Export of internal Abseil changes.
-- 4eacae3ff1b14b1d309e8092185bc10e8a6203cf by Derek Mauro <dmauro@google.com>: Release SwissTable - a fast, efficient, cache-friendly hash table. https://www.youtube.com/watch?v=ncHmEUmJZf4 PiperOrigin-RevId: 214816527 -- df8c3dfab3cfb2f4365909a84d0683b193cfbb11 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214785288 -- 1eabd5266bbcebc33eecc91e5309b751856a75c8 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 214722931 -- 2ebbfac950f83146b46253038e7dd7dcde9f2951 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214701684 GitOrigin-RevId: 4eacae3ff1b14b1d309e8092185bc10e8a6203cf Change-Id: I9ba64e395b22ad7863213d157b8019b082adc19d
This commit is contained in:
parent
e291c279e4
commit
48cd2c3f35
55 changed files with 18696 additions and 0 deletions
|
@ -185,3 +185,459 @@ cc_test(
|
|||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
NOTEST_TAGS_NONMOBILE = [
|
||||
"no_test_darwin_x86_64",
|
||||
"no_test_loonix",
|
||||
]
|
||||
|
||||
NOTEST_TAGS_MOBILE = [
|
||||
"no_test_android_arm",
|
||||
"no_test_android_arm64",
|
||||
"no_test_android_x86",
|
||||
"no_test_ios_x86_64",
|
||||
]
|
||||
|
||||
NOTEST_TAGS = NOTEST_TAGS_MOBILE + NOTEST_TAGS_NONMOBILE
|
||||
|
||||
cc_library(
|
||||
name = "flat_hash_map",
|
||||
hdrs = ["flat_hash_map.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":hash_function_defaults",
|
||||
":raw_hash_map",
|
||||
"//absl/memory",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "flat_hash_map_test",
|
||||
srcs = ["flat_hash_map_test.cc"],
|
||||
copts = ABSL_TEST_COPTS + ["-DUNORDERED_MAP_CXX17"],
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":flat_hash_map",
|
||||
":hash_generator_testing",
|
||||
":unordered_map_constructor_test",
|
||||
":unordered_map_lookup_test",
|
||||
":unordered_map_modifiers_test",
|
||||
"//absl/types:any",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "flat_hash_set",
|
||||
hdrs = ["flat_hash_set.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":hash_function_defaults",
|
||||
":raw_hash_set",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/memory",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "flat_hash_set_test",
|
||||
srcs = ["flat_hash_set_test.cc"],
|
||||
copts = ABSL_TEST_COPTS + ["-DUNORDERED_SET_CXX17"],
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":flat_hash_set",
|
||||
":hash_generator_testing",
|
||||
":unordered_set_constructor_test",
|
||||
":unordered_set_lookup_test",
|
||||
":unordered_set_modifiers_test",
|
||||
"//absl/memory",
|
||||
"//absl/strings",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "node_hash_map",
|
||||
hdrs = ["node_hash_map.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":hash_function_defaults",
|
||||
":node_hash_policy",
|
||||
":raw_hash_map",
|
||||
"//absl/memory",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "node_hash_map_test",
|
||||
srcs = ["node_hash_map_test.cc"],
|
||||
copts = ABSL_TEST_COPTS + ["-DUNORDERED_MAP_CXX17"],
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":node_hash_map",
|
||||
":tracked",
|
||||
":unordered_map_constructor_test",
|
||||
":unordered_map_lookup_test",
|
||||
":unordered_map_modifiers_test",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "node_hash_set",
|
||||
hdrs = ["node_hash_set.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":hash_function_defaults",
|
||||
":node_hash_policy",
|
||||
":raw_hash_set",
|
||||
"//absl/memory",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "node_hash_set_test",
|
||||
srcs = ["node_hash_set_test.cc"],
|
||||
copts = ABSL_TEST_COPTS + ["-DUNORDERED_SET_CXX17"],
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":node_hash_set",
|
||||
":unordered_set_constructor_test",
|
||||
":unordered_set_lookup_test",
|
||||
":unordered_set_modifiers_test",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "container_memory",
|
||||
hdrs = ["internal/container_memory.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
"//absl/memory",
|
||||
"//absl/utility",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "container_memory_test",
|
||||
