
||||
right.insert_right(90)
|
||||
result = is_binary_search_tree(tree)
|
||||
self.assertFalse(result)
|
||||
|
||||
def test_descending_linked_list(self):
|
||||
tree = Test.BinaryTreeNode(50)
|
||||
left = tree.insert_left(40)
|
||||
left_left = left.insert_left(30)
|
||||
left_left_left = left_left.insert_left(20)
|
||||
left_left_left.insert_left(10)
|
||||
result = is_binary_search_tree(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
def test_out_of_order_linked_list(self):
|
||||
tree = Test.BinaryTreeNode(50)
|
||||
right = tree.insert_right(70)
|
||||
right_right = right.insert_right(60)
|
||||
right_right.insert_right(80)
|
||||
result = is_binary_search_tree(tree)
|
||||
self.assertFalse(result)
|
||||
|
||||
def test_one_node_tree(self):
|
||||
tree = Test.BinaryTreeNode(50)
|
||||
result = is_binary_search_tree(tree)
|
||||
self.assertTrue(result)
|
||||
|
||||
|
||||
unittest.main(verbosity=2)
|
|
@ -22,7 +22,7 @@
|
|||
** DONE Merging Meeting Times
|
||||
* Trees and graphs
|
||||
** DONE Balanced Binary Tree
|
||||
** TODO Binary Search Tree Checker
|
||||
** DONE Binary Search Tree Checker
|
||||
** TODO 2nd Largest Item in a Binary Search Tree
|
||||
** TODO Graph Coloring
|
||||
** TODO MeshMessage
|
||||
|
@ -33,7 +33,7 @@
|
|||
** TODO Making Change
|
||||
** TODO The Cake Thief
|
||||
** DONE Balanced Binary Tree
|
||||
** TODO Binary Search Tree Checker
|
||||
** DONE Binary Search Tree Checker
|
||||
** TODO 2nd Largest Item in a Binary Search Tree
|
||||
* Queues and stacks
|
||||
** TODO Largest Stack
|
||||
|
|
Loading…
Reference in a new issue