Export of internal Abseil changes.

--
4eacae3ff1b14b1d309e8092185bc10e8a6203cf by Derek Mauro <dmauro@google.com>:

Release SwissTable - a fast, efficient, cache-friendly hash table.

https://www.youtube.com/watch?v=ncHmEUmJZf4

PiperOrigin-RevId: 214816527

--
df8c3dfab3cfb2f4365909a84d0683b193cfbb11 by Derek Mauro <dmauro@google.com>:

Internal change

PiperOrigin-RevId: 214785288

--
1eabd5266bbcebc33eecc91e5309b751856a75c8 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 214722931

--
2ebbfac950f83146b46253038e7dd7dcde9f2951 by Derek Mauro <dmauro@google.com>:

Internal change

PiperOrigin-RevId: 214701684
GitOrigin-RevId: 4eacae3ff1b14b1d309e8092185bc10e8a6203cf
Change-Id: I9ba64e395b22ad7863213d157b8019b082adc19d
This commit is contained in:
Abseil Team 2018-09-27 12:24:54 -07:00 committed by Derek Mauro
parent e291c279e4
commit 48cd2c3f35
55 changed files with 18696 additions and 0 deletions

View file

@ -185,3 +185,459 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
NOTEST_TAGS_NONMOBILE = [
"no_test_darwin_x86_64",
"no_test_loonix",
]
NOTEST_TAGS_MOBILE = [
"no_test_android_arm",
"no_test_android_arm64",
"no_test_android_x86",
"no_test_ios_x86_64",
]
NOTEST_TAGS = NOTEST_TAGS_MOBILE + NOTEST_TAGS_NONMOBILE
cc_library(
name = "flat_hash_map",
hdrs = ["flat_hash_map.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":container_memory",
":hash_function_defaults",
":raw_hash_map",
"//absl/memory",
],
)
cc_test(
name = "flat_hash_map_test",
srcs = ["flat_hash_map_test.cc"],
copts = ABSL_TEST_COPTS + ["-DUNORDERED_MAP_CXX17"],
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":flat_hash_map",
":hash_generator_testing",
":unordered_map_constructor_test",
":unordered_map_lookup_test",
":unordered_map_modifiers_test",
"//absl/types:any",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "flat_hash_set",
hdrs = ["flat_hash_set.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":container_memory",
":hash_function_defaults",
":raw_hash_set",
"//absl/base:core_headers",
"//absl/memory",
],
)
cc_test(
name = "flat_hash_set_test",
srcs = ["flat_hash_set_test.cc"],
copts = ABSL_TEST_COPTS + ["-DUNORDERED_SET_CXX17"],
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":flat_hash_set",
":hash_generator_testing",
":unordered_set_constructor_test",
":unordered_set_lookup_test",
":unordered_set_modifiers_test",
"//absl/memory",
"//absl/strings",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "node_hash_map",
hdrs = ["node_hash_map.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":container_memory",
":hash_function_defaults",
":node_hash_policy",
":raw_hash_map",
"//absl/memory",
],
)
cc_test(
name = "node_hash_map_test",
srcs = ["node_hash_map_test.cc"],
copts = ABSL_TEST_COPTS + ["-DUNORDERED_MAP_CXX17"],
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":hash_generator_testing",
":node_hash_map",
":tracked",
":unordered_map_constructor_test",
":unordered_map_lookup_test",
":unordered_map_modifiers_test",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "node_hash_set",
hdrs = ["node_hash_set.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":container_memory",
":hash_function_defaults",
":node_hash_policy",
":raw_hash_set",
"//absl/memory",
],
)
cc_test(
name = "node_hash_set_test",
srcs = ["node_hash_set_test.cc"],
copts = ABSL_TEST_COPTS + ["-DUNORDERED_SET_CXX17"],
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":hash_generator_testing",
":node_hash_set",
":unordered_set_constructor_test",
":unordered_set_lookup_test",
":unordered_set_modifiers_test",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "container_memory",
hdrs = ["internal/container_memory.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
"//absl/memory",
"//absl/utility",
],
)
cc_test(
name = "container_memory_test",
srcs = ["internal/container_memory_test.cc"],
copts = ABSL_TEST_COPTS,
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":container_memory",
"//absl/strings",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "hash_function_defaults",
hdrs = ["internal/hash_function_defaults.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
"//absl/base:config",
"//absl/hash",
"//absl/strings",
],
)
cc_test(
name = "hash_function_defaults_test",
srcs = ["internal/hash_function_defaults_test.cc"],
copts = ABSL_TEST_COPTS,
tags = NOTEST_TAGS,
deps = [
":hash_function_defaults",
"//absl/hash",
"//absl/strings",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "hash_generator_testing",
testonly = 1,
srcs = ["internal/hash_generator_testing.cc"],
hdrs = ["internal/hash_generator_testing.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_policy_testing",
"//absl/meta:type_traits",
"//absl/strings",
],
)
cc_library(
name = "hash_policy_testing",
testonly = 1,
hdrs = ["internal/hash_policy_testing.h"],
copts = ABSL_TEST_COPTS,
deps = [
"//absl/hash",
"//absl/strings",
],
)
cc_test(
name = "hash_policy_testing_test",
srcs = ["internal/hash_policy_testing_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_policy_testing",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "hash_policy_traits",
hdrs = ["internal/hash_policy_traits.h"],
copts = ABSL_DEFAULT_COPTS,
deps = ["//absl/meta:type_traits"],
)
cc_test(
name = "hash_policy_traits_test",
srcs = ["internal/hash_policy_traits_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_policy_traits",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "hashtable_debug",
hdrs = ["internal/hashtable_debug.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":hashtable_debug_hooks",
],
)
cc_library(
name = "hashtable_debug_hooks",
hdrs = ["internal/hashtable_debug_hooks.h"],
copts = ABSL_DEFAULT_COPTS,
)
cc_library(
name = "node_hash_policy",
hdrs = ["internal/node_hash_policy.h"],
copts = ABSL_DEFAULT_COPTS,
)
cc_test(
name = "node_hash_policy_test",
srcs = ["internal/node_hash_policy_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_policy_traits",
":node_hash_policy",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "raw_hash_map",
hdrs = ["internal/raw_hash_map.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":container_memory",
":raw_hash_set",
],
)
cc_library(
name = "raw_hash_set",
srcs = ["internal/raw_hash_set.cc"],
hdrs = ["internal/raw_hash_set.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":compressed_tuple",
":container_memory",
":hash_policy_traits",
":hashtable_debug_hooks",
":layout",
"//absl/base:bits",
"//absl/base:config",
"//absl/base:core_headers",
"//absl/base:endian",
"//absl/memory",
"//absl/meta:type_traits",
"//absl/types:optional",
"//absl/utility",
],
)
cc_test(
name = "raw_hash_set_test",
srcs = ["internal/raw_hash_set_test.cc"],
copts = ABSL_TEST_COPTS,
linkstatic = 1,
tags = NOTEST_TAGS,
deps = [
":container_memory",
":hash_function_defaults",
":hash_policy_testing",
":hashtable_debug",
":raw_hash_set",
"//absl/base",
"//absl/base:core_headers",
"//absl/strings",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "raw_hash_set_allocator_test",
size = "small",
srcs = ["internal/raw_hash_set_allocator_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":raw_hash_set",
":tracked",
"//absl/base:core_headers",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "layout",
hdrs = ["internal/layout.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
"//absl/base:core_headers",
"//absl/meta:type_traits",
"//absl/strings",
"//absl/types:span",
"//absl/utility",
],
)
cc_test(
name = "layout_test",
size = "small",
srcs = ["internal/layout_test.cc"],
copts = ABSL_TEST_COPTS,
tags = NOTEST_TAGS,
visibility = ["//visibility:private"],
deps = [
":layout",
"//absl/base",
"//absl/base:core_headers",
"//absl/types:span",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "tracked",
testonly = 1,
hdrs = ["internal/tracked.h"],
copts = ABSL_TEST_COPTS,
)
cc_library(
name = "unordered_map_constructor_test",
testonly = 1,
hdrs = ["internal/unordered_map_constructor_test.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_generator_testing",
":hash_policy_testing",
"@com_google_googletest//:gtest",
],
)
cc_library(
name = "unordered_map_lookup_test",
testonly = 1,
hdrs = ["internal/unordered_map_lookup_test.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_generator_testing",
":hash_policy_testing",
"@com_google_googletest//:gtest",
],
)
cc_library(
name = "unordered_map_modifiers_test",
testonly = 1,
hdrs = ["internal/unordered_map_modifiers_test.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_generator_testing",
":hash_policy_testing",
"@com_google_googletest//:gtest",
],
)
cc_library(
name = "unordered_set_constructor_test",
testonly = 1,
hdrs = ["internal/unordered_set_constructor_test.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_generator_testing",
":hash_policy_testing",
"@com_google_googletest//:gtest",
],
)
cc_library(
name = "unordered_set_lookup_test",
testonly = 1,
hdrs = ["internal/unordered_set_lookup_test.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_generator_testing",
":hash_policy_testing",
"@com_google_googletest//:gtest",
],
)
cc_library(
name = "unordered_set_modifiers_test",
testonly = 1,
hdrs = ["internal/unordered_set_modifiers_test.h"],
copts = ABSL_TEST_COPTS,
deps = [
":hash_generator_testing",
":hash_policy_testing",
"@com_google_googletest//:gtest",
],
)
cc_test(
name = "unordered_set_test",
srcs = ["internal/unordered_set_test.cc"],
copts = ABSL_TEST_COPTS,
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":unordered_set_constructor_test",
":unordered_set_lookup_test",
":unordered_set_modifiers_test",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "unordered_map_test",
srcs = ["internal/unordered_map_test.cc"],
copts = ABSL_TEST_COPTS,
tags = NOTEST_TAGS_NONMOBILE,
deps = [
":unordered_map_constructor_test",
":unordered_map_lookup_test",
":unordered_map_modifiers_test",
"@com_google_googletest//:gtest_main",
],
)

View file

@ -17,12 +17,34 @@
list(APPEND CONTAINER_PUBLIC_HEADERS
"fixed_array.h"
"flat_hash_map.h"
"flat_hash_set.h"
"inlined_vector.h"
"node_hash_map.h"
"node_hash_set.h"
)
list(APPEND CONTAINER_INTERNAL_HEADERS
"internal/compressed_tuple.h"
"internal/container_memory.h"
"internal/hash_function_defaults.h"
"internal/hash_generator_testing.h"
"internal/hash_policy_testing.h"
"internal/hash_policy_traits.h"
"internal/hashtable_debug.h"
"internal/layout.h"
"internal/node_hash_policy.h"
"internal/raw_hash_map.h"
"internal/raw_hash_set.h"
"internal/test_instance_tracker.h"
"internal/tracked.h"
"internal/unordered_map_constructor_test.h"
"internal/unordered_map_lookup_test.h"
"internal/unordered_map_modifiers_test.h"
"internal/unordered_set_constructor_test.h"
"internal/unordered_set_lookup_test.h"
"internal/unordered_set_modifiers_test.h"
)

View file

@ -0,0 +1,528 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: flat_hash_map.h
// -----------------------------------------------------------------------------
//
// An `absl::flat_hash_map<K, V>` is an unordered associative container of
// unique keys and associated values designed to be a more efficient replacement
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
// deletion of map elements can be done as an `O(1)` operation. However,
// `flat_hash_map` (and other unordered associative containers known as the
// collection of Abseil "Swiss tables") contain other optimizations that result
// in both memory and computation advantages.
//
// In most cases, your default choice for a hash map should be a map of type
// `flat_hash_map`.
#ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
#define ABSL_CONTAINER_FLAT_HASH_MAP_H_
#include <cstddef>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
#include "absl/memory/memory.h"
namespace absl {
namespace container_internal {
template <class K, class V>
struct FlatHashMapPolicy;
} // namespace container_internal
// -----------------------------------------------------------------------------
// absl::flat_hash_map
// -----------------------------------------------------------------------------
//
// An `absl::flat_hash_map<K, V>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
// the following notable differences:
//
// * Requires keys that are CopyConstructible
// * Requires values that are MoveConstructible
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the map is provided a compatible heterogeneous
// hashing function and equality operator.
// * Invalidates any references and pointers to elements within the table after
// `rehash()`.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash map.
// * Returns `void` from the `erase(iterator)` overload.
//
// By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
// All fundamental and Abseil types that support the `absl::Hash` framework have
// a compatible equality operator for comparing insertions into `flat_hash_map`.
// If your type is not yet supported by the `asbl::Hash` framework, see
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
// types.
//
// NOTE: A `flat_hash_map` stores its value types directly inside its
// implementation array to avoid memory indirection. Because a `flat_hash_map`
// is designed to move data when rehashed, map values will not retain pointer
// stability. If you require pointer stability, or your values are large,
// consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
// If your types are not moveable or you require pointer stability for keys,
// consider `absl::node_hash_map`.
//
// Example:
//
// // Create a flat hash map of three strings (that map to strings)
// absl::flat_hash_map<std::string, std::string> ducks =
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
//
// // Insert a new element into the flat hash map
// ducks.insert({"d", "donald"}};
//
// // Force a rehash of the flat hash map
// ducks.rehash(0);
//
// // Find the element with the key "b"
// std::string search_key = "b";
// auto result = ducks.find(search_key);
// if (result != ducks.end()) {
// std::cout << "Result: " << result->second << std::endl;
// }
template <class K, class V,
class Hash = absl::container_internal::hash_default_hash<K>,
class Eq = absl::container_internal::hash_default_eq<K>,
class Allocator = std::allocator<std::pair<const K, V>>>
class flat_hash_map : public absl::container_internal::raw_hash_map<
absl::container_internal::FlatHashMapPolicy<K, V>,
Hash, Eq, Allocator> {
using Base = typename flat_hash_map::raw_hash_map;
public:
flat_hash_map() {}
using Base::Base;
// flat_hash_map::begin()
//
// Returns an iterator to the beginning of the `flat_hash_map`.
using Base::begin;
// flat_hash_map::cbegin()
//
// Returns a const iterator to the beginning of the `flat_hash_map`.
using Base::cbegin;
// flat_hash_map::cend()
//
// Returns a const iterator to the end of the `flat_hash_map`.
using Base::cend;
// flat_hash_map::end()
//
// Returns an iterator to the end of the `flat_hash_map`.
using Base::end;
// flat_hash_map::capacity()
//
// Returns the number of element slots (assigned, deleted, and empty)
// available within the `flat_hash_map`.
//
// NOTE: this member function is particular to `absl::flat_hash_map` and is
// not provided in the `std::unordered_map` API.
using Base::capacity;
// flat_hash_map::empty()
//
// Returns whether or not the `flat_hash_map` is empty.
using Base::empty;
// flat_hash_map::max_size()
//
// Returns the largest theoretical possible number of elements within a
// `flat_hash_map` under current memory constraints. This value can be thought
// of the largest value of `std::distance(begin(), end())` for a
// `flat_hash_map<K, V>`.
using Base::max_size;
// flat_hash_map::size()
//
// Returns the number of elements currently within the `flat_hash_map`.
using Base::size;
// flat_hash_map::clear()
//
// Removes all elements from the `flat_hash_map`. Invalidates any references,
// pointers, or iterators referring to contained elements.
//
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
// the underlying buffer call `erase(begin(), end())`.
using Base::clear;
// flat_hash_map::erase()
//
// Erases elements within the `flat_hash_map`. Erasing does not trigger a
// rehash. Overloads are listed below.
//
// void erase(const_iterator pos):
//
// Erases the element at `position` of the `flat_hash_map`, returning
// `void`.
//
// NOTE: this return behavior is different than that of STL containers in
// general and `std::unordered_map` in particular.
//
// iterator erase(const_iterator first, const_iterator last):
//
// Erases the elements in the open interval [`first`, `last`), returning an
// iterator pointing to `last`.
//
// size_type erase(const key_type& key):
//
// Erases the element with the matching key, if it exists.
using Base::erase;
// flat_hash_map::insert()
//
// Inserts an element of the specified value into the `flat_hash_map`,
// returning an iterator pointing to the newly inserted element, provided that
// an element with the given key does not already exist. If rehashing occurs
// due to the insertion, all iterators are invalidated. Overloads are listed
// below.
//
// std::pair<iterator,bool> insert(const init_type& value):
//
// Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
// iterator to the inserted element (or to the element that prevented the
// insertion) and a bool denoting whether the insertion took place.
//
// std::pair<iterator,bool> insert(T&& value):
// std::pair<iterator,bool> insert(init_type&& value ):
//
// Inserts a moveable value into the `flat_hash_map`. Returns a pair
// consisting of an iterator to the inserted element (or to the element that
// prevented the insertion) and a bool denoting whether the insertion took
// place.
//
// iterator insert(const_iterator hint, const init_type& value):
// iterator insert(const_iterator hint, T&& value):
// iterator insert(const_iterator hint, init_type&& value );
//
// Inserts a value, using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search. Returns an iterator to the
// inserted element, or to the existing element that prevented the
// insertion.
//
// void insert(InputIterator first, InputIterator last ):
//
// Inserts a range of values [`first`, `last`).
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently, for `flat_hash_map` we guarantee the
// first match is inserted.
//
// void insert(std::initializer_list<init_type> ilist ):
//
// Inserts the elements within the initializer list `ilist`.
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently within the initializer list, for
// `flat_hash_map` we guarantee the first match is inserted.
using Base::insert;
// flat_hash_map::insert_or_assign()
//
// Inserts an element of the specified value into the `flat_hash_map` provided
// that a value with the given key does not already exist, or replaces it with
// the element value if a key for that value already exists, returning an
// iterator pointing to the newly inserted element. If rehashing occurs due
// to the insertion, all existing iterators are invalidated. Overloads are
// listed below.
//
// pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
// pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
//
// Inserts/Assigns (or moves) the element of the specified key into the
// `flat_hash_map`.
//
// iterator insert_or_assign(const_iterator hint,
// const init_type& k, T&& obj):
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
//
// Inserts/Assigns (or moves) the element of the specified key into the
// `flat_hash_map` using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search.
using Base::insert_or_assign;
// flat_hash_map::emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `flat_hash_map`, provided that no element with the given key
// already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace;
// flat_hash_map::emplace_hint()
//
// Inserts an element of the specified value by constructing it in-place
// within the `flat_hash_map`, using the position of `hint` as a non-binding
// suggestion for where to begin the insertion search, and only inserts
// provided that no element with the given key already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace_hint;
// flat_hash_map::try_emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `flat_hash_map`, provided that no element with the given key
// already exists. Unlike `emplace()`, if an element with the given key
// already exists, we guarantee that no element is constructed.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
// Overloads are listed below.
//
// pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
// pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
//
// Inserts (via copy or move) the element of the specified key into the
// `flat_hash_map`.
//
// iterator try_emplace(const_iterator hint,
// const init_type& k, Args&&... args):
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
//
// Inserts (via copy or move) the element of the specified key into the
// `flat_hash_map` using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search.
using Base::try_emplace;
// flat_hash_map::extract()
//
// Extracts the indicated element, erasing it in the process, and returns it
// as a C++17-compatible node handle. Overloads are listed below.
//
// node_type extract(const_iterator position):
//
// Extracts the key,value pair of the element at the indicated position and
// returns a node handle owning that extracted data.
//
// node_type extract(const key_type& x):
//
// Extracts the key,value pair of the element with a key matching the passed
// key value and returns a node handle owning that extracted data. If the
// `flat_hash_map` does not contain an element with a matching key, this
// function returns an empty node handle.
using Base::extract;
// flat_hash_map::merge()
//
// Extracts elements from a given `source` flat hash map into this
// `flat_hash_map`. If the destination `flat_hash_map` already contains an
// element with an equivalent key, that element is not extracted.
using Base::merge;
// flat_hash_map::swap(flat_hash_map& other)
//
// Exchanges the contents of this `flat_hash_map` with those of the `other`
// flat hash map, avoiding invocation of any move, copy, or swap operations on
// individual elements.
//
// All iterators and references on the `flat_hash_map` remain valid, excepting
// for the past-the-end iterator, which is invalidated.
//
// `swap()` requires that the flat hash map's hashing and key equivalence
// functions be Swappable, and are exchaged using unqualified calls to
// non-member `swap()`. If the map's allocator has
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
// set to `true`, the allocators are also exchanged using an unqualified call
// to non-member `swap()`; otherwise, the allocators are not swapped.
using Base::swap;
// flat_hash_map::rehash(count)
//
// Rehashes the `flat_hash_map`, setting the number of slots to be at least
// the passed value. If the new number of slots increases the load factor more
// than the current maximum load factor
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
// will be at least `size()` / `max_load_factor()`.
//
// To force a rehash, pass rehash(0).
//
// NOTE: unlike behavior in `std::unordered_map`, references are also
// invalidated upon a `rehash()`.
using Base::rehash;
// flat_hash_map::reserve(count)
//
// Sets the number of slots in the `flat_hash_map` to the number needed to
// accommodate at least `count` total elements without exceeding the current
// maximum load factor, and may rehash the container if needed.
using Base::reserve;
// flat_hash_map::at()
//
// Returns a reference to the mapped value of the element with key equivalent
// to the passed key.
using Base::at;
// flat_hash_map::contains()
//
// Determines whether an element with a key comparing equal to the given `key`
// exists within the `flat_hash_map`, returning `true` if so or `false`
// otherwise.
using Base::contains;
// flat_hash_map::count(const Key& key) const
//
// Returns the number of elements with a key comparing equal to the given
// `key` within the `flat_hash_map`. note that this function will return
// either `1` or `0` since duplicate keys are not allowed within a
// `flat_hash_map`.
using Base::count;
// flat_hash_map::equal_range()
//
// Returns a closed range [first, last], defined by a `std::pair` of two
// iterators, containing all elements with the passed key in the
// `flat_hash_map`.
using Base::equal_range;
// flat_hash_map::find()
//
// Finds an element with the passed `key` within the `flat_hash_map`.
using Base::find;
// flat_hash_map::operator[]()
//
// Returns a reference to the value mapped to the passed key within the
// `flat_hash_map`, performing an `insert()` if the key does not already
// exist.
//
// If an insertion occurs and results in a rehashing of the container, all
// iterators are invalidated. Otherwise iterators are not affected and
// references are not invalidated. Overloads are listed below.
//
// T& operator[](const Key& key ):
//
// Inserts an init_type object constructed in-place if the element with the
// given key does not exist.
//
// T& operator[]( Key&& key ):
//
// Inserts an init_type object constructed in-place provided that an element
// with the given key does not exist.
using Base::operator[];
// flat_hash_map::bucket_count()
//
// Returns the number of "buckets" within the `flat_hash_map`. Note that
// because a flat hash map contains all elements within its internal storage,
// this value simply equals the current capacity of the `flat_hash_map`.
using Base::bucket_count;
// flat_hash_map::load_factor()
//
// Returns the current load factor of the `flat_hash_map` (the average number
// of slots occupied with a value within the hash map).
using Base::load_factor;
// flat_hash_map::max_load_factor()
//
// Manages the maximum load factor of the `flat_hash_map`. Overloads are
// listed below.
//
// float flat_hash_map::max_load_factor()
//
// Returns the current maximum load factor of the `flat_hash_map`.
//
// void flat_hash_map::max_load_factor(float ml)
//
// Sets the maximum load factor of the `flat_hash_map` to the passed value.
//
// NOTE: This overload is provided only for API compatibility with the STL;
// `flat_hash_map` will ignore any set load factor and manage its rehashing
// internally as an implementation detail.
using Base::max_load_factor;
// flat_hash_map::get_allocator()
//
// Returns the allocator function associated with this `flat_hash_map`.
using Base::get_allocator;
// flat_hash_map::hash_function()
//
// Returns the hashing function used to hash the keys within this
// `flat_hash_map`.
using Base::hash_function;
// flat_hash_map::key_eq()
//
// Returns the function used for comparing keys equality.
using Base::key_eq;
};
namespace container_internal {
template <class K, class V>
struct FlatHashMapPolicy {
using slot_type = container_internal::slot_type<K, V>;
using key_type = K;
using mapped_type = V;
using init_type = std::pair</*non const*/ key_type, mapped_type>;
template <class Allocator, class... Args>
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
slot_type::construct(alloc, slot, std::forward<Args>(args)...);
}
template <class Allocator>
static void destroy(Allocator* alloc, slot_type* slot) {
slot_type::destroy(alloc, slot);
}
template <class Allocator>
static void transfer(Allocator* alloc, slot_type* new_slot,
slot_type* old_slot) {
slot_type::transfer(alloc, new_slot, old_slot);
}
template <class F, class... Args>
static decltype(absl::container_internal::DecomposePair(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return absl::container_internal::DecomposePair(std::forward<F>(f),
std::forward<Args>(args)...);
}
static size_t space_used(const slot_type*) { return 0; }
static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
static V& value(std::pair<const K, V>* kv) { return kv->second; }
static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_