srcs = ["internal/container_memory_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":container_memory",
|
||||
"//absl/strings",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "hash_function_defaults",
|
||||
hdrs = ["internal/hash_function_defaults.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
"//absl/base:config",
|
||||
"//absl/hash",
|
||||
"//absl/strings",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "hash_function_defaults_test",
|
||||
srcs = ["internal/hash_function_defaults_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
tags = NOTEST_TAGS,
|
||||
deps = [
|
||||
":hash_function_defaults",
|
||||
"//absl/hash",
|
||||
"//absl/strings",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "hash_generator_testing",
|
||||
testonly = 1,
|
||||
srcs = ["internal/hash_generator_testing.cc"],
|
||||
hdrs = ["internal/hash_generator_testing.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_policy_testing",
|
||||
"//absl/meta:type_traits",
|
||||
"//absl/strings",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "hash_policy_testing",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/hash_policy_testing.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
"//absl/hash",
|
||||
"//absl/strings",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "hash_policy_testing_test",
|
||||
srcs = ["internal/hash_policy_testing_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "hash_policy_traits",
|
||||
hdrs = ["internal/hash_policy_traits.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = ["//absl/meta:type_traits"],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "hash_policy_traits_test",
|
||||
srcs = ["internal/hash_policy_traits_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_policy_traits",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "hashtable_debug",
|
||||
hdrs = ["internal/hashtable_debug.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":hashtable_debug_hooks",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "hashtable_debug_hooks",
|
||||
hdrs = ["internal/hashtable_debug_hooks.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "node_hash_policy",
|
||||
hdrs = ["internal/node_hash_policy.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "node_hash_policy_test",
|
||||
srcs = ["internal/node_hash_policy_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_policy_traits",
|
||||
":node_hash_policy",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "raw_hash_map",
|
||||
hdrs = ["internal/raw_hash_map.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":raw_hash_set",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "raw_hash_set",
|
||||
srcs = ["internal/raw_hash_set.cc"],
|
||||
hdrs = ["internal/raw_hash_set.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
":compressed_tuple",
|
||||
":container_memory",
|
||||
":hash_policy_traits",
|
||||
":hashtable_debug_hooks",
|
||||
":layout",
|
||||
"//absl/base:bits",
|
||||
"//absl/base:config",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/base:endian",
|
||||
"//absl/memory",
|
||||
"//absl/meta:type_traits",
|
||||
"//absl/types:optional",
|
||||
"//absl/utility",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "raw_hash_set_test",
|
||||
srcs = ["internal/raw_hash_set_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
linkstatic = 1,
|
||||
tags = NOTEST_TAGS,
|
||||
deps = [
|
||||
":container_memory",
|
||||
":hash_function_defaults",
|
||||
":hash_policy_testing",
|
||||
":hashtable_debug",
|
||||
":raw_hash_set",
|
||||
"//absl/base",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/strings",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "raw_hash_set_allocator_test",
|
||||
size = "small",
|
||||
srcs = ["internal/raw_hash_set_allocator_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":raw_hash_set",
|
||||
":tracked",
|
||||
"//absl/base:core_headers",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "layout",
|
||||
hdrs = ["internal/layout.h"],
|
||||
copts = ABSL_DEFAULT_COPTS,
|
||||
deps = [
|
||||
"//absl/base:core_headers",
|
||||
"//absl/meta:type_traits",
|
||||
"//absl/strings",
|
||||
"//absl/types:span",
|
||||
"//absl/utility",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "layout_test",
|
||||
size = "small",
|
||||
srcs = ["internal/layout_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
tags = NOTEST_TAGS,
|
||||
visibility = ["//visibility:private"],
|
||||
deps = [
|
||||
":layout",
|
||||
"//absl/base",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/types:span",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "tracked",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/tracked.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unordered_map_constructor_test",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/unordered_map_constructor_test.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unordered_map_lookup_test",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/unordered_map_lookup_test.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unordered_map_modifiers_test",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/unordered_map_modifiers_test.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unordered_set_constructor_test",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/unordered_set_constructor_test.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unordered_set_lookup_test",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/unordered_set_lookup_test.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "unordered_set_modifiers_test",
|
||||
testonly = 1,
|
||||
hdrs = ["internal/unordered_set_modifiers_test.h"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
deps = [
|
||||
":hash_generator_testing",
|
||||
":hash_policy_testing",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "unordered_set_test",
|
||||
srcs = ["internal/unordered_set_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":unordered_set_constructor_test",
|
||||
":unordered_set_lookup_test",
|
||||
":unordered_set_modifiers_test",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "unordered_map_test",
|
||||
srcs = ["internal/unordered_map_test.cc"],
|
||||
copts = ABSL_TEST_COPTS,
|
||||
tags = NOTEST_TAGS_NONMOBILE,
|
||||
deps = [
|
||||
":unordered_map_constructor_test",
|
||||
":unordered_map_lookup_test",
|
||||
":unordered_map_modifiers_test",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -17,12 +17,34 @@
|
|||
|
||||
list(APPEND CONTAINER_PUBLIC_HEADERS
|
||||
"fixed_array.h"
|
||||
"flat_hash_map.h"
|
||||
"flat_hash_set.h"
|
||||
"inlined_vector.h"
|
||||
"node_hash_map.h"
|
||||
"node_hash_set.h"
|
||||
)
|
||||
|
||||
|
||||
list(APPEND CONTAINER_INTERNAL_HEADERS
|
||||
"internal/compressed_tuple.h"
|
||||
"internal/container_memory.h"
|
||||
"internal/hash_function_defaults.h"
|
||||
"internal/hash_generator_testing.h"
|
||||
"internal/hash_policy_testing.h"
|
||||
"internal/hash_policy_traits.h"
|
||||
"internal/hashtable_debug.h"
|
||||
"internal/layout.h"
|
||||
"internal/node_hash_policy.h"
|
||||
"internal/raw_hash_map.h"
|
||||
"internal/raw_hash_set.h"
|
||||
"internal/test_instance_tracker.h"
|
||||
"internal/tracked.h"
|
||||
"internal/unordered_map_constructor_test.h"
|
||||
"internal/unordered_map_lookup_test.h"
|
||||
"internal/unordered_map_modifiers_test.h"
|
||||
"internal/unordered_set_constructor_test.h"
|
||||
"internal/unordered_set_lookup_test.h"
|
||||
"internal/unordered_set_modifiers_test.h"
|
||||
)
|
||||
|
||||
|
||||
|
|
528
absl/container/flat_hash_map.h
Normal file
528
absl/container/flat_hash_map.h
Normal file
|
@ -0,0 +1,528 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: flat_hash_map.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_map<K, V>` is an unordered associative container of
|
||||
// unique keys and associated values designed to be a more efficient replacement
|
||||
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
|
||||
// deletion of map elements can be done as an `O(1)` operation. However,
|
||||
// `flat_hash_map` (and other unordered associative containers known as the
|
||||
// collection of Abseil "Swiss tables") contain other optimizations that result
|
||||
// in both memory and computation advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash map should be a map of type
|
||||
// `flat_hash_map`.