View file

@ -0,0 +1,241 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/flat_hash_map.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/unordered_map_constructor_test.h"
#include "absl/container/internal/unordered_map_lookup_test.h"
#include "absl/container/internal/unordered_map_modifiers_test.h"
#include "absl/types/any.h"
namespace absl {
namespace container_internal {
namespace {
using ::absl::container_internal::hash_internal::Enum;
using ::absl::container_internal::hash_internal::EnumClass;
using ::testing::_;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
template <class K, class V>
using Map =
flat_hash_map<K, V, StatefulTestingHash, StatefulTestingEqual, Alloc<>>;
static_assert(!std::is_standard_layout<NonStandardLayout>(), "");
using MapTypes =
::testing::Types<Map<int, int>, Map<std::string, int>, Map<Enum, std::string>,
Map<EnumClass, int>, Map<int, NonStandardLayout>,
Map<NonStandardLayout, int>>;
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ConstructorTest, MapTypes);
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, LookupTest, MapTypes);
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ModifiersTest, MapTypes);
TEST(FlatHashMap, StandardLayout) {
struct Int {
explicit Int(size_t value) : value(value) {}
Int() : value(0) { ADD_FAILURE(); }
Int(const Int& other) : value(other.value) { ADD_FAILURE(); }
Int(Int&&) = default;
bool operator==(const Int& other) const { return value == other.value; }
size_t value;
};
static_assert(std::is_standard_layout<Int>(), "");
struct Hash {
size_t operator()(const Int& obj) const { return obj.value; }
};
// Verify that neither the key nor the value get default-constructed or
// copy-constructed.
{
flat_hash_map<Int, Int, Hash> m;
m.try_emplace(Int(1), Int(2));
m.try_emplace(Int(3), Int(4));
m.erase(Int(1));
m.rehash(2 * m.bucket_count());
}
{
flat_hash_map<Int, Int, Hash> m;
m.try_emplace(Int(1), Int(2));
m.try_emplace(Int(3), Int(4));
m.erase(Int(1));
m.clear();
}
}
// gcc becomes unhappy if this is inside the method, so pull it out here.
struct balast {};
TEST(FlatHashMap, IteratesMsan) {
// Because SwissTable randomizes on pointer addresses, we keep old tables
// around to ensure we don't reuse old memory.
std::vector<absl::flat_hash_map<int, balast>> garbage;
for (int i = 0; i < 100; ++i) {
absl::flat_hash_map<int, balast> t;
for (int j = 0; j < 100; ++j) {
t[j];
for (const auto& p : t) EXPECT_THAT(p, Pair(_, _));
}
garbage.push_back(std::move(t));
}
}
// Demonstration of the "Lazy Key" pattern. This uses heterogenous insert to
// avoid creating expensive key elements when the item is already present in the
// map.
struct LazyInt {
explicit LazyInt(size_t value, int* tracker)
: value(value), tracker(tracker) {}
explicit operator size_t() const {
++*tracker;
return value;
}
size_t value;
int* tracker;
};
struct Hash {
using is_transparent = void;
int* tracker;
size_t operator()(size_t obj) const {
++*tracker;
return obj;
}
size_t operator()(const LazyInt& obj) const {
++*tracker;
return obj.value;
}
};
struct Eq {
using is_transparent = void;
bool operator()(size_t lhs, size_t rhs) const {
return lhs == rhs;
}
bool operator()(size_t lhs, const LazyInt& rhs) const {
return lhs == rhs.value;
}
};
TEST(FlatHashMap, LazyKeyPattern) {
// hashes are only guaranteed in opt mode, we use assertions to track internal
// state that can cause extra calls to hash.
int conversions = 0;
int hashes = 0;
flat_hash_map<size_t, size_t, Hash, Eq> m(0, Hash{&hashes});
m[LazyInt(1, &conversions)] = 1;
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 1)));
EXPECT_EQ(conversions, 1);
#ifdef NDEBUG
EXPECT_EQ(hashes, 1);
#endif
m[LazyInt(1, &conversions)] = 2;
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2)));
EXPECT_EQ(conversions, 1);
#ifdef NDEBUG
EXPECT_EQ(hashes, 2);
#endif
m.try_emplace(LazyInt(2, &conversions), 3);
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
EXPECT_EQ(conversions, 2);
#ifdef NDEBUG
EXPECT_EQ(hashes, 3);
#endif
m.try_emplace(LazyInt(2, &conversions), 4);
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
EXPECT_EQ(conversions, 2);
#ifdef NDEBUG
EXPECT_EQ(hashes, 4);
#endif
}
TEST(FlatHashMap, BitfieldArgument) {
union {
int n : 1;
};
n = 0;
flat_hash_map<int, int> m;
m.erase(n);
m.count(n);
m.prefetch(n);
m.find(n);
m.contains(n);
m.equal_range(n);
m.insert_or_assign(n, n);
m.insert_or_assign(m.end(), n, n);
m.try_emplace(n);
m.try_emplace(m.end(), n);
m.at(n);
m[n];
}
TEST(FlatHashMap, MergeExtractInsert) {
// We can't test mutable keys, or non-copyable keys with flat_hash_map.
// Test that the nodes have the proper API.
absl::flat_hash_map<int, int> m = {{1, 7}, {2, 9}};
auto node = m.extract(1);
EXPECT_TRUE(node);
EXPECT_EQ(node.key(), 1);
EXPECT_EQ(node.mapped(), 7);
EXPECT_THAT(m, UnorderedElementsAre(Pair(2, 9)));
node.mapped() = 17;
m.insert(std::move(node));
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 17), Pair(2, 9)));
}
#if !defined(__ANDROID__) && !defined(__APPLE__) && !defined(__EMSCRIPTEN__)
TEST(FlatHashMap, Any) {
absl::flat_hash_map<int, absl::any> m;
m.emplace(1, 7);
auto it = m.find(1);
ASSERT_NE(it, m.end());
EXPECT_EQ(7, absl::any_cast<int>(it->second));
m.emplace(std::piecewise_construct, std::make_tuple(2), std::make_tuple(8));
it = m.find(2);
ASSERT_NE(it, m.end());
EXPECT_EQ(8, absl::any_cast<int>(it->second));
m.emplace(std::piecewise_construct, std::make_tuple(3),
std::make_tuple(absl::any(9)));
it = m.find(3);
ASSERT_NE(it, m.end());
EXPECT_EQ(9, absl::any_cast<int>(it->second));
struct H {
size_t operator()(const absl::any&) const { return 0; }
};
struct E {
bool operator()(const absl::any&, const absl::any&) const { return true; }
};
absl::flat_hash_map<absl::any, int, H, E> m2;
m2.emplace(1, 7);
auto it2 = m2.find(1);
ASSERT_NE(it2, m2.end());
EXPECT_EQ(7, it2->second);
}
#endif // __ANDROID__
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,439 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: flat_hash_set.h
// -----------------------------------------------------------------------------
//
// An `absl::flat_hash_set<T>` is an unordered associative container designed to
// be a more efficient replacement for `std::unordered_set`. Like
// `unordered_set`, search, insertion, and deletion of set elements can be done
// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
// associative containers known as the collection of Abseil "Swiss tables")
// contain other optimizations that result in both memory and computation
// advantages.
//
// In most cases, your default choice for a hash set should be a set of type
// `flat_hash_set`.
#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
#define ABSL_CONTAINER_FLAT_HASH_SET_H_
#include <type_traits>
#include <utility>
#include "absl/base/macros.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
#include "absl/memory/memory.h"
namespace absl {
namespace container_internal {
template <typename T>
struct FlatHashSetPolicy;
} // namespace container_internal
// -----------------------------------------------------------------------------
// absl::flat_hash_set
// -----------------------------------------------------------------------------
//
// An `absl::flat_hash_set<T>` is an unordered associative container which has
// been optimized for both speed and memory footprint in most common use cases.
// Its interface is similar to that of `std::unordered_set<T>` with the
// following notable differences:
//
// * Requires keys that are CopyConstructible
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the set is provided a compatible heterogeneous
// hashing function and equality operator.
// * Invalidates any references and pointers to elements within the table after
// `rehash()`.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash set.
// * Returns `void` from the `erase(iterator)` overload.
//
// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
// fundamental and Abseil types that support the `absl::Hash` framework have a
// compatible equality operator for comparing insertions into `flat_hash_map`.
// If your type is not yet supported by the `asbl::Hash` framework, see
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
// types.
//
// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
// array to avoid memory indirection. Because a `flat_hash_set` is designed to
// move data when rehashed, set keys will not retain pointer stability. If you
// require pointer stability, consider using
// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
// you require pointer stability, consider `absl::node_hash_set` instead.
//
// Example:
//
// // Create a flat hash set of three strings
// absl::flat_hash_set<std::string> ducks =
// {"huey", "dewey", "louie"};
//
// // Insert a new element into the flat hash set
// ducks.insert("donald"};
//
// // Force a rehash of the flat hash set
// ducks.rehash(0);
//
// // See if "dewey" is present
// if (ducks.contains("dewey")) {
// std::cout << "We found dewey!" << std::endl;
// }
template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
class Eq = absl::container_internal::hash_default_eq<T>,
class Allocator = std::allocator<T>>
class flat_hash_set
: public absl::container_internal::raw_hash_set<
absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
using Base = typename flat_hash_set::raw_hash_set;
public:
flat_hash_set() {}
using Base::Base;
// flat_hash_set::begin()
//
// Returns an iterator to the beginning of the `flat_hash_set`.
using Base::begin;
// flat_hash_set::cbegin()
//
// Returns a const iterator to the beginning of the `flat_hash_set`.
using Base::cbegin;
// flat_hash_set::cend()
//
// Returns a const iterator to the end of the `flat_hash_set`.
using Base::cend;
// flat_hash_set::end()
//
// Returns an iterator to the end of the `flat_hash_set`.
using Base::end;
// flat_hash_set::capacity()
//
// Returns the number of element slots (assigned, deleted, and empty)
// available within the `flat_hash_set`.
//
// NOTE: this member function is particular to `absl::flat_hash_set` and is
// not provided in the `std::unordered_map` API.
using Base::capacity;
// flat_hash_set::empty()
//
// Returns whether or not the `flat_hash_set` is empty.
using Base::empty;
// flat_hash_set::max_size()
//
// Returns the largest theoretical possible number of elements within a
// `flat_hash_set` under current memory constraints. This value can be thought
// of the largest value of `std::distance(begin(), end())` for a
// `flat_hash_set<T>`.
using Base::max_size;
// flat_hash_set::size()
//
// Returns the number of elements currently within the `flat_hash_set`.
using Base::size;
// flat_hash_set::clear()
//
// Removes all elements from the `flat_hash_set`. Invalidates any references,
// pointers, or iterators referring to contained elements.
//
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
// the underlying buffer call `erase(begin(), end())`.
using Base::clear;
// flat_hash_set::erase()
//
// Erases elements within the `flat_hash_set`. Erasing does not trigger a
// rehash. Overloads are listed below.
//
// void erase(const_iterator pos):
//
// Erases the element at `position` of the `flat_hash_set`, returning
// `void`.
//
// NOTE: this return behavior is different than that of STL containers in
// general and `std::unordered_map` in particular.
//
// iterator erase(const_iterator first, const_iterator last):
//
// Erases the elements in the open interval [`first`, `last`), returning an
// iterator pointing to `last`.
//
// size_type erase(const key_type& key):
//
// Erases the element with the matching key, if it exists.
using Base::erase;
// flat_hash_set::insert()
//
// Inserts an element of the specified value into the `flat_hash_set`,
// returning an iterator pointing to the newly inserted element, provided that
// an element with the given key does not already exist. If rehashing occurs
// due to the insertion, all iterators are invalidated. Overloads are listed
// below.
//
// std::pair<iterator,bool> insert(const T& value):
//
// Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
// iterator to the inserted element (or to the element that prevented the
// insertion) and a bool denoting whether the insertion took place.
//
// std::pair<iterator,bool> insert(T&& value):
//
// Inserts a moveable value into the `flat_hash_set`. Returns a pair
// consisting of an iterator to the inserted element (or to the element that
// prevented the insertion) and a bool denoting whether the insertion took
// place.
//
// iterator insert(const_iterator hint, const T& value):
// iterator insert(const_iterator hint, T&& value):
//
// Inserts a value, using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search. Returns an iterator to the
// inserted element, or to the existing element that prevented the
// insertion.
//
// void insert(InputIterator first, InputIterator last ):
//
// Inserts a range of values [`first`, `last`).
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently, for `flat_hash_set` we guarantee the
// first match is inserted.
//
// void insert(std::initializer_list<T> ilist ):
//
// Inserts the elements within the initializer list `ilist`.
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently within the initializer list, for
// `flat_hash_set` we guarantee the first match is inserted.
using Base::insert;
// flat_hash_set::emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `flat_hash_set`, provided that no element with the given key
// already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace;
// flat_hash_set::emplace_hint()
//
// Inserts an element of the specified value by constructing it in-place
// within the `flat_hash_set`, using the position of `hint` as a non-binding
// suggestion for where to begin the insertion search, and only inserts
// provided that no element with the given key already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace_hint;
// flat_hash_set::extract()
//
// Extracts the indicated element, erasing it in the process, and returns it
// as a C++17-compatible node handle. Overloads are listed below.
//
// node_type extract(const_iterator position):
//
// Extracts the element at the indicated position and returns a node handle
// owning that extracted data.
//
// node_type extract(const key_type& x):
//
// Extracts the element with the key matching the passed key value and
// returns a node handle owning that extracted data. If the `flat_hash_set`
// does not contain an element with a matching key, this function returns an
// empty node handle.
using Base::extract;
// flat_hash_set::merge()
//
// Extracts elements from a given `source` flat hash map into this
// `flat_hash_set`. If the destination `flat_hash_set` already contains an
// element with an equivalent key, that element is not extracted.
using Base::merge;
// flat_hash_set::swap(flat_hash_set& other)
//
// Exchanges the contents of this `flat_hash_set` with those of the `other`
// flat hash map, avoiding invocation of any move, copy, or swap operations on
// individual elements.
//
// All iterators and references on the `flat_hash_set` remain valid, excepting
// for the past-the-end iterator, which is invalidated.
//
// `swap()` requires that the flat hash set's hashing and key equivalence
// functions be Swappable, and are exchaged using unqualified calls to
// non-member `swap()`. If the map's allocator has
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
// set to `true`, the allocators are also exchanged using an unqualified call
// to non-member `swap()`; otherwise, the allocators are not swapped.
using Base::swap;
// flat_hash_set::rehash(count)
//
// Rehashes the `flat_hash_set`, setting the number of slots to be at least
// the passed value. If the new number of slots increases the load factor more
// than the current maximum load factor
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
// will be at least `size()` / `max_load_factor()`.
//
// To force a rehash, pass rehash(0).
//
// NOTE: unlike behavior in `std::unordered_set`, references are also
// invalidated upon a `rehash()`.
using Base::rehash;
// flat_hash_set::reserve(count)
//
// Sets the number of slots in the `flat_hash_set` to the number needed to
// accommodate at least `count` total elements without exceeding the current
// maximum load factor, and may rehash the container if needed.
using Base::reserve;
// flat_hash_set::contains()
//
// Determines whether an element comparing equal to the given `key` exists
// within the `flat_hash_set`, returning `true` if so or `false` otherwise.
using Base::contains;
// flat_hash_set::count(const Key& key) const
//
// Returns the number of elements comparing equal to the given `key` within
// the `flat_hash_set`. note that this function will return either `1` or `0`
// since duplicate elements are not allowed within a `flat_hash_set`.
using Base::count;
// flat_hash_set::equal_range()
//
// Returns a closed range [first, last], defined by a `std::pair` of two
// iterators, containing all elements with the passed key in the
// `flat_hash_set`.
using Base::equal_range;
// flat_hash_set::find()
//
// Finds an element with the passed `key` within the `flat_hash_set`.
using Base::find;
// flat_hash_set::bucket_count()
//
// Returns the number of "buckets" within the `flat_hash_set`. Note that
// because a flat hash map contains all elements within its internal storage,
// this value simply equals the current capacity of the `flat_hash_set`.
using Base::bucket_count;
// flat_hash_set::load_factor()
//
// Returns the current load factor of the `flat_hash_set` (the average number
// of slots occupied with a value within the hash map).
using Base::load_factor;
// flat_hash_set::max_load_factor()
//
// Manages the maximum load factor of the `flat_hash_set`. Overloads are
// listed below.
//
// float flat_hash_set::max_load_factor()
//
// Returns the current maximum load factor of the `flat_hash_set`.
//
// void flat_hash_set::max_load_factor(float ml)
//
// Sets the maximum load factor of the `flat_hash_set` to the passed value.
//
// NOTE: This overload is provided only for API compatibility with the STL;
// `flat_hash_set` will ignore any set load factor and manage its rehashing
// internally as an implementation detail.
using Base::max_load_factor;
// flat_hash_set::get_allocator()
//
// Returns the allocator function associated with this `flat_hash_set`.
using Base::get_allocator;
// flat_hash_set::hash_function()
//
// Returns the hashing function used to hash the keys within this
// `flat_hash_set`.
using Base::hash_function;
// flat_hash_set::key_eq()
//
// Returns the function used for comparing keys equality.
using Base::key_eq;
};
namespace container_internal {
template <class T>
struct FlatHashSetPolicy {
using slot_type = T;
using key_type = T;
using init_type = T;
using constant_iterators = std::true_type;
template <class Allocator, class... Args>
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
absl::allocator_traits<Allocator>::construct(*alloc, slot,
std::forward<Args>(args)...);
}
template <class Allocator>
static void destroy(Allocator* alloc, slot_type* slot) {
absl::allocator_traits<Allocator>::destroy(*alloc, slot);
}
template <class Allocator>
static void transfer(Allocator* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(*old_slot));
destroy(alloc, old_slot);
}
static T& element(slot_type* slot) { return *slot; }
template <class F, class... Args>
static decltype(absl::container_internal::DecomposeValue(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return absl::container_internal::DecomposeValue(
std::forward<F>(f), std::forward<Args>(args)...);
}
static size_t space_used(const T*) { return 0; }
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_FLAT_HASH_SET_H_