|
||||
|
||||
#ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
|
||||
#define ABSL_CONTAINER_FLAT_HASH_MAP_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <new>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/container/internal/container_memory.h"
|
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
|
||||
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
|
||||
#include "absl/memory/memory.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
template <class K, class V>
|
||||
struct FlatHashMapPolicy;
|
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::flat_hash_map
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_map<K, V>` is an unordered associative container which
|
||||
// has been optimized for both speed and memory footprint in most common use
|
||||
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
|
||||
// the following notable differences:
|
||||
//
|
||||
// * Requires keys that are CopyConstructible
|
||||
// * Requires values that are MoveConstructible
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the map is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Invalidates any references and pointers to elements within the table after
|
||||
// `rehash()`.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash map.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
|
||||
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
||||
// a compatible equality operator for comparing insertions into `flat_hash_map`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// NOTE: A `flat_hash_map` stores its value types directly inside its
|
||||
// implementation array to avoid memory indirection. Because a `flat_hash_map`
|
||||
// is designed to move data when rehashed, map values will not retain pointer
|
||||
// stability. If you require pointer stability, or your values are large,
|
||||
// consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
|
||||
// If your types are not moveable or you require pointer stability for keys,
|
||||
// consider `absl::node_hash_map`.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a flat hash map of three strings (that map to strings)
|
||||
// absl::flat_hash_map<std::string, std::string> ducks =
|
||||
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
|
||||
//
|
||||
// // Insert a new element into the flat hash map
|
||||
// ducks.insert({"d", "donald"}};
|
||||
//
|
||||
// // Force a rehash of the flat hash map
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // Find the element with the key "b"
|
||||
// std::string search_key = "b";
|
||||
// auto result = ducks.find(search_key);
|
||||
// if (result != ducks.end()) {
|
||||
// std::cout << "Result: " << result->second << std::endl;
|
||||
// }
|
||||
template <class K, class V,
|
||||
class Hash = absl::container_internal::hash_default_hash<K>,
|
||||
class Eq = absl::container_internal::hash_default_eq<K>,
|
||||
class Allocator = std::allocator<std::pair<const K, V>>>
|
||||
class flat_hash_map : public absl::container_internal::raw_hash_map<
|
||||
absl::container_internal::FlatHashMapPolicy<K, V>,
|
||||
Hash, Eq, Allocator> {
|
||||
using Base = typename flat_hash_map::raw_hash_map;
|
||||
|
||||
public:
|
||||
flat_hash_map() {}
|
||||
using Base::Base;
|
||||
|
||||
// flat_hash_map::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `flat_hash_map`.
|
||||
using Base::begin;
|
||||
|
||||
// flat_hash_map::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `flat_hash_map`.
|
||||
using Base::cbegin;
|
||||
|
||||
// flat_hash_map::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `flat_hash_map`.
|
||||
using Base::cend;
|
||||
|
||||
// flat_hash_map::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `flat_hash_map`.
|
||||
using Base::end;
|
||||
|
||||
// flat_hash_map::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `flat_hash_map`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::flat_hash_map` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity;
|
||||
|
||||
// flat_hash_map::empty()
|
||||
//
|
||||
// Returns whether or not the `flat_hash_map` is empty.
|
||||
using Base::empty;
|
||||
|
||||
// flat_hash_map::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `flat_hash_map` under current memory constraints. This value can be thought
|
||||
// of the largest value of `std::distance(begin(), end())` for a
|
||||
// `flat_hash_map<K, V>`.
|
||||
using Base::max_size;
|
||||
|
||||
// flat_hash_map::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `flat_hash_map`.
|
||||
using Base::size;
|
||||
|
||||
// flat_hash_map::clear()
|
||||
//
|
||||
// Removes all elements from the `flat_hash_map`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear;
|
||||
|
||||
// flat_hash_map::erase()
|
||||
//
|
||||
// Erases elements within the `flat_hash_map`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `flat_hash_map`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase;
|
||||
|
||||
// flat_hash_map::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `flat_hash_map`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const init_type& value):
|
||||
//
|
||||
// Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a bool denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
// std::pair<iterator,bool> insert(init_type&& value ):
|
||||
//
|
||||
// Inserts a moveable value into the `flat_hash_map`. Returns a pair
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a bool denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const init_type& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
// iterator insert(const_iterator hint, init_type&& value );
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `flat_hash_map` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<init_type> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `flat_hash_map` we guarantee the first match is inserted.