View file

@ -0,0 +1,126 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/flat_hash_set.h"
#include <vector>
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/unordered_set_constructor_test.h"
#include "absl/container/internal/unordered_set_lookup_test.h"
#include "absl/container/internal/unordered_set_modifiers_test.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
namespace {
using ::absl::container_internal::hash_internal::Enum;
using ::absl::container_internal::hash_internal::EnumClass;
using ::testing::Pointee;
using ::testing::UnorderedElementsAre;
using ::testing::UnorderedElementsAreArray;
template <class T>
using Set =
absl::flat_hash_set<T, StatefulTestingHash, StatefulTestingEqual, Alloc<T>>;
using SetTypes =
::testing::Types<Set<int>, Set<std::string>, Set<Enum>, Set<EnumClass>>;
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ConstructorTest, SetTypes);
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, LookupTest, SetTypes);
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ModifiersTest, SetTypes);
TEST(FlatHashSet, EmplaceString) {
std::vector<std::string> v = {"a", "b"};
absl::flat_hash_set<absl::string_view> hs(v.begin(), v.end());
EXPECT_THAT(hs, UnorderedElementsAreArray(v));
}
TEST(FlatHashSet, BitfieldArgument) {
union {
int n : 1;
};
n = 0;
absl::flat_hash_set<int> s = {n};
s.insert(n);
s.insert(s.end(), n);
s.insert({n});
s.erase(n);
s.count(n);
s.prefetch(n);
s.find(n);
s.contains(n);
s.equal_range(n);
}
TEST(FlatHashSet, MergeExtractInsert) {
struct Hash {
size_t operator()(const std::unique_ptr<int>& p) const { return *p; }
};
struct Eq {
bool operator()(const std::unique_ptr<int>& a,
const std::unique_ptr<int>& b) const {
return *a == *b;
}
};
absl::flat_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2;
set1.insert(absl::make_unique<int>(7));
set1.insert(absl::make_unique<int>(17));
set2.insert(absl::make_unique<int>(7));
set2.insert(absl::make_unique<int>(19));
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17)));
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19)));
set1.merge(set2);
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19)));
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
auto node = set1.extract(absl::make_unique<int>(7));
EXPECT_TRUE(node);
EXPECT_THAT(node.value(), Pointee(7));
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19)));
auto insert_result = set2.insert(std::move(node));
EXPECT_FALSE(node);
EXPECT_FALSE(insert_result.inserted);
EXPECT_TRUE(insert_result.node);
EXPECT_THAT(insert_result.node.value(), Pointee(7));
EXPECT_EQ(**insert_result.position, 7);
EXPECT_NE(insert_result.position->get(), insert_result.node.value().get());
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
node = set1.extract(absl::make_unique<int>(17));
EXPECT_TRUE(node);
EXPECT_THAT(node.value(), Pointee(17));
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19)));
node.value() = absl::make_unique<int>(23);
insert_result = set2.insert(std::move(node));
EXPECT_FALSE(node);
EXPECT_TRUE(insert_result.inserted);
EXPECT_FALSE(insert_result.node);
EXPECT_EQ(**insert_result.position, 23);
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23)));
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,405 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
#ifdef ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif
#ifdef MEMORY_SANITIZER
#include <sanitizer/msan_interface.h>
#endif
#include <cassert>
#include <cstddef>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/memory/memory.h"
#include "absl/utility/utility.h"
namespace absl {
namespace container_internal {
// Allocates at least n bytes aligned to the specified alignment.
// Alignment must be a power of 2. It must be positive.
//
// Note that many allocators don't honor alignment requirements above certain
// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
// Allocate() doesn't apply alignment corrections. If the underlying allocator
// returns insufficiently alignment pointer, that's what you are going to get.
template <size_t Alignment, class Alloc>
void* Allocate(Alloc* alloc, size_t n) {
static_assert(Alignment > 0, "");
assert(n && "n must be positive");
struct alignas(Alignment) M {};
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
A mem_alloc(*alloc);
void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
"allocator does not respect alignment");
return p;
}
// The pointer must have been previously obtained by calling
// Allocate<Alignment>(alloc, n).
template <size_t Alignment, class Alloc>
void Deallocate(Alloc* alloc, void* p, size_t n) {
static_assert(Alignment > 0, "");
assert(n && "n must be positive");
struct alignas(Alignment) M {};
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
A mem_alloc(*alloc);
AT::deallocate(mem_alloc, static_cast<M*>(p),
(n + sizeof(M) - 1) / sizeof(M));
}
namespace memory_internal {
// Constructs T into uninitialized storage pointed by `ptr` using the args
// specified in the tuple.
template <class Alloc, class T, class Tuple, size_t... I>
void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
absl::index_sequence<I...>) {
absl::allocator_traits<Alloc>::construct(
*alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
}
template <class T, class F>
struct WithConstructedImplF {
template <class... Args>
decltype(std::declval<F>()(std::declval<T>())) operator()(
Args&&... args) const {
return std::forward<F>(f)(T(std::forward<Args>(args)...));
}
F&& f;
};
template <class T, class Tuple, size_t... Is, class F>
decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
Tuple&& t, absl::index_sequence<Is...>, F&& f) {
return WithConstructedImplF<T, F>{std::forward<F>(f)}(
std::get<Is>(std::forward<Tuple>(t))...);
}
template <class T, size_t... Is>
auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
}
// Returns a tuple of references to the elements of the input tuple. T must be a
// tuple.
template <class T>
auto TupleRef(T&& t) -> decltype(
TupleRefImpl(std::forward<T>(t),
absl::make_index_sequence<
std::tuple_size<typename std::decay<T>::type>::value>())) {
return TupleRefImpl(
std::forward<T>(t),
absl::make_index_sequence<
std::tuple_size<typename std::decay<T>::type>::value>());
}
template <class F, class K, class V>
decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
std::declval<std::tuple<K>>(), std::declval<V>()))
DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
const auto& key = std::get<0>(p.first);
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
std::move(p.second));
}
} // namespace memory_internal
// Constructs T into uninitialized storage pointed by `ptr` using the args
// specified in the tuple.
template <class Alloc, class T, class Tuple>
void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
memory_internal::ConstructFromTupleImpl(
alloc, ptr, std::forward<Tuple>(t),
absl::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>());
}
// Constructs T using the args specified in the tuple and calls F with the
// constructed value.
template <class T, class Tuple, class F>
decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
Tuple&& t, F&& f) {
return memory_internal::WithConstructedImpl<T>(
std::forward<Tuple>(t),
absl::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>(),
std::forward<F>(f));
}
// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
// tuples with references to the passed arguments. The tuples contain
// constructor arguments for the first and the second elements of the pair.
//
// The following two snippets are equivalent.
//
// 1. std::pair<F, S> p(args...);
//
// 2. auto a = PairArgs(args...);
// std::pair<F, S> p(std::piecewise_construct,
// std::move(p.first), std::move(p.second));
inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
template <class F, class S>
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
std::forward_as_tuple(std::forward<S>(s))};
}
template <class F, class S>
std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
const std::pair<F, S>& p) {
return PairArgs(p.first, p.second);
}
template <class F, class S>
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
}
template <class F, class S>
auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
-> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
memory_internal::TupleRef(std::forward<S>(s)))) {
return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
memory_internal::TupleRef(std::forward<S>(s)));
}
// A helper function for implementing apply() in map policies.
template <class F, class... Args>
auto DecomposePair(F&& f, Args&&... args)
-> decltype(memory_internal::DecomposePairImpl(
std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
return memory_internal::DecomposePairImpl(
std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
}
// A helper function for implementing apply() in set policies.
template <class F, class Arg>
decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
DecomposeValue(F&& f, Arg&& arg) {
const auto& key = arg;
return std::forward<F>(f)(key, std::forward<Arg>(arg));
}
// Helper functions for asan and msan.
inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
#ifdef ADDRESS_SANITIZER
ASAN_POISON_MEMORY_REGION(m, s);
#endif
#ifdef MEMORY_SANITIZER
__msan_poison(m, s);
#endif
(void)m;
(void)s;
}
inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
#ifdef ADDRESS_SANITIZER
ASAN_UNPOISON_MEMORY_REGION(m, s);
#endif
#ifdef MEMORY_SANITIZER
__msan_unpoison(m, s);
#endif
(void)m;
(void)s;
}
template <typename T>
inline void SanitizerPoisonObject(const T* object) {
SanitizerPoisonMemoryRegion(object, sizeof(T));
}
template <typename T>
inline void SanitizerUnpoisonObject(const T* object) {
SanitizerUnpoisonMemoryRegion(object, sizeof(T));
}
namespace memory_internal {
// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
// offsetof(Pair, second) respectively. Otherwise they are -1.
//
// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
// type, which is non-portable.
template <class Pair, class = std::true_type>
struct OffsetOf {
static constexpr size_t kFirst = -1;
static constexpr size_t kSecond = -1;
};
template <class Pair>
struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
static constexpr size_t kFirst = offsetof(Pair, first);
static constexpr size_t kSecond = offsetof(Pair, second);
};
template <class K, class V>
struct IsLayoutCompatible {
private:
struct Pair {
K first;
V second;
};
// Is P layout-compatible with Pair?
template <class P>
static constexpr bool LayoutCompatible() {
return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
alignof(P) == alignof(Pair) &&
memory_internal::OffsetOf<P>::kFirst ==
memory_internal::OffsetOf<Pair>::kFirst &&
memory_internal::OffsetOf<P>::kSecond ==
memory_internal::OffsetOf<Pair>::kSecond;
}
public:
// Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
// then it is safe to store them in a union and read from either.
static constexpr bool value = std::is_standard_layout<K>() &&
std::is_standard_layout<Pair>() &&
memory_internal::OffsetOf<Pair>::kFirst == 0 &&
LayoutCompatible<std::pair<K, V>>() &&
LayoutCompatible<std::pair<const K, V>>();
};
} // namespace memory_internal
// If kMutableKeys is false, only the value member is accessed.
//
// If kMutableKeys is true, key is accessed through all slots while value and
// mutable_value are accessed only via INITIALIZED slots. Slots are created and
// destroyed via mutable_value so that the key can be moved later.
template <class K, class V>
union slot_type {
private:
static void emplace(slot_type* slot) {
// The construction of union doesn't do anything at runtime but it allows us
// to access its members without violating aliasing rules.
new (slot) slot_type;
}
// If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
// or the other via slot_type. We are also free to access the key via
// slot_type::key in this case.
using kMutableKeys =
std::integral_constant<bool,
memory_internal::IsLayoutCompatible<K, V>::value>;
public:
slot_type() {}
~slot_type() = delete;
using value_type = std::pair<const K, V>;
using mutable_value_type = std::pair<K, V>;
value_type value;
mutable_value_type mutable_value;
K key;
template <class Allocator, class... Args>
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
emplace(slot);
if (kMutableKeys::value) {
absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
std::forward<Args>(args)...);
} else {
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
std::forward<Args>(args)...);
}
}
// Construct this slot by moving from another slot.
template <class Allocator>
static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
emplace(slot);
if (kMutableKeys::value) {
absl::allocator_traits<Allocator>::construct(
*alloc, &slot->mutable_value, std::move(other->mutable_value));
} else {
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
std::move(other->value));
}
}
template <class Allocator>
static void destroy(Allocator* alloc, slot_type* slot) {
if (kMutableKeys::value) {
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
} else {
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
}
}
template <class Allocator>
static void transfer(Allocator* alloc, slot_type* new_slot,
slot_type* old_slot) {
emplace(new_slot);
if (kMutableKeys::value) {
absl::allocator_traits<Allocator>::construct(
*alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
} else {
absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
std::move(old_slot->value));
}
destroy(alloc, old_slot);
}
template <class Allocator>
static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
if (kMutableKeys::value) {
using std::swap;
swap(a->mutable_value, b->mutable_value);
} else {
value_type tmp = std::move(a->value);
absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
std::move(b->value));
absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
std::move(tmp));
}
}
template <class Allocator>
static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
if (kMutableKeys::value) {
dest->mutable_value = std::move(src->mutable_value);
} else {
absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
std::move(src->value));
}
}
template <class Allocator>
static void move(Allocator* alloc, slot_type* first, slot_type* last,
slot_type* result) {
for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
move(alloc, src, dest);
}
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_

View file

@ -0,0 +1,188 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/container_memory.h"
#include <cstdint>
#include <tuple>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
namespace {
using ::testing::Pair;
TEST(Memory, AlignmentLargerThanBase) {
std::allocator<int8_t> alloc;
void* mem = Allocate<2>(&alloc, 3);
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2);
memcpy(mem, "abc", 3);
Deallocate<2>(&alloc, mem, 3);
}
TEST(Memory, AlignmentSmallerThanBase) {
std::allocator<int64_t> alloc;
void* mem = Allocate<2>(&alloc, 3);
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2);
memcpy(mem, "abc", 3);
Deallocate<2>(&alloc, mem, 3);
}
class Fixture : public ::testing::Test {
using Alloc = std::allocator<std::string>;
public:
Fixture() { ptr_ = std::allocator_traits<Alloc>::allocate(*alloc(), 1); }
~Fixture() override {
std::allocator_traits<Alloc>::destroy(*alloc(), ptr_);
std::allocator_traits<Alloc>::deallocate(*alloc(), ptr_, 1);
}
std::string* ptr() { return ptr_; }
Alloc* alloc() { return &alloc_; }
private:
Alloc alloc_;
std::string* ptr_;
};
TEST_F(Fixture, ConstructNoArgs) {
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple());
EXPECT_EQ(*ptr(), "");
}
TEST_F(Fixture, ConstructOneArg) {
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple("abcde"));
EXPECT_EQ(*ptr(), "abcde");
}
TEST_F(Fixture, ConstructTwoArg) {
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple(5, 'a'));
EXPECT_EQ(*ptr(), "aaaaa");
}
TEST(PairArgs, NoArgs) {
EXPECT_THAT(PairArgs(),
Pair(std::forward_as_tuple(), std::forward_as_tuple()));
}
TEST(PairArgs, TwoArgs) {
EXPECT_EQ(
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
PairArgs(1, 'A'));
}
TEST(PairArgs, Pair) {
EXPECT_EQ(
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
PairArgs(std::make_pair(1, 'A')));
}
TEST(PairArgs, Piecewise) {
EXPECT_EQ(
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
PairArgs(std::piecewise_construct, std::forward_as_tuple(1),
std::forward_as_tuple('A')));
}
TEST(WithConstructed, Simple) {
EXPECT_EQ(1, WithConstructed<absl::string_view>(
std::make_tuple(std::string("a")),
[](absl::string_view str) { return str.size(); }));
}
template <class F, class Arg>
decltype(DecomposeValue(std::declval<F>(), std::declval<Arg>()))
DecomposeValueImpl(int, F&& f, Arg&& arg) {
return DecomposeValue(std::forward<F>(f), std::forward<Arg>(arg));
}
template <class F, class Arg>
const char* DecomposeValueImpl(char, F&& f, Arg&& arg) {
return "not decomposable";
}
template <class F, class Arg>
decltype(DecomposeValueImpl(0, std::declval<F>(), std::declval<Arg>()))
TryDecomposeValue(F&& f, Arg&& arg) {
return DecomposeValueImpl(0, std::forward<F>(f), std::forward<Arg>(arg));
}
TEST(DecomposeValue, Decomposable) {
auto f = [](const int& x, int&& y) {
EXPECT_EQ(&x, &y);
EXPECT_EQ(42, x);
return 'A';
};
EXPECT_EQ('A', TryDecomposeValue(f, 42));
}
TEST(DecomposeValue, NotDecomposable) {
auto f = [](void*) {
ADD_FAILURE() << "Must not be called";
return 'A';
};
EXPECT_STREQ("not decomposable", TryDecomposeValue(f, 42));
}
template <class F, class... Args>
decltype(DecomposePair(std::declval<F>(), std::declval<Args>()...))
DecomposePairImpl(int, F&& f, Args&&... args) {
return DecomposePair(std::forward<F>(f), std::forward<Args>(args)...);
}
template <class F, class... Args>
const char* DecomposePairImpl(char, F&& f, Args&&... args) {
return "not decomposable";
}
template <class F, class... Args>
decltype(DecomposePairImpl(0, std::declval<F>(), std::declval<Args>()...))
TryDecomposePair(F&& f, Args&&... args) {
return DecomposePairImpl(0, std::forward<F>(f), std::forward<Args>(args)...);
}
TEST(DecomposePair, Decomposable) {
auto f = [](const int& x, std::piecewise_construct_t, std::tuple<int&&> k,
std::tuple<double>&& v) {
EXPECT_EQ(&x, &std::get<0>(k));
EXPECT_EQ(42, x);
EXPECT_EQ(0.5, std::get<0>(v));
return 'A';
};
EXPECT_EQ('A', TryDecomposePair(f, 42, 0.5));
EXPECT_EQ('A', TryDecomposePair(f, std::make_pair(42, 0.5)));
EXPECT_EQ('A', TryDecomposePair(f, std::piecewise_construct,
std::make_tuple(42), std::make_tuple(0.5)));
}
TEST(DecomposePair, NotDecomposable) {
auto f = [](...) {
ADD_FAILURE() << "Must not be called";
return 'A';
};
EXPECT_STREQ("not decomposable",
TryDecomposePair(f));
EXPECT_STREQ("not decomposable",
TryDecomposePair(f, std::piecewise_construct, std::make_tuple(),
std::make_tuple(0.5)));
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,148 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Define the default Hash and Eq functions for SwissTable containers.
//
// std::hash<T> and std::equal_to<T> are not appropriate hash and equal
// functions for SwissTable containers. There are two reasons for this.
//
// SwissTable containers are power of 2 sized containers:
//
// This means they use the lower bits of the hash value to find the slot for
// each entry. The typical hash function for integral types is the identity.
// This is a very weak hash function for SwissTable and any power of 2 sized
// hashtable implementation which will lead to excessive collisions. For
// SwissTable we use murmur3 style mixing to reduce collisions to a minimum.
//
// SwissTable containers support heterogeneous lookup:
//
// In order to make heterogeneous lookup work, hash and equal functions must be
// polymorphic. At the same time they have to satisfy the same requirements the
// C++ standard imposes on hash functions and equality operators. That is:
//
// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then
// hash_default_hash<T>(a) must equal hash_default_hash<T>(b)
//
// For SwissTable containers this requirement is relaxed to allow a and b of
// any and possibly different types. Note that like the standard the hash and
// equal functions are still bound to T. This is important because some type U
// can be hashed by/tested for equality differently depending on T. A notable
// example is `const char*`. `const char*` is treated as a c-style string when
// the hash function is hash<string> but as a pointer when the hash function is
// hash<void*>.
//
#ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
#define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
#include <stdint.h>
#include <cstddef>
#include <memory>
#include <string>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/hash/hash.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
// The hash of an object of type T is computed by using absl::Hash.
template <class T, class E = void>
struct HashEq {
using Hash = absl::Hash<T>;
using Eq = std::equal_to<T>;
};
struct StringHash {
using is_transparent = void;
size_t operator()(absl::string_view v) const {
return absl::Hash<absl::string_view>{}(v);
}
};
// Supports heterogeneous lookup for string-like elements.
struct StringHashEq {
using Hash = StringHash;
struct Eq {
using is_transparent = void;
bool operator()(absl::string_view lhs, absl::string_view rhs) const {
return lhs == rhs;
}
};
};
#if defined(HAS_GLOBAL_STRING)
template <>
struct HashEq<std::string> : StringHashEq {};
#endif
template <>
struct HashEq<std::string> : StringHashEq {};
template <>
struct HashEq<absl::string_view> : StringHashEq {};
// Supports heterogeneous lookup for pointers and smart pointers.
template <class T>
struct HashEq<T*> {
struct Hash {
using is_transparent = void;
template <class U>
size_t operator()(const U& ptr) const {
return absl::Hash<const T*>{}(HashEq::ToPtr(ptr));
}
};
struct Eq {
using is_transparent = void;
template <class A, class B>
bool operator()(const A& a, const B& b) const {
return HashEq::ToPtr(a) == HashEq::ToPtr(b);
}
};
private:
static const T* ToPtr(const T* ptr) { return ptr; }
template <class U, class D>
static const T* ToPtr(const std::unique_ptr<U, D>& ptr) {
return ptr.get();
}
template <class U>
static const T* ToPtr(const std::shared_ptr<U>& ptr) {
return ptr.get();
}
};
template <class T, class D>
struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {};
template <class T>
struct HashEq<std::shared_ptr<T>> : HashEq<T*> {};
// This header's visibility is restricted. If you need to access the default
// hasher please use the container's ::hasher alias instead.
//
// Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher
template <class T>
using hash_default_hash = typename container_internal::HashEq<T>::Hash;
// This header's visibility is restricted. If you need to access the default
// key equal please use the container's ::key_equal alias instead.
//
// Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal
template <class T>
using hash_default_eq = typename container_internal::HashEq<T>::Eq;
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_

View file

@ -0,0 +1,299 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/hash_function_defaults.h"
#include <functional>
#include <type_traits>
#include <utility>
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
namespace {
using ::testing::Types;
TEST(Eq, Int32) {
hash_default_eq<int32_t> eq;
EXPECT_TRUE(eq(1, 1u));
EXPECT_TRUE(eq(1, char{1}));
EXPECT_TRUE(eq(1, true));
EXPECT_TRUE(eq(1, double{1.1}));
EXPECT_FALSE(eq(1, char{2}));
EXPECT_FALSE(eq(1, 2u));
EXPECT_FALSE(eq(1, false));
EXPECT_FALSE(eq(1, 2.));
}
TEST(Hash, Int32) {
hash_default_hash<int32_t> hash;
auto h = hash(1);
EXPECT_EQ(h, hash(1u));
EXPECT_EQ(h, hash(char{1}));
EXPECT_EQ(h, hash(true));
EXPECT_EQ(h, hash(double{1.1}));
EXPECT_NE(h, hash(2u));
EXPECT_NE(h, hash(char{2}));
EXPECT_NE(h, hash(false));
EXPECT_NE(h, hash(2.));
}
enum class MyEnum { A, B, C, D };
TEST(Eq, Enum) {
hash_default_eq<MyEnum> eq;
EXPECT_TRUE(eq(MyEnum::A, MyEnum::A));
EXPECT_FALSE(eq(MyEnum::A, MyEnum::B));
}
TEST(Hash, Enum) {
hash_default_hash<MyEnum> hash;
for (MyEnum e : {MyEnum::A, MyEnum::B, MyEnum::C}) {
auto h = hash(e);
EXPECT_EQ(h, hash_default_hash<int>{}(static_cast<int>(e)));
EXPECT_NE(h, hash(MyEnum::D));
}
}
using StringTypes = ::testing::Types<std::string, absl::string_view>;
template <class T>
struct EqString : ::testing::Test {
hash_default_eq<T> key_eq;
};
TYPED_TEST_CASE(EqString, StringTypes);
template <class T>
struct HashString : ::testing::Test {
hash_default_hash<T> hasher;
};
TYPED_TEST_CASE(HashString, StringTypes);
TYPED_TEST(EqString, Works) {
auto eq = this->key_eq;
EXPECT_TRUE(eq("a", "a"));
EXPECT_TRUE(eq("a", absl::string_view("a")));
EXPECT_TRUE(eq("a", std::string("a")));
EXPECT_FALSE(eq("a", "b"));
EXPECT_FALSE(eq("a", absl::string_view("b")));
EXPECT_FALSE(eq("a", std::string("b")));
}
TYPED_TEST(HashString, Works) {
auto hash = this->hasher;
auto h = hash("a");
EXPECT_EQ(h, hash(absl::string_view("a")));
EXPECT_EQ(h, hash(std::string("a")));
EXPECT_NE(h, hash(absl::string_view("b")));
EXPECT_NE(h, hash(std::string("b")));
}
struct NoDeleter {
template <class T>
void operator()(const T* ptr) const {}
};
using PointerTypes =
::testing::Types<const int*, int*, std::unique_ptr<const int>,
std::unique_ptr<const int, NoDeleter>,
std::unique_ptr<int>, std::unique_ptr<int, NoDeleter>,
std::shared_ptr<const int>, std::shared_ptr<int>>;
template <class T>
struct EqPointer : ::testing::Test {
hash_default_eq<T> key_eq;
};
TYPED_TEST_CASE(EqPointer, PointerTypes);
template <class T>
struct HashPointer : ::testing::Test {
hash_default_hash<T> hasher;
};
TYPED_TEST_CASE(HashPointer, PointerTypes);
TYPED_TEST(EqPointer, Works) {
int dummy;
auto eq = this->key_eq;
auto sptr = std::make_shared<int>();
std::shared_ptr<const int> csptr = sptr;
int* ptr = sptr.get();
const int* cptr = ptr;
std::unique_ptr<int, NoDeleter> uptr(ptr);
std::unique_ptr<const int, NoDeleter> cuptr(ptr);
EXPECT_TRUE(eq(ptr, cptr));
EXPECT_TRUE(eq(ptr, sptr));
EXPECT_TRUE(eq(ptr, uptr));
EXPECT_TRUE(eq(ptr, csptr));
EXPECT_TRUE(eq(ptr, cuptr));
EXPECT_FALSE(eq(&dummy, cptr));
EXPECT_FALSE(eq(&dummy, sptr));
EXPECT_FALSE(eq(&dummy, uptr));
EXPECT_FALSE(eq(&dummy, csptr));
EXPECT_FALSE(eq(&dummy, cuptr));
}
TEST(Hash, DerivedAndBase) {
struct Base {};
struct Derived : Base {};
hash_default_hash<Base*> hasher;
Base base;
Derived derived;
EXPECT_NE(hasher(&base), hasher(&derived));
EXPECT_EQ(hasher(static_cast<Base*>(&derived)), hasher(&derived));
auto dp = std::make_shared<Derived>();
EXPECT_EQ(hasher(static_cast<Base*>(dp.get())), hasher(dp));
}
TEST(Hash, FunctionPointer) {
using Func = int (*)();
hash_default_hash<Func> hasher;
hash_default_eq<Func> eq;
Func p1 = [] { return 1; }, p2 = [] { return 2; };
EXPECT_EQ(hasher(p1), hasher(p1));
EXPECT_TRUE(eq(p1, p1));
EXPECT_NE(hasher(p1), hasher(p2));
EXPECT_FALSE(eq(p1, p2));
}
TYPED_TEST(HashPointer, Works) {
int dummy;
auto hash = this->hasher;
auto sptr = std::make_shared<int>();
std::shared_ptr<const int> csptr = sptr;
int* ptr = sptr.get();
const int* cptr = ptr;
std::unique_ptr<int, NoDeleter> uptr(ptr);
std::unique_ptr<const int, NoDeleter> cuptr(ptr);
EXPECT_EQ(hash(ptr), hash(cptr));
EXPECT_EQ(hash(ptr), hash(sptr));
EXPECT_EQ(hash(ptr), hash(uptr));
EXPECT_EQ(hash(ptr), hash(csptr));
EXPECT_EQ(hash(ptr), hash(cuptr));
EXPECT_NE(hash(&dummy), hash(cptr));
EXPECT_NE(hash(&dummy), hash(sptr));
EXPECT_NE(hash(&dummy), hash(uptr));
EXPECT_NE(hash(&dummy), hash(csptr));
EXPECT_NE(hash(&dummy), hash(cuptr));
}
// Cartesian product of (string, std::string, absl::string_view)
// with (string, std::string, absl::string_view, const char*).
using StringTypesCartesianProduct = Types<
// clang-format off
std::pair<std::string, std::string>,
std::pair<std::string, absl::string_view>,
std::pair<std::string, const char*>,
std::pair<absl::string_view, std::string>,
std::pair<absl::string_view, absl::string_view>,
std::pair<absl::string_view, const char*>>;
// clang-format on
constexpr char kFirstString[] = "abc123";
constexpr char kSecondString[] = "ijk456";
template <typename T>
struct StringLikeTest : public ::testing::Test {
typename T::first_type a1{kFirstString};
typename T::second_type b1{kFirstString};
typename T::first_type a2{kSecondString};
typename T::second_type b2{kSecondString};
hash_default_eq<typename T::first_type> eq;
hash_default_hash<typename T::first_type> hash;
};
TYPED_TEST_CASE_P(StringLikeTest);
TYPED_TEST_P(StringLikeTest, Eq) {
EXPECT_TRUE(this->eq(this->a1, this->b1));
EXPECT_TRUE(this->eq(this->b1, this->a1));
}
TYPED_TEST_P(StringLikeTest, NotEq) {
EXPECT_FALSE(this->eq(this->a1, this->b2));
EXPECT_FALSE(this->eq(this->b2, this->a1));
}
TYPED_TEST_P(StringLikeTest, HashEq) {
EXPECT_EQ(this->hash(this->a1), this->hash(this->b1));
EXPECT_EQ(this->hash(this->a2), this->hash(this->b2));
// It would be a poor hash function which collides on these strings.
EXPECT_NE(this->hash(this->a1), this->hash(this->b2));
}
TYPED_TEST_CASE(StringLikeTest, StringTypesCartesianProduct);
} // namespace
} // namespace container_internal
} // namespace absl
enum Hash : size_t {
kStd = 0x2, // std::hash
#ifdef _MSC_VER
kExtension = kStd, // In MSVC, std::hash == ::hash
#else // _MSC_VER
kExtension = 0x4, // ::hash (GCC extension)
#endif // _MSC_VER
};
// H is a bitmask of Hash enumerations.
// Hashable<H> is hashable via all means specified in H.
template <int H>
struct Hashable {
static constexpr bool HashableBy(Hash h) { return h & H; }
};
namespace std {
template <int H>
struct hash<Hashable<H>> {
template <class E = Hashable<H>,
class = typename std::enable_if<E::HashableBy(kStd)>::type>
size_t operator()(E) const {
return kStd;
}
};
} // namespace std
namespace absl {
namespace container_internal {
namespace {
template <class T>
size_t Hash(const T& v) {
return hash_default_hash<T>()(v);
}
TEST(Delegate, HashDispatch) {
EXPECT_EQ(Hash(kStd), Hash(Hashable<kStd>()));
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,72 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/hash_generator_testing.h"
#include <deque>
namespace absl {
namespace container_internal {
namespace hash_internal {
namespace {
class RandomDeviceSeedSeq {
public:
using result_type = typename std::random_device::result_type;
template <class Iterator>
void generate(Iterator start, Iterator end) {
while (start != end) {
*start = gen_();
++start;
}
}
private:
std::random_device gen_;
};
} // namespace
std::mt19937_64* GetThreadLocalRng() {
RandomDeviceSeedSeq seed_seq;
thread_local auto* rng = new std::mt19937_64(seed_seq);
return rng;
}
std::string Generator<std::string>::operator()() const {
// NOLINTNEXTLINE(runtime/int)
std::uniform_int_distribution<short> chars(0x20, 0x7E);
std::string res;
res.resize(32);
std::generate(res.begin(), res.end(),
[&]() { return chars(*GetThreadLocalRng()); });
return res;
}
absl::string_view Generator<absl::string_view>::operator()() const {
static auto* arena = new std::deque<std::string>();
// NOLINTNEXTLINE(runtime/int)
std::uniform_int_distribution<short> chars(0x20, 0x7E);
arena->emplace_back();
auto& res = arena->back();
res.resize(32);
std::generate(res.begin(), res.end(),
[&]() { return chars(*GetThreadLocalRng()); });
return res;
}
} // namespace hash_internal
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,150 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Generates random values for testing. Specialized only for the few types we
// care about.
#ifndef ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
#define ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
#include <stdint.h>
#include <algorithm>
#include <iosfwd>
#include <random>
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/container/internal/hash_policy_testing.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
namespace hash_internal {
namespace generator_internal {
template <class Container, class = void>
struct IsMap : std::false_type {};
template <class Map>
struct IsMap<Map, absl::void_t<typename Map::mapped_type>> : std::true_type {};
} // namespace generator_internal
std::mt19937_64* GetThreadLocalRng();
enum Enum {
kEnumEmpty,
kEnumDeleted,
};
enum class EnumClass : uint64_t {
kEmpty,
kDeleted,
};
inline std::ostream& operator<<(std::ostream& o, const EnumClass& ec) {
return o << static_cast<uint64_t>(ec);
}
template <class T, class E = void>
struct Generator;
template <class T>
struct Generator<T, typename std::enable_if<std::is_integral<T>::value>::type> {
T operator()() const {
std::uniform_int_distribution<T> dist;
return dist(*GetThreadLocalRng());
}
};
template <>
struct Generator<Enum> {
Enum operator()() const {
std::uniform_int_distribution<typename std::underlying_type<Enum>::type>
dist;
while (true) {
auto variate = dist(*GetThreadLocalRng());
if (variate != kEnumEmpty && variate != kEnumDeleted)
return static_cast<Enum>(variate);
}
}
};
template <>
struct Generator<EnumClass> {
EnumClass operator()() const {
std::uniform_int_distribution<
typename std::underlying_type<EnumClass>::type>
dist;
while (true) {
EnumClass variate = static_cast<EnumClass>(dist(*GetThreadLocalRng()));
if (variate != EnumClass::kEmpty && variate != EnumClass::kDeleted)
return static_cast<EnumClass>(variate);
}
}
};
template <>
struct Generator<std::string> {
std::string operator()() const;
};
template <>
struct Generator<absl::string_view> {
absl::string_view operator()() const;
};
template <>
struct Generator<NonStandardLayout> {
NonStandardLayout operator()() const {
return NonStandardLayout(Generator<std::string>()());
}
};
template <class K, class V>
struct Generator<std::pair<K, V>> {
std::pair<K, V> operator()() const {
return std::pair<K, V>(Generator<typename std::decay<K>::type>()(),
Generator<typename std::decay<V>::type>()());
}
};
template <class... Ts>
struct Generator<std::tuple<Ts...>> {
std::tuple<Ts...> operator()() const {
return std::tuple<Ts...>(Generator<typename std::decay<Ts>::type>()()...);
}
};
template <class U>
struct Generator<U, absl::void_t<decltype(std::declval<U&>().key()),
decltype(std::declval<U&>().value())>>
: Generator<std::pair<
typename std::decay<decltype(std::declval<U&>().key())>::type,
typename std::decay<decltype(std::declval<U&>().value())>::type>> {};
template <class Container>
using GeneratedType = decltype(
std::declval<const Generator<
typename std::conditional<generator_internal::IsMap<Container>::value,
typename Container::value_type,
typename Container::key_type>::type>&>()());
} // namespace hash_internal
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_

View file

@ -0,0 +1,178 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Utilities to help tests verify that hash tables properly handle stateful
// allocators and hash functions.
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
#include <cstdlib>
#include <limits>
#include <memory>
#include <ostream>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/hash/hash.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
namespace hash_testing_internal {
template <class Derived>
struct WithId {
WithId() : id_(next_id<Derived>()) {}
WithId(const WithId& that) : id_(that.id_) {}
WithId(WithId&& that) : id_(that.id_) { that.id_ = 0; }
WithId& operator=(const WithId& that) {
id_ = that.id_;
return *this;
}
WithId& operator=(WithId&& that) {
id_ = that.id_;
that.id_ = 0;
return *this;
}
size_t id() const { return id_; }
friend bool operator==(const WithId& a, const WithId& b) {
return a.id_ == b.id_;
}
friend bool operator!=(const WithId& a, const WithId& b) { return !(a == b); }
protected:
explicit WithId(size_t id) : id_(id) {}
private:
size_t id_;
template <class T>
static size_t next_id() {
// 0 is reserved for moved from state.
static size_t gId = 1;
return gId++;
}
};
} // namespace hash_testing_internal
struct NonStandardLayout {
NonStandardLayout() {}
explicit NonStandardLayout(std::string s) : value(std::move(s)) {}
virtual ~NonStandardLayout() {}
friend bool operator==(const NonStandardLayout& a,
const NonStandardLayout& b) {
return a.value == b.value;
}
friend bool operator!=(const NonStandardLayout& a,
const NonStandardLayout& b) {
return a.value != b.value;
}
template <typename H>
friend H AbslHashValue(H h, const NonStandardLayout& v) {
return H::combine(std::move(h), v.value);
}
std::string value;
};
struct StatefulTestingHash
: absl::container_internal::hash_testing_internal::WithId<
StatefulTestingHash> {
template <class T>
size_t operator()(const T& t) const {
return absl::Hash<T>{}(t);
}
};
struct StatefulTestingEqual
: absl::container_internal::hash_testing_internal::WithId<
StatefulTestingEqual> {
template <class T, class U>
bool operator()(const T& t, const U& u) const {
return t == u;
}
};
// It is expected that Alloc() == Alloc() for all allocators so we cannot use
// WithId base. We need to explicitly assign ids.
template <class T = int>
struct Alloc : std::allocator<T> {
using propagate_on_container_swap = std::true_type;
// Using old paradigm for this to ensure compatibility.
explicit Alloc(size_t id = 0) : id_(id) {}
Alloc(const Alloc&) = default;
Alloc& operator=(const Alloc&) = default;
template <class U>
Alloc(const Alloc<U>& that) : std::allocator<T>(that), id_(that.id()) {}
template <class U>
struct rebind {
using other = Alloc<U>;
};
size_t id() const { return id_; }
friend bool operator==(const Alloc& a, const Alloc& b) {
return a.id_ == b.id_;
}
friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); }
private:
size_t id_ = std::numeric_limits<size_t>::max();
};
template <class Map>
auto items(const Map& m) -> std::vector<
std::pair<typename Map::key_type, typename Map::mapped_type>> {
using std::get;
std::vector<std::pair<typename Map::key_type, typename Map::mapped_type>> res;
res.reserve(m.size());
for (const auto& v : m) res.emplace_back(get<0>(v), get<1>(v));
return res;
}
template <class Set>
auto keys(const Set& s)
-> std::vector<typename std::decay<typename Set::key_type>::type> {
std::vector<typename std::decay<typename Set::key_type>::type> res;
res.reserve(s.size());
for (const auto& v : s) res.emplace_back(v);
return res;
}
} // namespace container_internal
} // namespace absl
// ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS is false for glibcxx versions
// where the unordered containers are missing certain constructors that
// take allocator arguments. This test is defined ad-hoc for the platforms
// we care about (notably Crosstool 17) because libstdcxx's useless
// versioning scheme precludes a more principled solution.
#if defined(__GLIBCXX__) && __GLIBCXX__ <= 20140425
#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 0
#else
#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 1
#endif
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_

View file

@ -0,0 +1,43 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/hash_policy_testing.h"
#include "gtest/gtest.h"
namespace absl {
namespace container_internal {
namespace {
TEST(_, Hash) {
StatefulTestingHash h1;
EXPECT_EQ(1, h1.id());
StatefulTestingHash h2;
EXPECT_EQ(2, h2.id());
StatefulTestingHash h1c(h1);
EXPECT_EQ(1, h1c.id());
StatefulTestingHash h2m(std::move(h2));
EXPECT_EQ(2, h2m.id());
EXPECT_EQ(0, h2.id());
StatefulTestingHash h3;
EXPECT_EQ(3, h3.id());
h3 = StatefulTestingHash();
EXPECT_EQ(4, h3.id());
h3 = std::move(h1);
EXPECT_EQ(1, h3.id());
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,189 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
#include "absl/meta/type_traits.h"
namespace absl {
namespace container_internal {
// Defines how slots are initialized/destroyed/moved.
template <class Policy, class = void>
struct hash_policy_traits {
private:
struct ReturnKey {
// We return `Key` here.
// When Key=T&, we forward the lvalue reference.
// When Key=T, we return by value to avoid a dangling reference.
// eg, for string_hash_map.
template <class Key, class... Args>
Key operator()(Key&& k, const Args&...) const {
return std::forward<Key>(k);
}
};
template <class P = Policy, class = void>
struct ConstantIteratorsImpl : std::false_type {};
template <class P>
struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>>
: P::constant_iterators {};
public:
// The actual object stored in the hash table.
using slot_type = typename Policy::slot_type;
// The type of the keys stored in the hashtable.
using key_type = typename Policy::key_type;
// The argument type for insertions into the hashtable. This is different
// from value_type for increased performance. See initializer_list constructor
// and insert() member functions for more details.
using init_type = typename Policy::init_type;
using reference = decltype(Policy::element(std::declval<slot_type*>()));
using pointer = typename std::remove_reference<reference>::type*;
using value_type = typename std::remove_reference<reference>::type;
// Policies can set this variable to tell raw_hash_set that all iterators
// should be constant, even `iterator`. This is useful for set-like
// containers.
// Defaults to false if not provided by the policy.
using constant_iterators = ConstantIteratorsImpl<>;
// PRECONDITION: `slot` is UNINITIALIZED
// POSTCONDITION: `slot` is INITIALIZED
template <class Alloc, class... Args>
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
Policy::construct(alloc, slot, std::forward<Args>(args)...);
}
// PRECONDITION: `slot` is INITIALIZED
// POSTCONDITION: `slot` is UNINITIALIZED
template <class Alloc>
static void destroy(Alloc* alloc, slot_type* slot) {
Policy::destroy(alloc, slot);
}
// Transfers the `old_slot` to `new_slot`. Any memory allocated by the
// allocator inside `old_slot` to `new_slot` can be transfered.
//
// OPTIONAL: defaults to:
//
// clone(new_slot, std::move(*old_slot));
// destroy(old_slot);
//
// PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED
// POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is
// UNINITIALIZED
template <class Alloc>
static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) {
transfer_impl(alloc, new_slot, old_slot, 0);
}
// PRECONDITION: `slot` is INITIALIZED
// POSTCONDITION: `slot` is INITIALIZED
template <class P = Policy>
static auto element(slot_type* slot) -> decltype(P::element(slot)) {
return P::element(slot);
}
// Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`.
//
// If `slot` is nullptr, returns the constant amount of memory owned by any
// full slot or -1 if slots own variable amounts of memory.
//
// PRECONDITION: `slot` is INITIALIZED or nullptr
template <class P = Policy>
static size_t space_used(const slot_type* slot) {
return P::space_used(slot);
}
// Provides generalized access to the key for elements, both for elements in
// the table and for elements that have not yet been inserted (or even
// constructed). We would like an API that allows us to say: `key(args...)`
// but we cannot do that for all cases, so we use this more general API that
// can be used for many things, including the following:
//
// - Given an element in a table, get its key.
// - Given an element initializer, get its key.
// - Given `emplace()` arguments, get the element key.
//
// Implementations of this must adhere to a very strict technical
// specification around aliasing and consuming arguments:
//
// Let `value_type` be the result type of `element()` without ref- and
// cv-qualifiers. The first argument is a functor, the rest are constructor
// arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where
// `k` is the element key, and `xs...` are the new constructor arguments for
// `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias
// `ts...`. The key won't be touched once `xs...` are used to construct an
// element; `ts...` won't be touched at all, which allows `apply()` to consume
// any rvalues among them.
//
// If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not
// trigger a hard compile error unless it originates from `f`. In other words,
// `Policy::apply()` must be SFINAE-friendly. If `value_type` is not
// constructible from `Ts&&...`, either SFINAE or a hard compile error is OK.
//
// If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`,
// `Policy::apply()` must work. A compile error is not allowed, SFINAE or not.
template <class F, class... Ts, class P = Policy>
static auto apply(F&& f, Ts&&... ts)
-> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) {
return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...);
}
// Returns the "key" portion of the slot.
// Used for node handle manipulation.
template <class P = Policy>
static auto key(slot_type* slot)
-> decltype(P::apply(ReturnKey(), element(slot))) {
return P::apply(ReturnKey(), element(slot));
}
// Returns the "value" (as opposed to the "key") portion of the element. Used
// by maps to implement `operator[]`, `at()` and `insert_or_assign()`.
template <class T, class P = Policy>
static auto value(T* elem) -> decltype(P::value(elem)) {
return P::value(elem);
}
private:
// Use auto -> decltype as an enabler.
template <class Alloc, class P = Policy>
static auto transfer_impl(Alloc* alloc, slot_type* new_slot,
slot_type* old_slot, int)
-> decltype((void)P::transfer(alloc, new_slot, old_slot)) {
P::transfer(alloc, new_slot, old_slot);
}
template <class Alloc>
static void transfer_impl(Alloc* alloc, slot_type* new_slot,
slot_type* old_slot, char) {
construct(alloc, new_slot, std::move(element(old_slot)));
destroy(alloc, old_slot);
}
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_

View file

@ -0,0 +1,142 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/hash_policy_traits.h"
#include <functional>
#include <memory>
#include <new>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace absl {
namespace container_internal {
namespace {
using ::testing::MockFunction;
using ::testing::Return;
using ::testing::ReturnRef;
using Alloc = std::allocator<int>;
using Slot = int;
struct PolicyWithoutOptionalOps {
using slot_type = Slot;
using key_type = Slot;
using init_type = Slot;
static std::function<void(void*, Slot*, Slot)> construct;
static std::function<void(void*, Slot*)> destroy;
static std::function<Slot&(Slot*)> element;
static int apply(int v) { return apply_impl(v); }
static std::function<int(int)> apply_impl;
static std::function<Slot&(Slot*)> value;
};
std::function<void(void*, Slot*, Slot)> PolicyWithoutOptionalOps::construct;
std::function<void(void*, Slot*)> PolicyWithoutOptionalOps::destroy;
std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::element;
std::function<int(int)> PolicyWithoutOptionalOps::apply_impl;
std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::value;
struct PolicyWithOptionalOps : PolicyWithoutOptionalOps {
static std::function<void(void*, Slot*, Slot*)> transfer;
};
std::function<void(void*, Slot*, Slot*)> PolicyWithOptionalOps::transfer;
struct Test : ::testing::Test {
Test() {
PolicyWithoutOptionalOps::construct = [&](void* a1, Slot* a2, Slot a3) {
construct.Call(a1, a2, std::move(a3));
};
PolicyWithoutOptionalOps::destroy = [&](void* a1, Slot* a2) {
destroy.Call(a1, a2);
};
PolicyWithoutOptionalOps::element = [&](Slot* a1) -> Slot& {
return element.Call(a1);
};
PolicyWithoutOptionalOps::apply_impl = [&](int a1) -> int {
return apply.Call(a1);
};
PolicyWithoutOptionalOps::value = [&](Slot* a1) -> Slot& {
return value.Call(a1);
};
PolicyWithOptionalOps::transfer = [&](void* a1, Slot* a2, Slot* a3) {
return transfer.Call(a1, a2, a3);
};
}
std::allocator<int> alloc;
int a = 53;
MockFunction<void(void*, Slot*, Slot)> construct;
MockFunction<void(void*, Slot*)> destroy;
MockFunction<Slot&(Slot*)> element;
MockFunction<int(int)> apply;
MockFunction<Slot&(Slot*)> value;
MockFunction<void(void*, Slot*, Slot*)> transfer;
};
TEST_F(Test, construct) {
EXPECT_CALL(construct, Call(&alloc, &a, 53));
hash_policy_traits<PolicyWithoutOptionalOps>::construct(&alloc, &a, 53);
}
TEST_F(Test, destroy) {
EXPECT_CALL(destroy, Call(&alloc, &a));
hash_policy_traits<PolicyWithoutOptionalOps>::destroy(&alloc, &a);
}
TEST_F(Test, element) {
int b = 0;
EXPECT_CALL(element, Call(&a)).WillOnce(ReturnRef(b));
EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::element(&a));
}
TEST_F(Test, apply) {
EXPECT_CALL(apply, Call(42)).WillOnce(Return(1337));
EXPECT_EQ(1337, (hash_policy_traits<PolicyWithoutOptionalOps>::apply(42)));
}
TEST_F(Test, value) {
int b = 0;
EXPECT_CALL(value, Call(&a)).WillOnce(ReturnRef(b));
EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::value(&a));
}
TEST_F(Test, without_transfer) {
int b = 42;
EXPECT_CALL(element, Call(&b)).WillOnce(::testing::ReturnRef(b));
EXPECT_CALL(construct, Call(&alloc, &a, b));
EXPECT_CALL(destroy, Call(&alloc, &b));
hash_policy_traits<PolicyWithoutOptionalOps>::transfer(&alloc, &a, &b);
}
TEST_F(Test, with_transfer) {
int b = 42;
EXPECT_CALL(transfer, Call(&alloc, &a, &b));
hash_policy_traits<PolicyWithOptionalOps>::transfer(&alloc, &a, &b);
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,108 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This library provides APIs to debug the probing behavior of hash tables.
//
// In general, the probing behavior is a black box for users and only the
// side effects can be measured in the form of performance differences.
// These APIs give a glimpse on the actual behavior of the probing algorithms in
// these hashtables given a specified hash function and a set of elements.
//
// The probe count distribution can be used to assess the quality of the hash
// function for that particular hash table. Note that a hash function that
// performs well in one hash table implementation does not necessarily performs
// well in a different one.
//
// This library supports std::unordered_{set,map}, dense_hash_{set,map} and
// absl::{flat,node,string}_hash_{set,map}.
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
#include <cstddef>
#include <algorithm>
#include <type_traits>
#include <vector>
#include "absl/container/internal/hashtable_debug_hooks.h"
namespace absl {
namespace container_internal {
// Returns the number of probes required to lookup `key`. Returns 0 for a
// search with no collisions. Higher values mean more hash collisions occurred;
// however, the exact meaning of this number varies according to the container
// type.
template <typename C>
size_t GetHashtableDebugNumProbes(
const C& c, const typename C::key_type& key) {
return absl::container_internal::hashtable_debug_internal::
HashtableDebugAccess<C>::GetNumProbes(c, key);
}
// Gets a histogram of the number of probes for each elements in the container.
// The sum of all the values in the vector is equal to container.size().
template <typename C>
std::vector<size_t> GetHashtableDebugNumProbesHistogram(const C& container) {
std::vector<size_t> v;
for (auto it = container.begin(); it != container.end(); ++it) {
size_t num_probes = GetHashtableDebugNumProbes(
container,
absl::container_internal::hashtable_debug_internal::GetKey<C>(*it, 0));
v.resize(std::max(v.size(), num_probes + 1));
v[num_probes]++;
}
return v;
}
struct HashtableDebugProbeSummary {
size_t total_elements;
size_t total_num_probes;
double mean;
};
// Gets a summary of the probe count distribution for the elements in the
// container.
template <typename C>
HashtableDebugProbeSummary GetHashtableDebugProbeSummary(const C& container) {
auto probes = GetHashtableDebugNumProbesHistogram(container);
HashtableDebugProbeSummary summary = {};
for (size_t i = 0; i < probes.size(); ++i) {
summary.total_elements += probes[i];
summary.total_num_probes += probes[i] * i;
}
summary.mean = 1.0 * summary.total_num_probes / summary.total_elements;
return summary;
}
// Returns the number of bytes requested from the allocator by the container
// and not freed.
template <typename C>
size_t AllocatedByteSize(const C& c) {
return absl::container_internal::hashtable_debug_internal::
HashtableDebugAccess<C>::AllocatedByteSize(c);
}
// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type `C`
// and `c.size()` is equal to `num_elements`.
template <typename C>
size_t LowerBoundAllocatedByteSize(size_t num_elements) {
return absl::container_internal::hashtable_debug_internal::
HashtableDebugAccess<C>::LowerBoundAllocatedByteSize(num_elements);
}
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_