|
||||
using Base::insert;
|
||||
|
||||
// flat_hash_map::insert_or_assign()
|
||||
//
|
||||
// Inserts an element of the specified value into the `flat_hash_map` provided
|
||||
// that a value with the given key does not already exist, or replaces it with
|
||||
// the element value if a key for that value already exists, returning an
|
||||
// iterator pointing to the newly inserted element. If rehashing occurs due
|
||||
// to the insertion, all existing iterators are invalidated. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
|
||||
// pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `flat_hash_map`.
|
||||
//
|
||||
// iterator insert_or_assign(const_iterator hint,
|
||||
// const init_type& k, T&& obj):
|
||||
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `flat_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::insert_or_assign;
|
||||
|
||||
// flat_hash_map::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_map`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace;
|
||||
|
||||
// flat_hash_map::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_map`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint;
|
||||
|
||||
// flat_hash_map::try_emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_map`, provided that no element with the given key
|
||||
// already exists. Unlike `emplace()`, if an element with the given key
|
||||
// already exists, we guarantee that no element is constructed.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
// Overloads are listed below.
|
||||
//
|
||||
// pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
|
||||
// pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `flat_hash_map`.
|
||||
//
|
||||
// iterator try_emplace(const_iterator hint,
|
||||
// const init_type& k, Args&&... args):
|
||||
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `flat_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::try_emplace;
|
||||
|
||||
// flat_hash_map::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the key,value pair of the element at the indicated position and
|
||||
// returns a node handle owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the key,value pair of the element with a key matching the passed
|
||||
// key value and returns a node handle owning that extracted data. If the
|
||||
// `flat_hash_map` does not contain an element with a matching key, this
|
||||
// function returns an empty node handle.
|
||||
using Base::extract;
|
||||
|
||||
// flat_hash_map::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` flat hash map into this
|
||||
// `flat_hash_map`. If the destination `flat_hash_map` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge;
|
||||
|
||||
// flat_hash_map::swap(flat_hash_map& other)
|
||||
//
|
||||
// Exchanges the contents of this `flat_hash_map` with those of the `other`
|
||||
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `flat_hash_map` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the flat hash map's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap;
|
||||
|
||||
// flat_hash_map::rehash(count)
|
||||
//
|
||||
// Rehashes the `flat_hash_map`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
//
|
||||
// NOTE: unlike behavior in `std::unordered_map`, references are also
|
||||
// invalidated upon a `rehash()`.
|
||||
using Base::rehash;
|
||||
|
||||
// flat_hash_map::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `flat_hash_map` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve;
|
||||
|
||||
// flat_hash_map::at()
|
||||
//
|
||||
// Returns a reference to the mapped value of the element with key equivalent
|
||||
// to the passed key.
|
||||
using Base::at;
|
||||
|
||||
// flat_hash_map::contains()
|
||||
//
|
||||
// Determines whether an element with a key comparing equal to the given `key`
|
||||
// exists within the `flat_hash_map`, returning `true` if so or `false`
|
||||
// otherwise.
|
||||
using Base::contains;
|
||||
|
||||
// flat_hash_map::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements with a key comparing equal to the given
|
||||
// `key` within the `flat_hash_map`. note that this function will return
|
||||
// either `1` or `0` since duplicate keys are not allowed within a
|
||||
// `flat_hash_map`.
|
||||
using Base::count;
|
||||
|
||||
// flat_hash_map::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `flat_hash_map`.
|
||||
using Base::equal_range;
|
||||
|
||||
// flat_hash_map::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `flat_hash_map`.
|
||||
using Base::find;
|
||||
|
||||
// flat_hash_map::operator[]()
|
||||
//
|
||||
// Returns a reference to the value mapped to the passed key within the
|
||||
// `flat_hash_map`, performing an `insert()` if the key does not already
|
||||
// exist.
|
||||
//
|
||||
// If an insertion occurs and results in a rehashing of the container, all
|
||||
// iterators are invalidated. Otherwise iterators are not affected and
|
||||
// references are not invalidated. Overloads are listed below.