View file

@ -0,0 +1,81 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Provides the internal API for hashtable_debug.h.
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
#include <cstddef>
#include <algorithm>
#include <type_traits>
#include <vector>
namespace absl {
namespace container_internal {
namespace hashtable_debug_internal {
// If it is a map, call get<0>().
using std::get;
template <typename T, typename = typename T::mapped_type>
auto GetKey(const typename T::value_type& pair, int) -> decltype(get<0>(pair)) {
return get<0>(pair);
}
// If it is not a map, return the value directly.
template <typename T>
const typename T::key_type& GetKey(const typename T::key_type& key, char) {
return key;
}
// Containers should specialize this to provide debug information for that
// container.
template <class Container, typename Enabler = void>
struct HashtableDebugAccess {
// Returns the number of probes required to find `key` in `c`. The "number of
// probes" is a concept that can vary by container. Implementations should
// return 0 when `key` was found in the minimum number of operations and
// should increment the result for each non-trivial operation required to find
// `key`.
//
// The default implementation uses the bucket api from the standard and thus
// works for `std::unordered_*` containers.
static size_t GetNumProbes(const Container& c,
const typename Container::key_type& key) {
if (!c.bucket_count()) return {};
size_t num_probes = 0;
size_t bucket = c.bucket(key);
for (auto it = c.begin(bucket), e = c.end(bucket);; ++it, ++num_probes) {
if (it == e) return num_probes;
if (c.key_eq()(key, GetKey<Container>(*it, 0))) return num_probes;
}
}
// Returns the number of bytes requested from the allocator by the container
// and not freed.
//
// static size_t AllocatedByteSize(const Container& c);
// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type
// `Container` and `c.size()` is equal to `num_elements`.
//
// static size_t LowerBoundAllocatedByteSize(size_t num_elements);
};
} // namespace hashtable_debug_internal
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_

View file

@ -0,0 +1,732 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// MOTIVATION AND TUTORIAL
//
// If you want to put in a single heap allocation N doubles followed by M ints,
// it's easy if N and M are known at compile time.
//
// struct S {
// double a[N];
// int b[M];
// };
//
// S* p = new S;
//
// But what if N and M are known only in run time? Class template Layout to the
// rescue! It's a portable generalization of the technique known as struct hack.
//
// // This object will tell us everything we need to know about the memory
// // layout of double[N] followed by int[M]. It's structurally identical to
// // size_t[2] that stores N and M. It's very cheap to create.
// const Layout<double, int> layout(N, M);
//
// // Allocate enough memory for both arrays. `AllocSize()` tells us how much
// // memory is needed. We are free to use any allocation function we want as
// // long as it returns aligned memory.
// std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
//
// // Obtain the pointer to the array of doubles.
// // Equivalent to `reinterpret_cast<double*>(p.get())`.
// //
// // We could have written layout.Pointer<0>(p) instead. If all the types are
// // unique you can use either form, but if some types are repeated you must
// // use the index form.
// double* a = layout.Pointer<double>(p.get());
//
// // Obtain the pointer to the array of ints.
// // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
// int* b = layout.Pointer<int>(p);
//
// If we are unable to specify sizes of all fields, we can pass as many sizes as
// we can to `Partial()`. In return, it'll allow us to access the fields whose
// locations and sizes can be computed from the provided information.
// `Partial()` comes in handy when the array sizes are embedded into the
// allocation.
//
// // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
// using L = Layout<size_t, size_t, double, int>;
//
// unsigned char* Allocate(size_t n, size_t m) {
// const L layout(1, 1, n, m);
// unsigned char* p = new unsigned char[layout.AllocSize()];
// *layout.Pointer<0>(p) = n;
// *layout.Pointer<1>(p) = m;
// return p;
// }
//
// void Use(unsigned char* p) {
// // First, extract N and M.
// // Specify that the first array has only one element. Using `prefix` we
// // can access the first two arrays but not more.
// constexpr auto prefix = L::Partial(1);
// size_t n = *prefix.Pointer<0>(p);
// size_t m = *prefix.Pointer<1>(p);
//
// // Now we can get pointers to the payload.
// const L layout(1, 1, n, m);
// double* a = layout.Pointer<double>(p);
// int* b = layout.Pointer<int>(p);
// }
//
// The layout we used above combines fixed-size with dynamically-sized fields.
// This is quite common. Layout is optimized for this use case and generates
// optimal code. All computations that can be performed at compile time are
// indeed performed at compile time.
//
// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
// padding in between arrays.
//
// You can manually override the alignment of an array by wrapping the type in
// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
// and behavior as `Layout<..., T, ...>` except that the first element of the
// array of `T` is aligned to `N` (the rest of the elements follow without
// padding). `N` cannot be less than `alignof(T)`.
//
// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
// memory layouts. Check out the reference or code below to discover more.
//
// EXAMPLE
//
// // Immutable move-only string with sizeof equal to sizeof(void*). The
// // string size and the characters are kept in the same heap allocation.
// class CompactString {
// public:
// CompactString(const char* s = "") {
// const size_t size = strlen(s);
// // size_t[1] followed by char[size + 1].
// const L layout(1, size + 1);
// p_.reset(new unsigned char[layout.AllocSize()]);
// // If running under ASAN, mark the padding bytes, if any, to catch
// // memory errors.
// layout.PoisonPadding(p_.get());
// // Store the size in the allocation.
// *layout.Pointer<size_t>(p_.get()) = size;
// // Store the characters in the allocation.
// memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
// }
//
// size_t size() const {
// // Equivalent to reinterpret_cast<size_t&>(*p).
// return *L::Partial().Pointer<size_t>(p_.get());
// }
//
// const char* c_str() const {
// // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
// // The argument in Partial(1) specifies that we have size_t[1] in front
// // of the characters.
// return L::Partial(1).Pointer<char>(p_.get());
// }
//
// private:
// // Our heap allocation contains a size_t followed by an array of chars.
// using L = Layout<size_t, char>;
// std::unique_ptr<unsigned char[]> p_;
// };
//
// int main() {
// CompactString s = "hello";
// assert(s.size() == 5);
// assert(strcmp(s.c_str(), "hello") == 0);
// }
//
// DOCUMENTATION
//
// The interface exported by this file consists of:
// - class `Layout<>` and its public members.
// - The public members of class `internal_layout::LayoutImpl<>`. That class
// isn't intended to be used directly, and its name and template parameter
// list are internal implementation details, but the class itself provides
// most of the functionality in this file. See comments on its members for
// detailed documentation.
//
// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
// creates a `Layout` object, which exposes the same functionality by inheriting
// from `LayoutImpl<>`.
#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <ostream>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <utility>
#ifdef ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif
#include "absl/meta/type_traits.h"
#include "absl/strings/str_cat.h"
#include "absl/types/span.h"
#include "absl/utility/utility.h"
#if defined(__GXX_RTTI)
#define ABSL_INTERNAL_HAS_CXA_DEMANGLE
#endif
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
#include <cxxabi.h>
#endif
namespace absl {
namespace container_internal {
// A type wrapper that instructs `Layout` to use the specific alignment for the
// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
// and behavior as `Layout<..., T, ...>` except that the first element of the
// array of `T` is aligned to `N` (the rest of the elements follow without
// padding).
//
// Requires: `N >= alignof(T)` and `N` is a power of 2.
template <class T, size_t N>
struct Aligned;
namespace internal_layout {
template <class T>
struct NotAligned {};
template <class T, size_t N>
struct NotAligned<const Aligned<T, N>> {
static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
};
template <size_t>
using IntToSize = size_t;
template <class>
using TypeToSize = size_t;
template <class T>
struct Type : NotAligned<T> {
using type = T;
};
template <class T, size_t N>
struct Type<Aligned<T, N>> {
using type = T;
};
template <class T>
struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
template <class T, size_t N>
struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
template <class T>
struct AlignOf : NotAligned<T>, std::integral_constant<size_t, alignof(T)> {};
template <class T, size_t N>
struct AlignOf<Aligned<T, N>> : std::integral_constant<size_t, N> {
static_assert(N % alignof(T) == 0,
"Custom alignment can't be lower than the type's alignment");
};
// Does `Ts...` contain `T`?
template <class T, class... Ts>
using Contains = absl::disjunction<std::is_same<T, Ts>...>;
template <class From, class To>
using CopyConst =
typename std::conditional<std::is_const<From>::value, const To, To>::type;
template <class T>
using SliceType = absl::Span<T>;
// This namespace contains no types. It prevents functions defined in it from
// being found by ADL.
namespace adl_barrier {
template <class Needle, class... Ts>
constexpr size_t Find(Needle, Needle, Ts...) {
static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
return 0;
}
template <class Needle, class T, class... Ts>
constexpr size_t Find(Needle, T, Ts...) {
return adl_barrier::Find(Needle(), Ts()...) + 1;
}
constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
// Returns `q * m` for the smallest `q` such that `q * m >= n`.
// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
constexpr size_t Max(size_t a) { return a; }
template <class... Ts>
constexpr size_t Max(size_t a, size_t b, Ts... rest) {
return adl_barrier::Max(b < a ? a : b, rest...);
}
template <class T>
std::string TypeName() {
std::string out;
int status = 0;
char* demangled = nullptr;
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
#endif
if (status == 0 && demangled != nullptr) { // Demangling succeeeded.
absl::StrAppend(&out, "<", demangled, ">");
free(demangled);
} else {
#if defined(__GXX_RTTI) || defined(_CPPRTTI)
absl::StrAppend(&out, "<", typeid(T).name(), ">");
#endif
}
return out;
}
} // namespace adl_barrier
template <bool C>
using EnableIf = typename std::enable_if<C, int>::type;
// Can `T` be a template argument of `Layout`?
template <class T>
using IsLegalElementType = std::integral_constant<
bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
!std::is_reference<typename Type<T>::type>::value &&
!std::is_volatile<typename Type<T>::type>::value &&
adl_barrier::IsPow2(AlignOf<T>::value)>;
template <class Elements, class SizeSeq, class OffsetSeq>
class LayoutImpl;
// Public base class of `Layout` and the result type of `Layout::Partial()`.
//
// `Elements...` contains all template arguments of `Layout` that created this
// instance.
//
// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
// passed to `Layout::Partial()` or `Layout::Layout()`.
//
// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
// can compute offsets).
template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
absl::index_sequence<OffsetSeq...>> {
private:
static_assert(sizeof...(Elements) > 0, "At least one field is required");
static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
"Invalid element type (see IsLegalElementType)");
enum {
NumTypes = sizeof...(Elements),
NumSizes = sizeof...(SizeSeq),
NumOffsets = sizeof...(OffsetSeq),
};
// These are guaranteed by `Layout`.
static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
"Internal error");
static_assert(NumTypes > 0, "Internal error");
// Returns the index of `T` in `Elements...`. Results in a compilation error
// if `Elements...` doesn't contain exactly one instance of `T`.
template <class T>
static constexpr size_t ElementIndex() {
static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
"Type not found");
return adl_barrier::Find(Type<T>(),
Type<typename Type<Elements>::type>()...);
}
template <size_t N>
using ElementAlignment =
AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
public:
// Element types of all arrays packed in a tuple.
using ElementTypes = std::tuple<typename Type<Elements>::type...>;
// Element type of the Nth array.
template <size_t N>
using ElementType = typename std::tuple_element<N, ElementTypes>::type;
constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
: size_{sizes...} {}
// Alignment of the layout, equal to the strictest alignment of all elements.
// All pointers passed to the methods of layout must be aligned to this value.
static constexpr size_t Alignment() {
return adl_barrier::Max(AlignOf<Elements>::value...);
}
// Offset in bytes of the Nth array.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// assert(x.Offset<0>() == 0); // The ints starts from 0.
// assert(x.Offset<1>() == 16); // The doubles starts from 16.
//
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
template <size_t N, EnableIf<N == 0> = 0>
constexpr size_t Offset() const {
return 0;
}
template <size_t N, EnableIf<N != 0> = 0>
constexpr size_t Offset() const {
static_assert(N < NumOffsets, "Index out of bounds");
return adl_barrier::Align(
Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1],
ElementAlignment<N>());
}
// Offset in bytes of the array with the specified element type. There must
// be exactly one such array and its zero-based index must be at most
// `NumSizes`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// assert(x.Offset<int>() == 0); // The ints starts from 0.
// assert(x.Offset<double>() == 16); // The doubles starts from 16.
template <class T>
constexpr size_t Offset() const {
return Offset<ElementIndex<T>()>();
}
// Offsets in bytes of all arrays for which the offsets are known.
constexpr std::array<size_t, NumOffsets> Offsets() const {
return {{Offset<OffsetSeq>()...}};
}
// The number of elements in the Nth array. This is the Nth argument of
// `Layout::Partial()` or `Layout::Layout()` (zero-based).
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// assert(x.Size<0>() == 3);
// assert(x.Size<1>() == 4);
//
// Requires: `N < NumSizes`.
template <size_t N>
constexpr size_t Size() const {
static_assert(N < NumSizes, "Index out of bounds");
return size_[N];
}
// The number of elements in the array with the specified element type.
// There must be exactly one such array and its zero-based index must be
// at most `NumSizes`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// assert(x.Size<int>() == 3);
// assert(x.Size<double>() == 4);
template <class T>
constexpr size_t Size() const {
return Size<ElementIndex<T>()>();
}
// The number of elements of all arrays for which they are known.
constexpr std::array<size_t, NumSizes> Sizes() const {
return {{Size<SizeSeq>()...}};
}
// Pointer to the beginning of the Nth array.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = unsigned char[x.AllocSize()];
// int* ints = x.Pointer<0>(p);
// double* doubles = x.Pointer<1>(p);
//
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
// Requires: `p` is aligned to `Alignment()`.
template <size_t N, class Char>
CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
using C = typename std::remove_const<Char>::type;
static_assert(
std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
std::is_same<C, signed char>(),
"The argument must be a pointer to [const] [signed|unsigned] char");
constexpr size_t alignment = Alignment();
(void)alignment;
assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
}
// Pointer to the beginning of the array with the specified element type.
// There must be exactly one such array and its zero-based index must be at
// most `NumSizes`.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = new unsigned char[x.AllocSize()];
// int* ints = x.Pointer<int>(p);
// double* doubles = x.Pointer<double>(p);
//
// Requires: `p` is aligned to `Alignment()`.
template <class T, class Char>
CopyConst<Char, T>* Pointer(Char* p) const {
return Pointer<ElementIndex<T>()>(p);
}
// Pointers to all arrays for which pointers are known.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = new unsigned char[x.AllocSize()];
//
// int* ints;
// double* doubles;
// std::tie(ints, doubles) = x.Pointers(p);
//
// Requires: `p` is aligned to `Alignment()`.
//
// Note: We're not using ElementType alias here because it does not compile
// under MSVC.
template <class Char>
std::tuple<CopyConst<
Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
Pointers(Char* p) const {
return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
Pointer<OffsetSeq>(p)...);
}
// The Nth array.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = new unsigned char[x.AllocSize()];
// Span<int> ints = x.Slice<0>(p);
// Span<double> doubles = x.Slice<1>(p);
//
// Requires: `N < NumSizes`.
// Requires: `p` is aligned to `Alignment()`.
template <size_t N, class Char>
SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
}
// The array with the specified element type. There must be exactly one
// such array and its zero-based index must be less than `NumSizes`.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = new unsigned char[x.AllocSize()];
// Span<int> ints = x.Slice<int>(p);
// Span<double> doubles = x.Slice<double>(p);
//
// Requires: `p` is aligned to `Alignment()`.
template <class T, class Char>
SliceType<CopyConst<Char, T>> Slice(Char* p) const {
return Slice<ElementIndex<T>()>(p);
}
// All arrays with known sizes.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = new unsigned char[x.AllocSize()];
//
// Span<int> ints;
// Span<double> doubles;
// std::tie(ints, doubles) = x.Slices(p);
//
// Requires: `p` is aligned to `Alignment()`.
//
// Note: We're not using ElementType alias here because it does not compile
// under MSVC.
template <class Char>
std::tuple<SliceType<CopyConst<
Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
Slices(Char* p) const {
// Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
// in 6.1).
(void)p;
return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
Slice<SizeSeq>(p)...);
}
// The size of the allocation that fits all arrays.
//
// // int[3], 4 bytes of padding, double[4].
// Layout<int, double> x(3, 4);
// unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes
//
// Requires: `NumSizes == sizeof...(Ts)`.
constexpr size_t AllocSize() const {
static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
return Offset<NumTypes - 1>() +
SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1];
}
// If built with --config=asan, poisons padding bytes (if any) in the
// allocation. The pointer must point to a memory block at least
// `AllocSize()` bytes in length.
//
// `Char` must be `[const] [signed|unsigned] char`.
//
// Requires: `p` is aligned to `Alignment()`.
template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
void PoisonPadding(const Char* p) const {
Pointer<0>(p); // verify the requirements on `Char` and `p`
}
template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
void PoisonPadding(const Char* p) const {
static_assert(N < NumOffsets, "Index out of bounds");
(void)p;
#ifdef ADDRESS_SANITIZER
PoisonPadding<Char, N - 1>(p);
// The `if` is an optimization. It doesn't affect the observable behaviour.
if (ElementAlignment<N - 1>() % ElementAlignment<N>()) {
size_t start =
Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1];
ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
}
#endif
}
// Human-readable description of the memory layout. Useful for debugging.
// Slow.
//
// // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
// // by an unknown number of doubles.
// auto x = Layout<char, int, double>::Partial(5, 3);
// assert(x.DebugString() ==
// "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
//
// Each field is in the following format: @offset<type>(sizeof)[size] (<type>
// may be missing depending on the target platform). For example,
// @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
// int is 4 bytes, and we have 3 of those ints. The size of the last field may
// be missing (as in the example above). Only fields with known offsets are
// described. Type names may differ across platforms: one compiler might
// produce "unsigned*" where another produces "unsigned int *".
std::string DebugString() const {
const auto offsets = Offsets();
const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...};
const std::string types[] = {adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
for (size_t i = 0; i != NumOffsets - 1; ++i) {
absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
"(", sizes[i + 1], ")");
}
// NumSizes is a constant that may be zero. Some compilers cannot see that
// inside the if statement "size_[NumSizes - 1]" must be valid.
int last = static_cast<int>(NumSizes) - 1;
if (NumTypes == NumSizes && last >= 0) {
absl::StrAppend(&res, "[", size_[last], "]");
}
return res;
}
private:
// Arguments of `Layout::Partial()` or `Layout::Layout()`.
size_t size_[NumSizes > 0 ? NumSizes : 1];
};
template <size_t NumSizes, class... Ts>
using LayoutType = LayoutImpl<
std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
} // namespace internal_layout
// Descriptor of arrays of various types and sizes laid out in memory one after
// another. See the top of the file for documentation.
//
// Check out the public API of internal_layout::LayoutImpl above. The type is
// internal to the library but its methods are public, and they are inherited
// by `Layout`.
template <class... Ts>
class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
public:
static_assert(sizeof...(Ts) > 0, "At least one field is required");
static_assert(
absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
"Invalid element type (see IsLegalElementType)");
// The result type of `Partial()` with `NumSizes` arguments.
template <size_t NumSizes>
using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
// `Layout` knows the element types of the arrays we want to lay out in
// memory but not the number of elements in each array.
// `Partial(size1, ..., sizeN)` allows us to specify the latter. The
// resulting immutable object can be used to obtain pointers to the
// individual arrays.
//
// It's allowed to pass fewer array sizes than the number of arrays. E.g.,
// if all you need is to the offset of the second array, you only need to
// pass one argument -- the number of elements in the first arrays.
//
// // int[3] followed by 4 bytes of padding and an unknown number of
// // doubles.
// auto x = Layout<int, double>::Partial(3);
// // doubles start at byte 16.
// assert(x.Offset<1>() == 16);
//
// If you know the number of elements in all arrays, you can still call
// `Partial()` but it's more convenient to use the constructor of `Layout`.
//
// Layout<int, double> x(3, 5);
//
// Note: The sizes of the arrays must be specified in number of elements,
// not in bytes.
//
// Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
// Requires: all arguments are convertible to `size_t`.
template <class... Sizes>
static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
}
// Creates a layout with the sizes of all arrays specified. If you know
// only the sizes of the first N arrays (where N can be zero), you can use
// `Partial()` defined above. The constructor is essentially equivalent to
// calling `Partial()` and passing in all array sizes; the constructor is
// provided as a convenient abbreviation.
//
// Note: The sizes of the arrays must be specified in number of elements,
// not in bytes.
constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
: internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,88 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Adapts a policy for nodes.
//
// The node policy should model:
//
// struct Policy {
// // Returns a new node allocated and constructed using the allocator, using
// // the specified arguments.
// template <class Alloc, class... Args>
// value_type* new_element(Alloc* alloc, Args&&... args) const;
//
// // Destroys and deallocates node using the allocator.
// template <class Alloc>
// void delete_element(Alloc* alloc, value_type* node) const;
// };
//
// It may also optionally define `value()` and `apply()`. For documentation on
// these, see hash_policy_traits.h.
#ifndef ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
#define ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
#include <cassert>
#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>
namespace absl {
namespace container_internal {
template <class Reference, class Policy>
struct node_hash_policy {
static_assert(std::is_lvalue_reference<Reference>::value, "");
using slot_type = typename std::remove_cv<
typename std::remove_reference<Reference>::type>::type*;
template <class Alloc, class... Args>
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
*slot = Policy::new_element(alloc, std::forward<Args>(args)...);
}
template <class Alloc>
static void destroy(Alloc* alloc, slot_type* slot) {
Policy::delete_element(alloc, *slot);
}
template <class Alloc>
static void transfer(Alloc*, slot_type* new_slot, slot_type* old_slot) {
*new_slot = *old_slot;
}
static size_t space_used(const slot_type* slot) {
if (slot == nullptr) return Policy::element_space_used(nullptr);
return Policy::element_space_used(*slot);
}
static Reference element(slot_type* slot) { return **slot; }
template <class T, class P = Policy>
static auto value(T* elem) -> decltype(P::value(elem)) {
return P::value(elem);
}
template <class... Ts, class P = Policy>
static auto apply(Ts&&... ts) -> decltype(P::apply(std::forward<Ts>(ts)...)) {
return P::apply(std::forward<Ts>(ts)...);
}
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_