|
||||
//
|
||||
// T& operator[](const Key& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place if the element with the
|
||||
// given key does not exist.
|
||||
//
|
||||
// T& operator[]( Key&& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place provided that an element
|
||||
// with the given key does not exist.
|
||||
using Base::operator[];
|
||||
|
||||
// flat_hash_map::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `flat_hash_map`. Note that
|
||||
// because a flat hash map contains all elements within its internal storage,
|
||||
// this value simply equals the current capacity of the `flat_hash_map`.
|
||||
using Base::bucket_count;
|
||||
|
||||
// flat_hash_map::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `flat_hash_map` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor;
|
||||
|
||||
// flat_hash_map::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `flat_hash_map`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float flat_hash_map::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `flat_hash_map`.
|
||||
//
|
||||
// void flat_hash_map::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `flat_hash_map` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `flat_hash_map` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor;
|
||||
|
||||
// flat_hash_map::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `flat_hash_map`.
|
||||
using Base::get_allocator;
|
||||
|
||||
// flat_hash_map::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `flat_hash_map`.
|
||||
using Base::hash_function;
|
||||
|
||||
// flat_hash_map::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq;
|
||||
};
|
||||
|
||||
namespace container_internal {
|
||||
|
||||
template <class K, class V>
|
||||
struct FlatHashMapPolicy {
|
||||
using slot_type = container_internal::slot_type<K, V>;
|
||||
using key_type = K;
|
||||
using mapped_type = V;
|
||||
using init_type = std::pair</*non const*/ key_type, mapped_type>;
|
||||
|
||||
template <class Allocator, class... Args>
|
||||
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
|
||||
slot_type::construct(alloc, slot, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void destroy(Allocator* alloc, slot_type* slot) {
|
||||
slot_type::destroy(alloc, slot);
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void transfer(Allocator* alloc, slot_type* new_slot,
|
||||
slot_type* old_slot) {
|
||||
slot_type::transfer(alloc, new_slot, old_slot);
|
||||
}
|
||||
|
||||
template <class F, class... Args>
|
||||
static decltype(absl::container_internal::DecomposePair(
|
||||
std::declval<F>(), std::declval<Args>()...))
|
||||
apply(F&& f, Args&&... args) {
|
||||
return absl::container_internal::DecomposePair(std::forward<F>(f),
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
static size_t space_used(const slot_type*) { return 0; }
|
||||
|
||||
static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
|
||||
|
||||
static V& value(std::pair<const K, V>* kv) { return kv->second; }
|
||||
static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_
|
241
absl/container/flat_hash_map_test.cc
Normal file
241
absl/container/flat_hash_map_test.cc
Normal file
|
@ -0,0 +1,241 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/flat_hash_map.h"
|
||||
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/unordered_map_constructor_test.h"
|
||||
#include "absl/container/internal/unordered_map_lookup_test.h"
|
||||
#include "absl/container/internal/unordered_map_modifiers_test.h"
|
||||
#include "absl/types/any.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
using ::absl::container_internal::hash_internal::Enum;
|
||||
using ::absl::container_internal::hash_internal::EnumClass;
|
||||
using ::testing::_;
|
||||
using ::testing::Pair;
|
||||
using ::testing::UnorderedElementsAre;
|
||||
|
||||
template <class K, class V>
|
||||
using Map =
|
||||
flat_hash_map<K, V, StatefulTestingHash, StatefulTestingEqual, Alloc<>>;
|
||||
|
||||
static_assert(!std::is_standard_layout<NonStandardLayout>(), "");
|
||||
|
||||
using MapTypes =
|
||||
::testing::Types<Map<int, int>, Map<std::string, int>, Map<Enum, std::string>,
|
||||
Map<EnumClass, int>, Map<int, NonStandardLayout>,
|
||||
Map<NonStandardLayout, int>>;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ConstructorTest, MapTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, LookupTest, MapTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ModifiersTest, MapTypes);
|
||||
|
||||
TEST(FlatHashMap, StandardLayout) {
|
||||
struct Int {
|
||||
explicit Int(size_t value) : value(value) {}
|
||||
Int() : value(0) { ADD_FAILURE(); }
|
||||
Int(const Int& other) : value(other.value) { ADD_FAILURE(); }
|
||||
Int(Int&&) = default;
|
||||
bool operator==(const Int& other) const { return value == other.value; }
|
||||
size_t value;
|
||||
};
|
||||
static_assert(std::is_standard_layout<Int>(), "");
|
||||
|
||||
struct Hash {
|
||||
size_t operator()(const Int& obj) const { return obj.value; }
|
||||
};
|
||||
|
||||
// Verify that neither the key nor the value get default-constructed or
|
||||
// copy-constructed.