View file

@ -0,0 +1,67 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/node_hash_policy.h"
#include <memory>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_policy_traits.h"
namespace absl {
namespace container_internal {
namespace {
using ::testing::Pointee;
struct Policy : node_hash_policy<int&, Policy> {
using key_type = int;
using init_type = int;
template <class Alloc>
static int* new_element(Alloc* alloc, int value) {
return new int(value);
}
template <class Alloc>
static void delete_element(Alloc* alloc, int* elem) {
delete elem;
}
};
using NodePolicy = hash_policy_traits<Policy>;
struct NodeTest : ::testing::Test {
std::allocator<int> alloc;
int n = 53;
int* a = &n;
};
TEST_F(NodeTest, ConstructDestroy) {
NodePolicy::construct(&alloc, &a, 42);
EXPECT_THAT(a, Pointee(42));
NodePolicy::destroy(&alloc, &a);
}
TEST_F(NodeTest, transfer) {
int s = 42;
int* b = &s;
NodePolicy::transfer(&alloc, &a, &b);
EXPECT_EQ(&s, a);
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,182 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
namespace absl {
namespace container_internal {
template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc> {
// P is Policy. It's passed as a template argument to support maps that have
// incomplete types as values, as in unordered_map<K, IncompleteType>.
// MappedReference<> may be a non-reference type.
template <class P>
using MappedReference = decltype(P::value(
std::addressof(std::declval<typename raw_hash_map::reference>())));
// MappedConstReference<> may be a non-reference type.
template <class P>
using MappedConstReference = decltype(P::value(
std::addressof(std::declval<typename raw_hash_map::const_reference>())));
public:
using key_type = typename Policy::key_type;
using mapped_type = typename Policy::mapped_type;
template <typename K>
using key_arg = typename raw_hash_map::raw_hash_set::template key_arg<K>;
static_assert(!std::is_reference<key_type>::value, "");
// TODO(alkis): remove this assertion and verify that reference mapped_type is
// supported.
static_assert(!std::is_reference<mapped_type>::value, "");
using iterator = typename raw_hash_map::raw_hash_set::iterator;
using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator;
raw_hash_map() {}
using raw_hash_map::raw_hash_set::raw_hash_set;
// The last two template parameters ensure that both arguments are rvalues
// (lvalue arguments are handled by the overloads below). This is necessary
// for supporting bitfield arguments.
//
// union { int n : 1; };
// flat_hash_map<int, int> m;
// m.insert_or_assign(n, n);
template <class K = key_type, class V = mapped_type, K* = nullptr,
V* = nullptr>
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) {
return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v));
}
template <class K = key_type, class V = mapped_type, K* = nullptr>
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) {
return insert_or_assign_impl(std::forward<K>(k), v);
}
template <class K = key_type, class V = mapped_type, V* = nullptr>
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) {
return insert_or_assign_impl(k, std::forward<V>(v));
}
template <class K = key_type, class V = mapped_type>
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) {
return insert_or_assign_impl(k, v);
}
template <class K = key_type, class V = mapped_type, K* = nullptr,
V* = nullptr>
iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) {
return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first;
}
template <class K = key_type, class V = mapped_type, K* = nullptr>
iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) {
return insert_or_assign(std::forward<K>(k), v).first;
}
template <class K = key_type, class V = mapped_type, V* = nullptr>
iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) {
return insert_or_assign(k, std::forward<V>(v)).first;
}
template <class K = key_type, class V = mapped_type>
iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) {
return insert_or_assign(k, v).first;
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0,
K* = nullptr>
std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) {
return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0>
std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) {
return try_emplace_impl(k, std::forward<Args>(args)...);
}
template <class K = key_type, class... Args, K* = nullptr>
iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) {
return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first;
}
template <class K = key_type, class... Args>
iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) {
return try_emplace(k, std::forward<Args>(args)...).first;
}
template <class K = key_type, class P = Policy>
MappedReference<P> at(const key_arg<K>& key) {
auto it = this->find(key);
if (it == this->end()) std::abort();
return Policy::value(&*it);
}
template <class K = key_type, class P = Policy>
MappedConstReference<P> at(const key_arg<K>& key) const {
auto it = this->find(key);
if (it == this->end()) std::abort();
return Policy::value(&*it);
}
template <class K = key_type, class P = Policy, K* = nullptr>
MappedReference<P> operator[](key_arg<K>&& key) {
return Policy::value(&*try_emplace(std::forward<K>(key)).first);
}
template <class K = key_type, class P = Policy>
MappedReference<P> operator[](const key_arg<K>& key) {
return Policy::value(&*try_emplace(key).first);
}
private:
template <class K, class V>
std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) {
auto res = this->find_or_prepare_insert(k);
if (res.second)
this->emplace_at(res.first, std::forward<K>(k), std::forward<V>(v));
else
Policy::value(&*this->iterator_at(res.first)) = std::forward<V>(v);
return {this->iterator_at(res.first), res.second};
}
template <class K = key_type, class... Args>
std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) {
auto res = this->find_or_prepare_insert(k);
if (res.second)
this->emplace_at(res.first, std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
return {this->iterator_at(res.first), res.second};
}
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_

View file

@ -0,0 +1,45 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/raw_hash_set.h"
#include <cstddef>
#include "absl/base/config.h"
namespace absl {
namespace container_internal {
constexpr size_t Group::kWidth;
// Returns "random" seed.
inline size_t RandomSeed() {
#if ABSL_HAVE_THREAD_LOCAL
static thread_local size_t counter = 0;
size_t value = ++counter;
#else // ABSL_HAVE_THREAD_LOCAL
static std::atomic<size_t> counter;
size_t value = counter.fetch_add(1, std::memory_order_relaxed);
#endif // ABSL_HAVE_THREAD_LOCAL
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
}
bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl) {
// To avoid problems with weak hashes and single bit tests, we use % 13.
// TODO(kfm,sbenza): revisit after we do unconditional mixing
return (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
}
} // namespace container_internal
} // namespace absl

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,428 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <limits>
#include <scoped_allocator>
#include "gtest/gtest.h"
#include "absl/container/internal/raw_hash_set.h"
#include "absl/container/internal/tracked.h"
namespace absl {
namespace container_internal {
namespace {
enum AllocSpec {
kPropagateOnCopy = 1,
kPropagateOnMove = 2,
kPropagateOnSwap = 4,
};
struct AllocState {
size_t num_allocs = 0;
std::set<void*> owned;
};
template <class T,
int Spec = kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>
class CheckedAlloc {
public:
template <class, int>
friend class CheckedAlloc;
using value_type = T;
CheckedAlloc() {}
explicit CheckedAlloc(size_t id) : id_(id) {}
CheckedAlloc(const CheckedAlloc&) = default;
CheckedAlloc& operator=(const CheckedAlloc&) = default;
template <class U>
CheckedAlloc(const CheckedAlloc<U, Spec>& that)
: id_(that.id_), state_(that.state_) {}
template <class U>
struct rebind {
using other = CheckedAlloc<U, Spec>;
};
using propagate_on_container_copy_assignment =
std::integral_constant<bool, (Spec & kPropagateOnCopy) != 0>;
using propagate_on_container_move_assignment =
std::integral_constant<bool, (Spec & kPropagateOnMove) != 0>;
using propagate_on_container_swap =
std::integral_constant<bool, (Spec & kPropagateOnSwap) != 0>;
CheckedAlloc select_on_container_copy_construction() const {
if (Spec & kPropagateOnCopy) return *this;
return {};
}
T* allocate(size_t n) {
T* ptr = std::allocator<T>().allocate(n);
track_alloc(ptr);
return ptr;
}
void deallocate(T* ptr, size_t n) {
memset(ptr, 0, n * sizeof(T)); // The freed memory must be unpoisoned.
track_dealloc(ptr);
return std::allocator<T>().deallocate(ptr, n);
}
friend bool operator==(const CheckedAlloc& a, const CheckedAlloc& b) {
return a.id_ == b.id_;
}
friend bool operator!=(const CheckedAlloc& a, const CheckedAlloc& b) {
return !(a == b);
}
size_t num_allocs() const { return state_->num_allocs; }
void swap(CheckedAlloc& that) {
using std::swap;
swap(id_, that.id_);
swap(state_, that.state_);
}
friend void swap(CheckedAlloc& a, CheckedAlloc& b) { a.swap(b); }
friend std::ostream& operator<<(std::ostream& o, const CheckedAlloc& a) {
return o << "alloc(" << a.id_ << ")";
}
private:
void track_alloc(void* ptr) {
AllocState* state = state_.get();
++state->num_allocs;
if (!state->owned.insert(ptr).second)
ADD_FAILURE() << *this << " got previously allocated memory: " << ptr;
}
void track_dealloc(void* ptr) {
if (state_->owned.erase(ptr) != 1)
ADD_FAILURE() << *this
<< " deleting memory owned by another allocator: " << ptr;
}
size_t id_ = std::numeric_limits<size_t>::max();
std::shared_ptr<AllocState> state_ = std::make_shared<AllocState>();
};
struct Identity {
int32_t operator()(int32_t v) const { return v; }
};
struct Policy {
using slot_type = Tracked<int32_t>;
using init_type = Tracked<int32_t>;
using key_type = int32_t;
template <class allocator_type, class... Args>
static void construct(allocator_type* alloc, slot_type* slot,
Args&&... args) {
std::allocator_traits<allocator_type>::construct(
*alloc, slot, std::forward<Args>(args)...);
}
template <class allocator_type>
static void destroy(allocator_type* alloc, slot_type* slot) {
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
}
template <class allocator_type>
static void transfer(allocator_type* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(*old_slot));
destroy(alloc, old_slot);
}
template <class F>
static auto apply(F&& f, int32_t v) -> decltype(std::forward<F>(f)(v, v)) {
return std::forward<F>(f)(v, v);
}
template <class F>
static auto apply(F&& f, const slot_type& v)
-> decltype(std::forward<F>(f)(v.val(), v)) {
return std::forward<F>(f)(v.val(), v);
}
template <class F>
static auto apply(F&& f, slot_type&& v)
-> decltype(std::forward<F>(f)(v.val(), std::move(v))) {
return std::forward<F>(f)(v.val(), std::move(v));
}
static slot_type& element(slot_type* slot) { return *slot; }
};
template <int Spec>
struct PropagateTest : public ::testing::Test {
using Alloc = CheckedAlloc<Tracked<int32_t>, Spec>;
using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, Alloc>;
PropagateTest() {
EXPECT_EQ(a1, t1.get_allocator());
EXPECT_NE(a2, t1.get_allocator());
}
Alloc a1 = Alloc(1);
Table t1 = Table(0, a1);
Alloc a2 = Alloc(2);
};
using PropagateOnAll =
PropagateTest<kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>;
using NoPropagateOnCopy = PropagateTest<kPropagateOnMove | kPropagateOnSwap>;
using NoPropagateOnMove = PropagateTest<kPropagateOnCopy | kPropagateOnSwap>;
TEST_F(PropagateOnAll, Empty) { EXPECT_EQ(0, a1.num_allocs()); }
TEST_F(PropagateOnAll, InsertAllocates) {
auto it = t1.insert(0).first;
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, InsertDecomposes) {
auto it = t1.insert(0).first;
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
EXPECT_FALSE(t1.insert(0).second);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, RehashMoves) {
auto it = t1.insert(0).first;
EXPECT_EQ(0, it->num_moves());
t1.rehash(2 * t1.capacity());
EXPECT_EQ(2, a1.num_allocs());
it = t1.find(0);
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, CopyConstructor) {
auto it = t1.insert(0).first;
Table u(t1);
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyConstructor) {
auto it = t1.insert(0).first;
Table u(t1);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, u.get_allocator().num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, CopyConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a1);
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a1);
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, CopyConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a2);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a2);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, MoveConstructor) {
auto it = t1.insert(0).first;
Table u(std::move(t1));
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveConstructor) {
auto it = t1.insert(0).first;
Table u(std::move(t1));
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, MoveConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a1);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a1);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, MoveConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a2);
it = u.find(0);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a2);
it = u.find(0);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, CopyAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = t1;
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = t1;
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, CopyAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = t1;
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = t1;
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, MoveAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = std::move(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = std::move(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, MoveAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = std::move(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = std::move(t1);
it = u.find(0);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, Swap) {
auto it = t1.insert(0).first;
Table u(0, a2);
u.swap(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(a2, t1.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
} // namespace
} // namespace container_internal
} // namespace absl

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,78 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_TRACKED_H_
#define ABSL_CONTAINER_INTERNAL_TRACKED_H_
#include <stddef.h>
#include <memory>
#include <utility>
namespace absl {
namespace container_internal {
// A class that tracks its copies and moves so that it can be queried in tests.
template <class T>
class Tracked {
public:
Tracked() {}
// NOLINTNEXTLINE(runtime/explicit)
Tracked(const T& val) : val_(val) {}
Tracked(const Tracked& that)
: val_(that.val_),
num_moves_(that.num_moves_),
num_copies_(that.num_copies_) {
++(*num_copies_);
}
Tracked(Tracked&& that)
: val_(std::move(that.val_)),
num_moves_(std::move(that.num_moves_)),
num_copies_(std::move(that.num_copies_)) {
++(*num_moves_);
}
Tracked& operator=(const Tracked& that) {
val_ = that.val_;
num_moves_ = that.num_moves_;
num_copies_ = that.num_copies_;
++(*num_copies_);
}
Tracked& operator=(Tracked&& that) {
val_ = std::move(that.val_);
num_moves_ = std::move(that.num_moves_);
num_copies_ = std::move(that.num_copies_);
++(*num_moves_);
}
const T& val() const { return val_; }
friend bool operator==(const Tracked& a, const Tracked& b) {
return a.val_ == b.val_;
}
friend bool operator!=(const Tracked& a, const Tracked& b) {
return !(a == b);
}
size_t num_copies() { return *num_copies_; }
size_t num_moves() { return *num_moves_; }
private:
T val_;
std::shared_ptr<size_t> num_moves_ = std::make_shared<size_t>(0);
std::shared_ptr<size_t> num_copies_ = std::make_shared<size_t>(0);
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_TRACKED_H_

View file

@ -0,0 +1,404 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
#include <algorithm>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
namespace absl {
namespace container_internal {
template <class UnordMap>
class ConstructorTest : public ::testing::Test {};
TYPED_TEST_CASE_P(ConstructorTest);
TYPED_TEST_P(ConstructorTest, NoArgs) {
TypeParam m;
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
}
TYPED_TEST_P(ConstructorTest, BucketCount) {
TypeParam m(123);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountHash) {
using H = typename TypeParam::hasher;
H hasher;
TypeParam m(123, hasher);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) {
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
H hasher;
E equal;
TypeParam m(123, hasher, equal);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) {
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountAlloc) {
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
using A = typename TypeParam::allocator_type;
A alloc(0);
TypeParam m(123, alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) {
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
using H = typename TypeParam::hasher;
using A = typename TypeParam::allocator_type;
H hasher;
A alloc(0);
TypeParam m(123, hasher, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, BucketAlloc) {
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
using A = typename TypeParam::allocator_type;
A alloc(0);
TypeParam m(alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
#endif
}
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) {
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using A = typename TypeParam::allocator_type;
A alloc(0);
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end(), 123, alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) {
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using A = typename TypeParam::allocator_type;
H hasher;
A alloc(0);
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end(), 123, hasher, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, CopyConstructor) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam n(m);
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) {
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam n(m, A(11));
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_NE(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
#endif
}
// TODO(alkis): Test non-propagating allocators on copy constructors.
TYPED_TEST_P(ConstructorTest, MoveConstructor) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam t(m);
TypeParam n(std::move(t));
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) {
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam t(m);
TypeParam n(std::move(t), A(1));
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_NE(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
#endif
}
// TODO(alkis): Test non-propagating allocators on move constructors.
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(values, 123, hasher, equal, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) {
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using A = typename TypeParam::allocator_type;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
A alloc(0);
TypeParam m(values, 123, alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) {
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using A = typename TypeParam::allocator_type;
H hasher;
A alloc(0);
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m(values, 123, hasher, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, Assignment) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
TypeParam n;
n = m;
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m, n);
}
// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
// (it depends on traits).
TYPED_TEST_P(ConstructorTest, MoveAssignment) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
TypeParam t(m);
TypeParam n;
n = std::move(t);
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m;
m = values;
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
}
TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()});
TypeParam n({gen()});
n = m;
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()});
TypeParam t(m);
TypeParam n({gen()});
n = std::move(t);
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m;
m = values;
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
}
TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m(values);
m = *&m; // Avoid -Wself-assign
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
}
// We cannot test self move as standard states that it leaves standard
// containers in unspecified state (and in practice in causes memory-leak
// according to heap-checker!).
REGISTER_TYPED_TEST_CASE_P(
ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual,
BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc,
BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc,
InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc,
MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc,
InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment,
MoveAssignment, AssignmentFromInitializerList,
AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting,
AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_

View file

@ -0,0 +1,114 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
namespace absl {
namespace container_internal {
template <class UnordMap>
class LookupTest : public ::testing::Test {};
TYPED_TEST_CASE_P(LookupTest);
TYPED_TEST_P(LookupTest, At) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
for (const auto& p : values) {
const auto& val = m.at(p.first);
EXPECT_EQ(p.second, val) << ::testing::PrintToString(p.first);
}
}
TYPED_TEST_P(LookupTest, OperatorBracket) {
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& p : values) {
auto& val = m[p.first];
EXPECT_EQ(V(), val) << ::testing::PrintToString(p.first);
val = p.second;
}
for (const auto& p : values)
EXPECT_EQ(p.second, m[p.first]) << ::testing::PrintToString(p.first);
}
TYPED_TEST_P(LookupTest, Count) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& p : values)
EXPECT_EQ(0, m.count(p.first)) << ::testing::PrintToString(p.first);
m.insert(values.begin(), values.end());
for (const auto& p : values)
EXPECT_EQ(1, m.count(p.first)) << ::testing::PrintToString(p.first);
}
TYPED_TEST_P(LookupTest, Find) {
using std::get;
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& p : values)
EXPECT_TRUE(m.end() == m.find(p.first))
<< ::testing::PrintToString(p.first);
m.insert(values.begin(), values.end());
for (const auto& p : values) {
auto it = m.find(p.first);
EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(p.first);
EXPECT_EQ(p.second, get<1>(*it)) << ::testing::PrintToString(p.first);
}
}
TYPED_TEST_P(LookupTest, EqualRange) {
using std::get;
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& p : values) {
auto r = m.equal_range(p.first);
ASSERT_EQ(0, std::distance(r.first, r.second));
}
m.insert(values.begin(), values.end());
for (const auto& p : values) {
auto r = m.equal_range(p.first);
ASSERT_EQ(1, std::distance(r.first, r.second));
EXPECT_EQ(p.second, get<1>(*r.first)) << ::testing::PrintToString(p.first);
}
}
REGISTER_TYPED_TEST_CASE_P(LookupTest, At, OperatorBracket, Count, Find,
EqualRange);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_

View file

@ -0,0 +1,272 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
namespace absl {
namespace container_internal {
template <class UnordMap>
class ModifiersTest : public ::testing::Test {};
TYPED_TEST_CASE_P(ModifiersTest);
TYPED_TEST_P(ModifiersTest, Clear) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
m.clear();
EXPECT_THAT(items(m), ::testing::UnorderedElementsAre());
EXPECT_TRUE(m.empty());
}
TYPED_TEST_P(ModifiersTest, Insert) {
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
T val = hash_internal::Generator<T>()();
TypeParam m;
auto p = m.insert(val);
EXPECT_TRUE(p.second);
EXPECT_EQ(val, *p.first);
T val2 = {val.first, hash_internal::Generator<V>()()};
p = m.insert(val2);
EXPECT_FALSE(p.second);
EXPECT_EQ(val, *p.first);
}
TYPED_TEST_P(ModifiersTest, InsertHint) {
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
T val = hash_internal::Generator<T>()();
TypeParam m;
auto it = m.insert(m.end(), val);
EXPECT_TRUE(it != m.end());
EXPECT_EQ(val, *it);
T val2 = {val.first, hash_internal::Generator<V>()()};
it = m.insert(it, val2);
EXPECT_TRUE(it != m.end());
EXPECT_EQ(val, *it);
}
TYPED_TEST_P(ModifiersTest, InsertRange) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
m.insert(values.begin(), values.end());
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
}
TYPED_TEST_P(ModifiersTest, InsertOrAssign) {
#ifdef UNORDERED_MAP_CXX17
using std::get;
using K = typename TypeParam::key_type;
using V = typename TypeParam::mapped_type;
K k = hash_internal::Generator<K>()();
V val = hash_internal::Generator<V>()();
TypeParam m;
auto p = m.insert_or_assign(k, val);
EXPECT_TRUE(p.second);
EXPECT_EQ(k, get<0>(*p.first));
EXPECT_EQ(val, get<1>(*p.first));
V val2 = hash_internal::Generator<V>()();
p = m.insert_or_assign(k, val2);
EXPECT_FALSE(p.second);
EXPECT_EQ(k, get<0>(*p.first));
EXPECT_EQ(val2, get<1>(*p.first));
#endif
}
TYPED_TEST_P(ModifiersTest, InsertOrAssignHint) {
#ifdef UNORDERED_MAP_CXX17
using std::get;
using K = typename TypeParam::key_type;
using V = typename TypeParam::mapped_type;
K k = hash_internal::Generator<K>()();
V val = hash_internal::Generator<V>()();
TypeParam m;
auto it = m.insert_or_assign(m.end(), k, val);
EXPECT_TRUE(it != m.end());
EXPECT_EQ(k, get<0>(*it));
EXPECT_EQ(val, get<1>(*it));
V val2 = hash_internal::Generator<V>()();
it = m.insert_or_assign(it, k, val2);
EXPECT_EQ(k, get<0>(*it));
EXPECT_EQ(val2, get<1>(*it));
#endif
}
TYPED_TEST_P(ModifiersTest, Emplace) {
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
T val = hash_internal::Generator<T>()();
TypeParam m;
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
// with test traits/policy.
auto p = m.emplace(val);
EXPECT_TRUE(p.second);
EXPECT_EQ(val, *p.first);
T val2 = {val.first, hash_internal::Generator<V>()()};
p = m.emplace(val2);
EXPECT_FALSE(p.second);
EXPECT_EQ(val, *p.first);
}
TYPED_TEST_P(ModifiersTest, EmplaceHint) {
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
T val = hash_internal::Generator<T>()();
TypeParam m;
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
// with test traits/policy.
auto it = m.emplace_hint(m.end(), val);
EXPECT_EQ(val, *it);
T val2 = {val.first, hash_internal::Generator<V>()()};
it = m.emplace_hint(it, val2);
EXPECT_EQ(val, *it);
}
TYPED_TEST_P(ModifiersTest, TryEmplace) {
#ifdef UNORDERED_MAP_CXX17
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
T val = hash_internal::Generator<T>()();
TypeParam m;
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
// with test traits/policy.
auto p = m.try_emplace(val.first, val.second);
EXPECT_TRUE(p.second);
EXPECT_EQ(val, *p.first);
T val2 = {val.first, hash_internal::Generator<V>()()};
p = m.try_emplace(val2.first, val2.second);
EXPECT_FALSE(p.second);
EXPECT_EQ(val, *p.first);
#endif
}
TYPED_TEST_P(ModifiersTest, TryEmplaceHint) {
#ifdef UNORDERED_MAP_CXX17
using T = hash_internal::GeneratedType<TypeParam>;
using V = typename TypeParam::mapped_type;
T val = hash_internal::Generator<T>()();
TypeParam m;
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
// with test traits/policy.
auto it = m.try_emplace(m.end(), val.first, val.second);
EXPECT_EQ(val, *it);
T val2 = {val.first, hash_internal::Generator<V>()()};
it = m.try_emplace(it, val2.first, val2.second);
EXPECT_EQ(val, *it);
#endif
}
template <class V>
using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type;
// In openmap we chose not to return the iterator from erase because that's
// more expensive. As such we adapt erase to return an iterator here.
struct EraseFirst {
template <class Map>
auto operator()(Map* m, int) const
-> IfNotVoid<decltype(m->erase(m->begin()))> {
return m->erase(m->begin());
}
template <class Map>
typename Map::iterator operator()(Map* m, ...) const {
auto it = m->begin();
m->erase(it++);
return it;
}
};
TYPED_TEST_P(ModifiersTest, Erase) {
using T = hash_internal::GeneratedType<TypeParam>;
using std::get;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
auto& first = *m.begin();
std::vector<T> values2;
for (const auto& val : values)
if (get<0>(val) != get<0>(first)) values2.push_back(val);
auto it = EraseFirst()(&m, 0);
ASSERT_TRUE(it != m.end());
EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it));
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values2.begin(),
values2.end()));
}
TYPED_TEST_P(ModifiersTest, EraseRange) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
auto it = m.erase(m.begin(), m.end());
EXPECT_THAT(items(m), ::testing::UnorderedElementsAre());
EXPECT_TRUE(it == m.end());
}
TYPED_TEST_P(ModifiersTest, EraseKey) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_EQ(1, m.erase(values[0].first));
EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0]));
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values.begin() + 1,
values.end()));
}
TYPED_TEST_P(ModifiersTest, Swap) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> v1;
std::vector<T> v2;
std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>());
std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>());
TypeParam m1(v1.begin(), v1.end());
TypeParam m2(v2.begin(), v2.end());
EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v1));
EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v2));
m1.swap(m2);
EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v2));
EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v1));
}
// TODO(alkis): Write tests for extract.
// TODO(alkis): Write tests for merge.
REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint,
InsertRange, InsertOrAssign, InsertOrAssignHint,
Emplace, EmplaceHint, TryEmplace, TryEmplaceHint,
Erase, EraseRange, EraseKey, Swap);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_