|
||||
{
|
||||
flat_hash_map<Int, Int, Hash> m;
|
||||
m.try_emplace(Int(1), Int(2));
|
||||
m.try_emplace(Int(3), Int(4));
|
||||
m.erase(Int(1));
|
||||
m.rehash(2 * m.bucket_count());
|
||||
}
|
||||
{
|
||||
flat_hash_map<Int, Int, Hash> m;
|
||||
m.try_emplace(Int(1), Int(2));
|
||||
m.try_emplace(Int(3), Int(4));
|
||||
m.erase(Int(1));
|
||||
m.clear();
|
||||
}
|
||||
}
|
||||
|
||||
// gcc becomes unhappy if this is inside the method, so pull it out here.
|
||||
struct balast {};
|
||||
|
||||
TEST(FlatHashMap, IteratesMsan) {
|
||||
// Because SwissTable randomizes on pointer addresses, we keep old tables
|
||||
// around to ensure we don't reuse old memory.
|
||||
std::vector<absl::flat_hash_map<int, balast>> garbage;
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
absl::flat_hash_map<int, balast> t;
|
||||
for (int j = 0; j < 100; ++j) {
|
||||
t[j];
|
||||
for (const auto& p : t) EXPECT_THAT(p, Pair(_, _));
|
||||
}
|
||||
garbage.push_back(std::move(t));
|
||||
}
|
||||
}
|
||||
|
||||
// Demonstration of the "Lazy Key" pattern. This uses heterogenous insert to
|
||||
// avoid creating expensive key elements when the item is already present in the
|
||||
// map.
|
||||
struct LazyInt {
|
||||
explicit LazyInt(size_t value, int* tracker)
|
||||
: value(value), tracker(tracker) {}
|
||||
|
||||
explicit operator size_t() const {
|
||||
++*tracker;
|
||||
return value;
|
||||
}
|
||||
|
||||
size_t value;
|
||||
int* tracker;
|
||||
};
|
||||
|
||||
struct Hash {
|
||||
using is_transparent = void;
|
||||
int* tracker;
|
||||
size_t operator()(size_t obj) const {
|
||||
++*tracker;
|
||||
return obj;
|
||||
}
|
||||
size_t operator()(const LazyInt& obj) const {
|
||||
++*tracker;
|
||||
return obj.value;
|
||||
}
|
||||
};
|
||||
|
||||
struct Eq {
|
||||
using is_transparent = void;
|
||||
bool operator()(size_t lhs, size_t rhs) const {
|
||||
return lhs == rhs;
|
||||
}
|
||||
bool operator()(size_t lhs, const LazyInt& rhs) const {
|
||||
return lhs == rhs.value;
|
||||
}
|
||||
};
|
||||
|
||||
TEST(FlatHashMap, LazyKeyPattern) {
|
||||
// hashes are only guaranteed in opt mode, we use assertions to track internal
|
||||
// state that can cause extra calls to hash.