View file

@ -0,0 +1,38 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unordered_map>
#include "absl/container/internal/unordered_map_constructor_test.h"
#include "absl/container/internal/unordered_map_lookup_test.h"
#include "absl/container/internal/unordered_map_modifiers_test.h"
namespace absl {
namespace container_internal {
namespace {
using MapTypes = ::testing::Types<
std::unordered_map<int, int, StatefulTestingHash, StatefulTestingEqual,
Alloc<std::pair<const int, int>>>,
std::unordered_map<std::string, std::string, StatefulTestingHash,
StatefulTestingEqual,
Alloc<std::pair<const std::string, std::string>>>>;
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ConstructorTest, MapTypes);
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, LookupTest, MapTypes);
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ModifiersTest, MapTypes);
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,408 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
#include <algorithm>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
namespace absl {
namespace container_internal {
template <class UnordMap>
class ConstructorTest : public ::testing::Test {};
TYPED_TEST_CASE_P(ConstructorTest);
TYPED_TEST_P(ConstructorTest, NoArgs) {
TypeParam m;
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
}
TYPED_TEST_P(ConstructorTest, BucketCount) {
TypeParam m(123);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountHash) {
using H = typename TypeParam::hasher;
H hasher;
TypeParam m(123, hasher);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) {
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
H hasher;
E equal;
TypeParam m(123, hasher, equal);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) {
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
const auto& cm = m;
EXPECT_EQ(cm.hash_function(), hasher);
EXPECT_EQ(cm.key_eq(), equal);
EXPECT_EQ(cm.get_allocator(), alloc);
EXPECT_TRUE(cm.empty());
EXPECT_THAT(keys(cm), ::testing::UnorderedElementsAre());
EXPECT_GE(cm.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, BucketCountAlloc) {
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
using A = typename TypeParam::allocator_type;
A alloc(0);
TypeParam m(123, alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) {
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
using H = typename TypeParam::hasher;
using A = typename TypeParam::allocator_type;
H hasher;
A alloc(0);
TypeParam m(123, hasher, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, BucketAlloc) {
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
using A = typename TypeParam::allocator_type;
A alloc(0);
TypeParam m(alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_TRUE(m.empty());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
#endif
}
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
std::vector<T> values;
for (size_t i = 0; i != 10; ++i)
values.push_back(hash_internal::Generator<T>()());
TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) {
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using A = typename TypeParam::allocator_type;
A alloc(0);
std::vector<T> values;
for (size_t i = 0; i != 10; ++i)
values.push_back(hash_internal::Generator<T>()());
TypeParam m(values.begin(), values.end(), 123, alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) {
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using A = typename TypeParam::allocator_type;
H hasher;
A alloc(0);
std::vector<T> values;
for (size_t i = 0; i != 10; ++i)
values.push_back(hash_internal::Generator<T>()());
TypeParam m(values.begin(), values.end(), 123, hasher, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, CopyConstructor) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam n(m);
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) {
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam n(m, A(11));
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_NE(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
#endif
}
// TODO(alkis): Test non-propagating allocators on copy constructors.
TYPED_TEST_P(ConstructorTest, MoveConstructor) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam t(m);
TypeParam n(std::move(t));
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) {
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(123, hasher, equal, alloc);
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
TypeParam t(m);
TypeParam n(std::move(t), A(1));
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_NE(m.get_allocator(), n.get_allocator());
EXPECT_EQ(m, n);
#endif
}
// TODO(alkis): Test non-propagating allocators on move constructors.
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
TypeParam m(values, 123, hasher, equal, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.key_eq(), equal);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
}
TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) {
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using A = typename TypeParam::allocator_type;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
A alloc(0);
TypeParam m(values, 123, alloc);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) {
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using A = typename TypeParam::allocator_type;
H hasher;
A alloc(0);
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m(values, 123, hasher, alloc);
EXPECT_EQ(m.hash_function(), hasher);
EXPECT_EQ(m.get_allocator(), alloc);
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_GE(m.bucket_count(), 123);
#endif
}
TYPED_TEST_P(ConstructorTest, Assignment) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
TypeParam n;
n = m;
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m, n);
}
// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
// (it depends on traits).
TYPED_TEST_P(ConstructorTest, MoveAssignment) {
using T = hash_internal::GeneratedType<TypeParam>;
using H = typename TypeParam::hasher;
using E = typename TypeParam::key_equal;
using A = typename TypeParam::allocator_type;
H hasher;
E equal;
A alloc(0);
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
TypeParam t(m);
TypeParam n;
n = std::move(t);
EXPECT_EQ(m.hash_function(), n.hash_function());
EXPECT_EQ(m.key_eq(), n.key_eq());
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m;
m = values;
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
}
TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()});
TypeParam n({gen()});
n = m;
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
TypeParam m({gen(), gen(), gen()});
TypeParam t(m);
TypeParam n({gen()});
n = std::move(t);
EXPECT_EQ(m, n);
}
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m;
m = values;
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
}
TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) {
using T = hash_internal::GeneratedType<TypeParam>;
hash_internal::Generator<T> gen;
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
TypeParam m(values);
m = *&m; // Avoid -Wself-assign.
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
}
REGISTER_TYPED_TEST_CASE_P(
ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual,
BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc,
BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc,
InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc,
MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc,
InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment,
MoveAssignment, AssignmentFromInitializerList,
AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting,
AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_

View file

@ -0,0 +1,88 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
namespace absl {
namespace container_internal {
template <class UnordSet>
class LookupTest : public ::testing::Test {};
TYPED_TEST_CASE_P(LookupTest);
TYPED_TEST_P(LookupTest, Count) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& v : values)
EXPECT_EQ(0, m.count(v)) << ::testing::PrintToString(v);
m.insert(values.begin(), values.end());
for (const auto& v : values)
EXPECT_EQ(1, m.count(v)) << ::testing::PrintToString(v);
}
TYPED_TEST_P(LookupTest, Find) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& v : values)
EXPECT_TRUE(m.end() == m.find(v)) << ::testing::PrintToString(v);
m.insert(values.begin(), values.end());
for (const auto& v : values) {
typename TypeParam::iterator it = m.find(v);
static_assert(std::is_same<const typename TypeParam::value_type&,
decltype(*it)>::value,
"");
static_assert(std::is_same<const typename TypeParam::value_type*,
decltype(it.operator->())>::value,
"");
EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(v);
EXPECT_EQ(v, *it) << ::testing::PrintToString(v);
}
}
TYPED_TEST_P(LookupTest, EqualRange) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
for (const auto& v : values) {
auto r = m.equal_range(v);
ASSERT_EQ(0, std::distance(r.first, r.second));
}
m.insert(values.begin(), values.end());
for (const auto& v : values) {
auto r = m.equal_range(v);
ASSERT_EQ(1, std::distance(r.first, r.second));
EXPECT_EQ(v, *r.first);
}
}
REGISTER_TYPED_TEST_CASE_P(LookupTest, Count, Find, EqualRange);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_

View file

@ -0,0 +1,187 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
namespace absl {
namespace container_internal {
template <class UnordSet>
class ModifiersTest : public ::testing::Test {};
TYPED_TEST_CASE_P(ModifiersTest);
TYPED_TEST_P(ModifiersTest, Clear) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
m.clear();
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_TRUE(m.empty());
}
TYPED_TEST_P(ModifiersTest, Insert) {
using T = hash_internal::GeneratedType<TypeParam>;
T val = hash_internal::Generator<T>()();
TypeParam m;
auto p = m.insert(val);
EXPECT_TRUE(p.second);
EXPECT_EQ(val, *p.first);
p = m.insert(val);
EXPECT_FALSE(p.second);
}
TYPED_TEST_P(ModifiersTest, InsertHint) {
using T = hash_internal::GeneratedType<TypeParam>;
T val = hash_internal::Generator<T>()();
TypeParam m;
auto it = m.insert(m.end(), val);
EXPECT_TRUE(it != m.end());
EXPECT_EQ(val, *it);
it = m.insert(it, val);
EXPECT_TRUE(it != m.end());
EXPECT_EQ(val, *it);
}
TYPED_TEST_P(ModifiersTest, InsertRange) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m;
m.insert(values.begin(), values.end());
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
}
TYPED_TEST_P(ModifiersTest, Emplace) {
using T = hash_internal::GeneratedType<TypeParam>;
T val = hash_internal::Generator<T>()();
TypeParam m;
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
// with test traits/policy.
auto p = m.emplace(val);
EXPECT_TRUE(p.second);
EXPECT_EQ(val, *p.first);
p = m.emplace(val);
EXPECT_FALSE(p.second);
EXPECT_EQ(val, *p.first);
}
TYPED_TEST_P(ModifiersTest, EmplaceHint) {
using T = hash_internal::GeneratedType<TypeParam>;
T val = hash_internal::Generator<T>()();
TypeParam m;
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
// with test traits/policy.
auto it = m.emplace_hint(m.end(), val);
EXPECT_EQ(val, *it);
it = m.emplace_hint(it, val);
EXPECT_EQ(val, *it);
}
template <class V>
using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type;
// In openmap we chose not to return the iterator from erase because that's
// more expensive. As such we adapt erase to return an iterator here.
struct EraseFirst {
template <class Map>
auto operator()(Map* m, int) const
-> IfNotVoid<decltype(m->erase(m->begin()))> {
return m->erase(m->begin());
}
template <class Map>
typename Map::iterator operator()(Map* m, ...) const {
auto it = m->begin();
m->erase(it++);
return it;
}
};
TYPED_TEST_P(ModifiersTest, Erase) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
std::vector<T> values2;
for (const auto& val : values)
if (val != *m.begin()) values2.push_back(val);
auto it = EraseFirst()(&m, 0);
ASSERT_TRUE(it != m.end());
EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it));
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values2.begin(),
values2.end()));
}
TYPED_TEST_P(ModifiersTest, EraseRange) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
auto it = m.erase(m.begin(), m.end());
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
EXPECT_TRUE(it == m.end());
}
TYPED_TEST_P(ModifiersTest, EraseKey) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> values;
std::generate_n(std::back_inserter(values), 10,
hash_internal::Generator<T>());
TypeParam m(values.begin(), values.end());
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
EXPECT_EQ(1, m.erase(values[0]));
EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0]));
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values.begin() + 1,
values.end()));
}
TYPED_TEST_P(ModifiersTest, Swap) {
using T = hash_internal::GeneratedType<TypeParam>;
std::vector<T> v1;
std::vector<T> v2;
std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>());
std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>());
TypeParam m1(v1.begin(), v1.end());
TypeParam m2(v2.begin(), v2.end());
EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v1));
EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v2));
m1.swap(m2);
EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v2));
EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v1));
}
// TODO(alkis): Write tests for extract.
// TODO(alkis): Write tests for merge.
REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint,
InsertRange, Emplace, EmplaceHint, Erase, EraseRange,
EraseKey, Swap);
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_

View file

@ -0,0 +1,37 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unordered_set>
#include "absl/container/internal/unordered_set_constructor_test.h"
#include "absl/container/internal/unordered_set_lookup_test.h"
#include "absl/container/internal/unordered_set_modifiers_test.h"
namespace absl {
namespace container_internal {
namespace {
using SetTypes =
::testing::Types<std::unordered_set<int, StatefulTestingHash,
StatefulTestingEqual, Alloc<int>>,
std::unordered_set<std::string, StatefulTestingHash,
StatefulTestingEqual, Alloc<std::string>>>;
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ConstructorTest, SetTypes);
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, LookupTest, SetTypes);
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ModifiersTest, SetTypes);
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,530 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: node_hash_map.h
// -----------------------------------------------------------------------------
//
// An `absl::node_hash_map<K, V>` is an unordered associative container of
// unique keys and associated values designed to be a more efficient replacement
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
// deletion of map elements can be done as an `O(1)` operation. However,
// `node_hash_map` (and other unordered associative containers known as the
// collection of Abseil "Swiss tables") contain other optimizations that result
// in both memory and computation advantages.
//
// In most cases, your default choice for a hash map should be a map of type
// `flat_hash_map`. However, if you need pointer stability and cannot store
// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
// valid alternative. As well, if you are migrating your code from using
// `std::unordered_map`, a `node_hash_map` provides a more straightforward
// migration, because it guarantees pointer stability. Consider migrating to
// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
// upon further review.
#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
#define ABSL_CONTAINER_NODE_HASH_MAP_H_
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
#include "absl/container/internal/node_hash_policy.h"
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
#include "absl/memory/memory.h"
namespace absl {
namespace container_internal {
template <class Key, class Value>
class NodeHashMapPolicy;
} // namespace container_internal
// -----------------------------------------------------------------------------
// absl::node_hash_map
// -----------------------------------------------------------------------------
//
// An `absl::node_hash_map<K, V>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
// the following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the map is provided a compatible heterogeneous
// hashing function and equality operator.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash map.
// * Returns `void` from the `erase(iterator)` overload.
//
// By default, `node_hash_map` uses the `absl::Hash` hashing framework.
// All fundamental and Abseil types that support the `absl::Hash` framework have
// a compatible equality operator for comparing insertions into `node_hash_map`.
// If your type is not yet supported by the `asbl::Hash` framework, see
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
// types.
//
// Example:
//
// // Create a node hash map of three strings (that map to strings)
// absl::node_hash_map<std::string, std::string> ducks =
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
//
// // Insert a new element into the node hash map
// ducks.insert({"d", "donald"}};
//
// // Force a rehash of the node hash map
// ducks.rehash(0);
//
// // Find the element with the key "b"
// std::string search_key = "b";
// auto result = ducks.find(search_key);
// if (result != ducks.end()) {
// std::cout << "Result: " << search_key->second << std::endl;
// }
template <class Key, class Value,
class Hash = absl::container_internal::hash_default_hash<Key>,
class Eq = absl::container_internal::hash_default_eq<Key>,
class Alloc = std::allocator<std::pair<const Key, Value>>>
class node_hash_map
: public absl::container_internal::raw_hash_map<
absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
Alloc> {
using Base = typename node_hash_map::raw_hash_map;
public:
node_hash_map() {}
using Base::Base;
// node_hash_map::begin()
//
// Returns an iterator to the beginning of the `node_hash_map`.
using Base::begin;
// node_hash_map::cbegin()
//
// Returns a const iterator to the beginning of the `node_hash_map`.
using Base::cbegin;
// node_hash_map::cend()
//
// Returns a const iterator to the end of the `node_hash_map`.
using Base::cend;
// node_hash_map::end()
//
// Returns an iterator to the end of the `node_hash_map`.
using Base::end;
// node_hash_map::capacity()
//
// Returns the number of element slots (assigned, deleted, and empty)
// available within the `node_hash_map`.
//
// NOTE: this member function is particular to `absl::node_hash_map` and is
// not provided in the `std::unordered_map` API.
using Base::capacity;
// node_hash_map::empty()
//
// Returns whether or not the `node_hash_map` is empty.
using Base::empty;
// node_hash_map::max_size()
//
// Returns the largest theoretical possible number of elements within a
// `node_hash_map` under current memory constraints. This value can be thought
// of as the largest value of `std::distance(begin(), end())` for a
// `node_hash_map<K, V>`.
using Base::max_size;
// node_hash_map::size()
//
// Returns the number of elements currently within the `node_hash_map`.
using Base::size;
// node_hash_map::clear()
//
// Removes all elements from the `node_hash_map`. Invalidates any references,
// pointers, or iterators referring to contained elements.
//
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
// the underlying buffer call `erase(begin(), end())`.
using Base::clear;
// node_hash_map::erase()
//
// Erases elements within the `node_hash_map`. Erasing does not trigger a
// rehash. Overloads are listed below.
//
// void erase(const_iterator pos):
//
// Erases the element at `position` of the `node_hash_map`, returning
// `void`.
//
// NOTE: this return behavior is different than that of STL containers in
// general and `std::unordered_map` in particular.
//
// iterator erase(const_iterator first, const_iterator last):
//
// Erases the elements in the open interval [`first`, `last`), returning an
// iterator pointing to `last`.
//
// size_type erase(const key_type& key):
//
// Erases the element with the matching key, if it exists.
using Base::erase;
// node_hash_map::insert()
//
// Inserts an element of the specified value into the `node_hash_map`,
// returning an iterator pointing to the newly inserted element, provided that
// an element with the given key does not already exist. If rehashing occurs
// due to the insertion, all iterators are invalidated. Overloads are listed
// below.
//
// std::pair<iterator,bool> insert(const init_type& value):
//
// Inserts a value into the `node_hash_map`. Returns a pair consisting of an
// iterator to the inserted element (or to the element that prevented the
// insertion) and a `bool` denoting whether the insertion took place.
//
// std::pair<iterator,bool> insert(T&& value):
// std::pair<iterator,bool> insert(init_type&& value ):
//
// Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
// consisting of an iterator to the inserted element (or to the element that
// prevented the insertion) and a `bool` denoting whether the insertion took
// place.
//
// iterator insert(const_iterator hint, const init_type& value):
// iterator insert(const_iterator hint, T&& value):
// iterator insert(const_iterator hint, init_type&& value );
//
// Inserts a value, using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search. Returns an iterator to the
// inserted element, or to the existing element that prevented the
// insertion.
//
// void insert(InputIterator first, InputIterator last ):
//
// Inserts a range of values [`first`, `last`).
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently, for `node_hash_map` we guarantee the
// first match is inserted.
//
// void insert(std::initializer_list<init_type> ilist ):
//
// Inserts the elements within the initializer list `ilist`.
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently within the initializer list, for
// `node_hash_map` we guarantee the first match is inserted.
using Base::insert;
// node_hash_map::insert_or_assign()
//
// Inserts an element of the specified value into the `node_hash_map` provided
// that a value with the given key does not already exist, or replaces it with
// the element value if a key for that value already exists, returning an
// iterator pointing to the newly inserted element. If rehashing occurs due to
// the insertion, all iterators are invalidated. Overloads are listed
// below.
//
// std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
// std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
//
// Inserts/Assigns (or moves) the element of the specified key into the
// `node_hash_map`.
//
// iterator insert_or_assign(const_iterator hint,
// const init_type& k, T&& obj):
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
//
// Inserts/Assigns (or moves) the element of the specified key into the
// `node_hash_map` using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search.
using Base::insert_or_assign;
// node_hash_map::emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `node_hash_map`, provided that no element with the given key
// already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace;
// node_hash_map::emplace_hint()
//
// Inserts an element of the specified value by constructing it in-place
// within the `node_hash_map`, using the position of `hint` as a non-binding
// suggestion for where to begin the insertion search, and only inserts
// provided that no element with the given key already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace_hint;
// node_hash_map::try_emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `node_hash_map`, provided that no element with the given key
// already exists. Unlike `emplace()`, if an element with the given key
// already exists, we guarantee that no element is constructed.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
// Overloads are listed below.
//
// std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
// std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
//
// Inserts (via copy or move) the element of the specified key into the
// `node_hash_map`.
//
// iterator try_emplace(const_iterator hint,
// const init_type& k, Args&&... args):
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
//
// Inserts (via copy or move) the element of the specified key into the
// `node_hash_map` using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search.
using Base::try_emplace;
// node_hash_map::extract()
//
// Extracts the indicated element, erasing it in the process, and returns it
// as a C++17-compatible node handle. Overloads are listed below.
//
// node_type extract(const_iterator position):
//
// Extracts the key,value pair of the element at the indicated position and
// returns a node handle owning that extracted data.
//
// node_type extract(const key_type& x):
//
// Extracts the key,value pair of the element with a key matching the passed
// key value and returns a node handle owning that extracted data. If the
// `node_hash_map` does not contain an element with a matching key, this
// function returns an empty node handle.
using Base::extract;
// node_hash_map::merge()
//
// Extracts elements from a given `source` node hash map into this
// `node_hash_map`. If the destination `node_hash_map` already contains an
// element with an equivalent key, that element is not extracted.
using Base::merge;
// node_hash_map::swap(node_hash_map& other)
//
// Exchanges the contents of this `node_hash_map` with those of the `other`
// node hash map, avoiding invocation of any move, copy, or swap operations on
// individual elements.
//
// All iterators and references on the `node_hash_map` remain valid, excepting
// for the past-the-end iterator, which is invalidated.
//
// `swap()` requires that the node hash map's hashing and key equivalence
// functions be Swappable, and are exchaged using unqualified calls to
// non-member `swap()`. If the map's allocator has
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
// set to `true`, the allocators are also exchanged using an unqualified call
// to non-member `swap()`; otherwise, the allocators are not swapped.
using Base::swap;
// node_hash_map::rehash(count)
//
// Rehashes the `node_hash_map`, setting the number of slots to be at least
// the passed value. If the new number of slots increases the load factor more
// than the current maximum load factor
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
// will be at least `size()` / `max_load_factor()`.
//
// To force a rehash, pass rehash(0).
using Base::rehash;
// node_hash_map::reserve(count)
//
// Sets the number of slots in the `node_hash_map` to the number needed to
// accommodate at least `count` total elements without exceeding the current
// maximum load factor, and may rehash the container if needed.
using Base::reserve;
// node_hash_map::at()
//
// Returns a reference to the mapped value of the element with key equivalent
// to the passed key.
using Base::at;
// node_hash_map::contains()
//
// Determines whether an element with a key comparing equal to the given `key`
// exists within the `node_hash_map`, returning `true` if so or `false`
// otherwise.
using Base::contains;
// node_hash_map::count(const Key& key) const
//
// Returns the number of elements with a key comparing equal to the given
// `key` within the `node_hash_map`. note that this function will return
// either `1` or `0` since duplicate keys are not allowed within a
// `node_hash_map`.
using Base::count;
// node_hash_map::equal_range()
//
// Returns a closed range [first, last], defined by a `std::pair` of two
// iterators, containing all elements with the passed key in the
// `node_hash_map`.
using Base::equal_range;
// node_hash_map::find()
//
// Finds an element with the passed `key` within the `node_hash_map`.
using Base::find;
// node_hash_map::operator[]()
//
// Returns a reference to the value mapped to the passed key within the
// `node_hash_map`, performing an `insert()` if the key does not already
// exist. If an insertion occurs and results in a rehashing of the container,
// all iterators are invalidated. Otherwise iterators are not affected and
// references are not invalidated. Overloads are listed below.
//
// T& operator[](const Key& key ):
//
// Inserts an init_type object constructed in-place if the element with the
// given key does not exist.
//
// T& operator[]( Key&& key ):
//
// Inserts an init_type object constructed in-place provided that an element
// with the given key does not exist.
using Base::operator[];
// node_hash_map::bucket_count()
//
// Returns the number of "buckets" within the `node_hash_map`.
using Base::bucket_count;
// node_hash_map::load_factor()
//
// Returns the current load factor of the `node_hash_map` (the average number
// of slots occupied with a value within the hash map).
using Base::load_factor;
// node_hash_map::max_load_factor()
//
// Manages the maximum load factor of the `node_hash_map`. Overloads are
// listed below.
//
// float node_hash_map::max_load_factor()
//
// Returns the current maximum load factor of the `node_hash_map`.
//
// void node_hash_map::max_load_factor(float ml)
//
// Sets the maximum load factor of the `node_hash_map` to the passed value.
//
// NOTE: This overload is provided only for API compatibility with the STL;
// `node_hash_map` will ignore any set load factor and manage its rehashing
// internally as an implementation detail.
using Base::max_load_factor;
// node_hash_map::get_allocator()
//
// Returns the allocator function associated with this `node_hash_map`.
using Base::get_allocator;
// node_hash_map::hash_function()
//
// Returns the hashing function used to hash the keys within this
// `node_hash_map`.
using Base::hash_function;
// node_hash_map::key_eq()
//
// Returns the function used for comparing keys equality.
using Base::key_eq;
ABSL_DEPRECATED("Call `hash_function()` instead.")
typename Base::hasher hash_funct() { return this->hash_function(); }
ABSL_DEPRECATED("Call `rehash()` instead.")
void resize(typename Base::size_type hint) { this->rehash(hint); }
};
namespace container_internal {
template <class Key, class Value>
class NodeHashMapPolicy
: public absl::container_internal::node_hash_policy<
std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
using value_type = std::pair<const Key, Value>;
public:
using key_type = Key;
using mapped_type = Value;
using init_type = std::pair</*non const*/ key_type, mapped_type>;
template <class Allocator, class... Args>
static value_type* new_element(Allocator* alloc, Args&&... args) {
using PairAlloc = typename absl::allocator_traits<
Allocator>::template rebind_alloc<value_type>;
PairAlloc pair_alloc(*alloc);
value_type* res =
absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
std::forward<Args>(args)...);
return res;
}
template <class Allocator>
static void delete_element(Allocator* alloc, value_type* pair) {
using PairAlloc = typename absl::allocator_traits<
Allocator>::template rebind_alloc<value_type>;
PairAlloc pair_alloc(*alloc);
absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
}
template <class F, class... Args>
static decltype(absl::container_internal::DecomposePair(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return absl::container_internal::DecomposePair(std::forward<F>(f),
std::forward<Args>(args)...);
}
static size_t element_space_used(const value_type*) {
return sizeof(value_type);
}
static Value& value(value_type* elem) { return elem->second; }
static const Value& value(const value_type* elem) { return elem->second; }
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_NODE_HASH_MAP_H_

View file

@ -0,0 +1,218 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/node_hash_map.h"
#include "absl/container/internal/tracked.h"
#include "absl/container/internal/unordered_map_constructor_test.h"
#include "absl/container/internal/unordered_map_lookup_test.h"
#include "absl/container/internal/unordered_map_modifiers_test.h"
namespace absl {
namespace container_internal {
namespace {
using ::testing::Field;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
using MapTypes = ::testing::Types<
absl::node_hash_map<int, int, StatefulTestingHash, StatefulTestingEqual,
Alloc<std::pair<const int, int>>>,
absl::node_hash_map<std::string, std::string, StatefulTestingHash,
StatefulTestingEqual,
Alloc<std::pair<const std::string, std::string>>>>;
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ConstructorTest, MapTypes);
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, LookupTest, MapTypes);
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ModifiersTest, MapTypes);
using M = absl::node_hash_map<std::string, Tracked<int>>;
TEST(NodeHashMap, Emplace) {
M m;
Tracked<int> t(53);
m.emplace("a", t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(1, t.num_copies());
m.emplace(std::string("a"), t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(1, t.num_copies());
std::string a("a");
m.emplace(a, t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(1, t.num_copies());
const std::string ca("a");
m.emplace(a, t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(1, t.num_copies());
m.emplace(std::make_pair("a", t));
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(2, t.num_copies());
m.emplace(std::make_pair(std::string("a"), t));
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(3, t.num_copies());
std::pair<std::string, Tracked<int>> p("a", t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(4, t.num_copies());
m.emplace(p);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(4, t.num_copies());
const std::pair<std::string, Tracked<int>> cp("a", t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(5, t.num_copies());
m.emplace(cp);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(5, t.num_copies());
std::pair<const std::string, Tracked<int>> pc("a", t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(6, t.num_copies());
m.emplace(pc);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(6, t.num_copies());
const std::pair<const std::string, Tracked<int>> cpc("a", t);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(7, t.num_copies());
m.emplace(cpc);
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(7, t.num_copies());
m.emplace(std::piecewise_construct, std::forward_as_tuple("a"),
std::forward_as_tuple(t));
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(7, t.num_copies());
m.emplace(std::piecewise_construct, std::forward_as_tuple(std::string("a")),
std::forward_as_tuple(t));
ASSERT_EQ(0, t.num_moves());
ASSERT_EQ(7, t.num_copies());
}
TEST(NodeHashMap, AssignRecursive) {
struct Tree {
// Verify that unordered_map<K, IncompleteType> can be instantiated.
absl::node_hash_map<int, Tree> children;
};
Tree root;
const Tree& child = root.children.emplace().first->second;
// Verify that `lhs = rhs` doesn't read rhs after clearing lhs.
root = child;
}
TEST(FlatHashMap, MoveOnlyKey) {
struct Key {
Key() = default;
Key(Key&&) = default;
Key& operator=(Key&&) = default;
};
struct Eq {
bool operator()(const Key&, const Key&) const { return true; }
};
struct Hash {
size_t operator()(const Key&) const { return 0; }
};
absl::node_hash_map<Key, int, Hash, Eq> m;
m[Key()];
}
struct NonMovableKey {
explicit NonMovableKey(int i) : i(i) {}
NonMovableKey(NonMovableKey&&) = delete;
int i;
};
struct NonMovableKeyHash {
using is_transparent = void;
size_t operator()(const NonMovableKey& k) const { return k.i; }
size_t operator()(int k) const { return k; }
};
struct NonMovableKeyEq {
using is_transparent = void;
bool operator()(const NonMovableKey& a, const NonMovableKey& b) const {
return a.i == b.i;
}
bool operator()(const NonMovableKey& a, int b) const { return a.i == b; }
};
TEST(NodeHashMap, MergeExtractInsert) {
absl::node_hash_map<NonMovableKey, int, NonMovableKeyHash, NonMovableKeyEq>
set1, set2;
set1.emplace(std::piecewise_construct, std::make_tuple(7),
std::make_tuple(-7));
set1.emplace(std::piecewise_construct, std::make_tuple(17),
std::make_tuple(-17));
set2.emplace(std::piecewise_construct, std::make_tuple(7),
std::make_tuple(-70));
set2.emplace(std::piecewise_construct, std::make_tuple(19),
std::make_tuple(-190));
auto Elem = [](int key, int value) {
return Pair(Field(&NonMovableKey::i, key), value);
};
EXPECT_THAT(set1, UnorderedElementsAre(Elem(7, -7), Elem(17, -17)));
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(19, -190)));
// NonMovableKey is neither copyable nor movable. We should still be able to
// move nodes around.
static_assert(!std::is_move_constructible<NonMovableKey>::value, "");
set1.merge(set2);
EXPECT_THAT(set1,
UnorderedElementsAre(Elem(7, -7), Elem(17, -17), Elem(19, -190)));
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70)));
auto node = set1.extract(7);
EXPECT_TRUE(node);
EXPECT_EQ(node.key().i, 7);
EXPECT_EQ(node.mapped(), -7);
EXPECT_THAT(set1, UnorderedElementsAre(Elem(17, -17), Elem(19, -190)));
auto insert_result = set2.insert(std::move(node));
EXPECT_FALSE(node);
EXPECT_FALSE(insert_result.inserted);
EXPECT_TRUE(insert_result.node);
EXPECT_EQ(insert_result.node.key().i, 7);
EXPECT_EQ(insert_result.node.mapped(), -7);
EXPECT_THAT(*insert_result.position, Elem(7, -70));
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70)));
node = set1.extract(17);
EXPECT_TRUE(node);
EXPECT_EQ(node.key().i, 17);
EXPECT_EQ(node.mapped(), -17);
EXPECT_THAT(set1, UnorderedElementsAre(Elem(19, -190)));
node.mapped() = 23;
insert_result = set2.insert(std::move(node));
EXPECT_FALSE(node);
EXPECT_TRUE(insert_result.inserted);
EXPECT_FALSE(insert_result.node);
EXPECT_THAT(*insert_result.position, Elem(17, 23));
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(17, 23)));
}
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -0,0 +1,439 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: node_hash_set.h
// -----------------------------------------------------------------------------
//
// An `absl::node_hash_set<T>` is an unordered associative container designed to
// be a more efficient replacement for `std::unordered_set`. Like
// `unordered_set`, search, insertion, and deletion of map elements can be done
// as an `O(1)` operation. However, `node_hash_set` (and other unordered
// associative containers known as the collection of Abseil "Swiss tables")
// contain other optimizations that result in both memory and computation
// advantages.
//
// In most cases, your default choice for a hash table should be a map of type
// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
// pointer stability, a `node_hash_set` should be your preferred choice. As
// well, if you are migrating your code from using `std::unordered_set`, a
// `node_hash_set` should be an easy migration. Consider migrating to
// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
// upon further review.
#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
#define ABSL_CONTAINER_NODE_HASH_SET_H_
#include <type_traits>
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
#include "absl/container/internal/node_hash_policy.h"
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
#include "absl/memory/memory.h"
namespace absl {
namespace container_internal {
template <typename T>
struct NodeHashSetPolicy;
} // namespace container_internal
// -----------------------------------------------------------------------------
// absl::node_hash_set
// -----------------------------------------------------------------------------
//
// An `absl::node_hash_set<T>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_set<T>` with the
// following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the map is provided a compatible heterogeneous
// hashing function and equality operator.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash set.
// * Returns `void` from the `erase(iterator)` overload.
//
// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
// All fundamental and Abseil types that support the `absl::Hash` framework have
// a compatible equality operator for comparing insertions into `node_hash_set`.
// If your type is not yet supported by the `asbl::Hash` framework, see
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
// types.
//
// Example:
//
// // Create a node hash set of three strings
// absl::node_hash_map<std::string, std::string> ducks =
// {"huey", "dewey"}, "louie"};
//
// // Insert a new element into the node hash map
// ducks.insert("donald"};
//
// // Force a rehash of the node hash map
// ducks.rehash(0);
//
// // See if "dewey" is present
// if (ducks.contains("dewey")) {
// std::cout << "We found dewey!" << std::endl;
// }
template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
class Eq = absl::container_internal::hash_default_eq<T>,
class Alloc = std::allocator<T>>
class node_hash_set
: public absl::container_internal::raw_hash_set<
absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
using Base = typename node_hash_set::raw_hash_set;
public:
node_hash_set() {}
using Base::Base;
// node_hash_set::begin()
//
// Returns an iterator to the beginning of the `node_hash_set`.
using Base::begin;
// node_hash_set::cbegin()
//
// Returns a const iterator to the beginning of the `node_hash_set`.
using Base::cbegin;
// node_hash_set::cend()
//
// Returns a const iterator to the end of the `node_hash_set`.
using Base::cend;
// node_hash_set::end()
//
// Returns an iterator to the end of the `node_hash_set`.
using Base::end;
// node_hash_set::capacity()
//
// Returns the number of element slots (assigned, deleted, and empty)
// available within the `node_hash_set`.
//
// NOTE: this member function is particular to `absl::node_hash_set` and is
// not provided in the `std::unordered_map` API.
using Base::capacity;
// node_hash_set::empty()
//
// Returns whether or not the `node_hash_set` is empty.
using Base::empty;
// node_hash_set::max_size()
//
// Returns the largest theoretical possible number of elements within a
// `node_hash_set` under current memory constraints. This value can be thought
// of the largest value of `std::distance(begin(), end())` for a
// `node_hash_set<T>`.
using Base::max_size;
// node_hash_set::size()
//
// Returns the number of elements currently within the `node_hash_set`.
using Base::size;
// node_hash_set::clear()
//
// Removes all elements from the `node_hash_set`. Invalidates any references,
// pointers, or iterators referring to contained elements.
//
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
// the underlying buffer call `erase(begin(), end())`.
using Base::clear;
// node_hash_set::erase()
//
// Erases elements within the `node_hash_set`. Erasing does not trigger a
// rehash. Overloads are listed below.
//
// void erase(const_iterator pos):
//
// Erases the element at `position` of the `node_hash_set`, returning
// `void`.
//
// NOTE: this return behavior is different than that of STL containers in
// general and `std::unordered_map` in particular.
//
// iterator erase(const_iterator first, const_iterator last):
//
// Erases the elements in the open interval [`first`, `last`), returning an
// iterator pointing to `last`.
//
// size_type erase(const key_type& key):
//
// Erases the element with the matching key, if it exists.
using Base::erase;
// node_hash_set::insert()
//
// Inserts an element of the specified value into the `node_hash_set`,
// returning an iterator pointing to the newly inserted element, provided that
// an element with the given key does not already exist. If rehashing occurs
// due to the insertion, all iterators are invalidated. Overloads are listed
// below.
//
// std::pair<iterator,bool> insert(const T& value):
//
// Inserts a value into the `node_hash_set`. Returns a pair consisting of an
// iterator to the inserted element (or to the element that prevented the
// insertion) and a bool denoting whether the insertion took place.
//
// std::pair<iterator,bool> insert(T&& value):
//
// Inserts a moveable value into the `node_hash_set`. Returns a pair
// consisting of an iterator to the inserted element (or to the element that
// prevented the insertion) and a bool denoting whether the insertion took
// place.
//
// iterator insert(const_iterator hint, const T& value):
// iterator insert(const_iterator hint, T&& value):
//
// Inserts a value, using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search. Returns an iterator to the
// inserted element, or to the existing element that prevented the
// insertion.
//
// void insert(InputIterator first, InputIterator last ):
//
// Inserts a range of values [`first`, `last`).
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently, for `node_hash_set` we guarantee the
// first match is inserted.
//
// void insert(std::initializer_list<T> ilist ):
//
// Inserts the elements within the initializer list `ilist`.
//
// NOTE: Although the STL does not specify which element may be inserted if
// multiple keys compare equivalently within the initializer list, for
// `node_hash_set` we guarantee the first match is inserted.
using Base::insert;
// node_hash_set::emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `node_hash_set`, provided that no element with the given key
// already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace;
// node_hash_set::emplace_hint()
//
// Inserts an element of the specified value by constructing it in-place
// within the `node_hash_set`, using the position of `hint` as a non-binding
// suggestion for where to begin the insertion search, and only inserts
// provided that no element with the given key already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If rehashing occurs due to the insertion, all iterators are invalidated.
using Base::emplace_hint;
// node_hash_set::extract()
//
// Extracts the indicated element, erasing it in the process, and returns it
// as a C++17-compatible node handle. Overloads are listed below.
//
// node_type extract(const_iterator position):
//
// Extracts the element at the indicated position and returns a node handle
// owning that extracted data.
//
// node_type extract(const key_type& x):
//
// Extracts the element with the key matching the passed key value and
// returns a node handle owning that extracted data. If the `node_hash_set`
// does not contain an element with a matching key, this function returns an
// empty node handle.
using Base::extract;
// node_hash_set::merge()
//
// Extracts elements from a given `source` flat hash map into this
// `node_hash_set`. If the destination `node_hash_set` already contains an
// element with an equivalent key, that element is not extracted.
using Base::merge;
// node_hash_set::swap(node_hash_set& other)
//
// Exchanges the contents of this `node_hash_set` with those of the `other`
// flat hash map, avoiding invocation of any move, copy, or swap operations on
// individual elements.
//
// All iterators and references on the `node_hash_set` remain valid, excepting
// for the past-the-end iterator, which is invalidated.
//
// `swap()` requires that the flat hash set's hashing and key equivalence
// functions be Swappable, and are exchaged using unqualified calls to
// non-member `swap()`. If the map's allocator has
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
// set to `true`, the allocators are also exchanged using an unqualified call
// to non-member `swap()`; otherwise, the allocators are not swapped.
using Base::swap;
// node_hash_set::rehash(count)
//
// Rehashes the `node_hash_set`, setting the number of slots to be at least
// the passed value. If the new number of slots increases the load factor more
// than the current maximum load factor
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
// will be at least `size()` / `max_load_factor()`.
//
// To force a rehash, pass rehash(0).
//
// NOTE: unlike behavior in `std::unordered_set`, references are also
// invalidated upon a `rehash()`.
using Base::rehash;
// node_hash_set::reserve(count)
//
// Sets the number of slots in the `node_hash_set` to the number needed to
// accommodate at least `count` total elements without exceeding the current
// maximum load factor, and may rehash the container if needed.
using Base::reserve;
// node_hash_set::contains()
//
// Determines whether an element comparing equal to the given `key` exists
// within the `node_hash_set`, returning `true` if so or `false` otherwise.
using Base::contains;
// node_hash_set::count(const Key& key) const
//
// Returns the number of elements comparing equal to the given `key` within
// the `node_hash_set`. note that this function will return either `1` or `0`
// since duplicate elements are not allowed within a `node_hash_set`.
using Base::count;
// node_hash_set::equal_range()
//
// Returns a closed range [first, last], defined by a `std::pair` of two
// iterators, containing all elements with the passed key in the
// `node_hash_set`.
using Base::equal_range;
// node_hash_set::find()
//
// Finds an element with the passed `key` within the `node_hash_set`.
using Base::find;
// node_hash_set::bucket_count()
//
// Returns the number of "buckets" within the `node_hash_set`. Note that
// because a flat hash map contains all elements within its internal storage,
// this value simply equals the current capacity of the `node_hash_set`.
using Base::bucket_count;
// node_hash_set::load_factor()
//
// Returns the current load factor of the `node_hash_set` (the average number
// of slots occupied with a value within the hash map).
using Base::load_factor;
// node_hash_set::max_load_factor()
//
// Manages the maximum load factor of the `node_hash_set`. Overloads are
// listed below.
//
// float node_hash_set::max_load_factor()
//
// Returns the current maximum load factor of the `node_hash_set`.
//
// void node_hash_set::max_load_factor(float ml)
//
// Sets the maximum load factor of the `node_hash_set` to the passed value.
//
// NOTE: This overload is provided only for API compatibility with the STL;
// `node_hash_set` will ignore any set load factor and manage its rehashing
// internally as an implementation detail.
using Base::max_load_factor;
// node_hash_set::get_allocator()
//
// Returns the allocator function associated with this `node_hash_set`.
using Base::get_allocator;
// node_hash_set::hash_function()
//
// Returns the hashing function used to hash the keys within this
// `node_hash_set`.
using Base::hash_function;
// node_hash_set::key_eq()
//
// Returns the function used for comparing keys equality.
using Base::key_eq;
ABSL_DEPRECATED("Call `hash_function()` instead.")
typename Base::hasher hash_funct() { return this->hash_function(); }
ABSL_DEPRECATED("Call `rehash()` instead.")
void resize(typename Base::size_type hint) { this->rehash(hint); }
};
namespace container_internal {
template <class T>
struct NodeHashSetPolicy
: absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
using key_type = T;
using init_type = T;
using constant_iterators = std::true_type;
template <class Allocator, class... Args>
static T* new_element(Allocator* alloc, Args&&... args) {
using ValueAlloc =
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
ValueAlloc value_alloc(*alloc);
T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
std::forward<Args>(args)...);
return res;
}
template <class Allocator>
static void delete_element(Allocator* alloc, T* elem) {
using ValueAlloc =
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
ValueAlloc value_alloc(*alloc);
absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
}
template <class F, class... Args>
static decltype(absl::container_internal::DecomposeValue(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return absl::container_internal::DecomposeValue(
std::forward<F>(f), std::forward<Args>(args)...);
}
static size_t element_space_used(const T*) { return sizeof(T); }
};
} // namespace container_internal
} // namespace absl
#endif // ABSL_CONTAINER_NODE_HASH_SET_H_

View file

@ -0,0 +1,103 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/node_hash_set.h"
#include "absl/container/internal/unordered_set_constructor_test.h"
#include "absl/container/internal/unordered_set_lookup_test.h"
#include "absl/container/internal/unordered_set_modifiers_test.h"
namespace absl {
namespace container_internal {
namespace {
using ::absl::container_internal::hash_internal::Enum;
using ::absl::container_internal::hash_internal::EnumClass;
using ::testing::Pointee;
using ::testing::UnorderedElementsAre;
using SetTypes = ::testing::Types<
node_hash_set<int, StatefulTestingHash, StatefulTestingEqual, Alloc<int>>,
node_hash_set<std::string, StatefulTestingHash, StatefulTestingEqual,
Alloc<int>>,
node_hash_set<Enum, StatefulTestingHash, StatefulTestingEqual, Alloc<Enum>>,
node_hash_set<EnumClass, StatefulTestingHash, StatefulTestingEqual,
Alloc<EnumClass>>>;
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ConstructorTest, SetTypes);
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, LookupTest, SetTypes);
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ModifiersTest, SetTypes);
TEST(NodeHashSet, MoveableNotCopyableCompiles) {
node_hash_set<std::unique_ptr<void*>> t;
node_hash_set<std::unique_ptr<void*>> u;
u = std::move(t);
}
TEST(NodeHashSet, MergeExtractInsert) {
struct Hash {
size_t operator()(const std::unique_ptr<int>& p) const { return *p; }
};
struct Eq {
bool operator()(const std::unique_ptr<int>& a,
const std::unique_ptr<int>& b) const {
return *a == *b;
}
};
absl::node_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2;
set1.insert(absl::make_unique<int>(7));
set1.insert(absl::make_unique<int>(17));
set2.insert(absl::make_unique<int>(7));
set2.insert(absl::make_unique<int>(19));
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17)));
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19)));
set1.merge(set2);
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19)));
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
auto node = set1.extract(absl::make_unique<int>(7));
EXPECT_TRUE(node);
EXPECT_THAT(node.value(), Pointee(7));
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19)));
auto insert_result = set2.insert(std::move(node));
EXPECT_FALSE(node);
EXPECT_FALSE(insert_result.inserted);
EXPECT_TRUE(insert_result.node);
EXPECT_THAT(insert_result.node.value(), Pointee(7));
EXPECT_EQ(**insert_result.position, 7);
EXPECT_NE(insert_result.position->get(), insert_result.node.value().get());
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
node = set1.extract(absl::make_unique<int>(17));
EXPECT_TRUE(node);
EXPECT_THAT(node.value(), Pointee(17));
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19)));
node.value() = absl::make_unique<int>(23);
insert_result = set2.insert(std::move(node));
EXPECT_FALSE(node);
EXPECT_TRUE(insert_result.inserted);
EXPECT_FALSE(insert_result.node);
EXPECT_EQ(**insert_result.position, 23);
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23)));
}
} // namespace
} // namespace container_internal
} // namespace absl