|
||||
int conversions = 0;
|
||||
int hashes = 0;
|
||||
flat_hash_map<size_t, size_t, Hash, Eq> m(0, Hash{&hashes});
|
||||
|
||||
m[LazyInt(1, &conversions)] = 1;
|
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 1)));
|
||||
EXPECT_EQ(conversions, 1);
|
||||
#ifdef NDEBUG
|
||||
EXPECT_EQ(hashes, 1);
|
||||
#endif
|
||||
|
||||
m[LazyInt(1, &conversions)] = 2;
|
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2)));
|
||||
EXPECT_EQ(conversions, 1);
|
||||
#ifdef NDEBUG
|
||||
EXPECT_EQ(hashes, 2);
|
||||
#endif
|
||||
|
||||
m.try_emplace(LazyInt(2, &conversions), 3);
|
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
|
||||
EXPECT_EQ(conversions, 2);
|
||||
#ifdef NDEBUG
|
||||
EXPECT_EQ(hashes, 3);
|
||||
#endif
|
||||
|
||||
m.try_emplace(LazyInt(2, &conversions), 4);
|
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
|
||||
EXPECT_EQ(conversions, 2);
|
||||
#ifdef NDEBUG
|
||||
EXPECT_EQ(hashes, 4);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(FlatHashMap, BitfieldArgument) {
|
||||
union {
|
||||
int n : 1;
|
||||
};
|
||||
n = 0;
|
||||
flat_hash_map<int, int> m;
|
||||
m.erase(n);
|
||||
m.count(n);
|
||||
m.prefetch(n);
|
||||
m.find(n);
|
||||
m.contains(n);
|
||||
m.equal_range(n);
|
||||
m.insert_or_assign(n, n);
|
||||
m.insert_or_assign(m.end(), n, n);
|
||||
m.try_emplace(n);
|
||||
m.try_emplace(m.end(), n);
|
||||
m.at(n);
|
||||
m[n];
|
||||
}
|
||||
|
||||
TEST(FlatHashMap, MergeExtractInsert) {
|
||||
// We can't test mutable keys, or non-copyable keys with flat_hash_map.
|
||||
// Test that the nodes have the proper API.
|
||||
absl::flat_hash_map<int, int> m = {{1, 7}, {2, 9}};
|
||||
auto node = m.extract(1);
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_EQ(node.key(), 1);
|
||||
EXPECT_EQ(node.mapped(), 7);
|
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(2, 9)));
|
||||
|
||||
node.mapped() = 17;
|
||||
m.insert(std::move(node));
|
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 17), Pair(2, 9)));
|
||||
}
|
||||
#if !defined(__ANDROID__) && !defined(__APPLE__) && !defined(__EMSCRIPTEN__)
|
||||
TEST(FlatHashMap, Any) {
|
||||
absl::flat_hash_map<int, absl::any> m;
|
||||
m.emplace(1, 7);
|
||||
auto it = m.find(1);
|
||||
ASSERT_NE(it, m.end());
|
||||
EXPECT_EQ(7, absl::any_cast<int>(it->second));
|
||||
|
||||
m.emplace(std::piecewise_construct, std::make_tuple(2), std::make_tuple(8));
|
||||
it = m.find(2);
|
||||
ASSERT_NE(it, m.end());
|
||||
EXPECT_EQ(8, absl::any_cast<int>(it->second));
|
||||
|
||||
m.emplace(std::piecewise_construct, std::make_tuple(3),
|
||||
std::make_tuple(absl::any(9)));
|
||||
it = m.find(3);
|
||||
ASSERT_NE(it, m.end());
|
||||
EXPECT_EQ(9, absl::any_cast<int>(it->second));
|
||||
|
||||
struct H {
|
||||
size_t operator()(const absl::any&) const { return 0; }
|
||||
};
|
||||
struct E {
|
||||
bool operator()(const absl::any&, const absl::any&) const { return true; }
|
||||
};
|
||||
absl::flat_hash_map<absl::any, int, H, E> m2;
|
||||
m2.emplace(1, 7);
|
||||
auto it2 = m2.find(1);
|
||||
ASSERT_NE(it2, m2.end());
|
||||
EXPECT_EQ(7, it2->second);
|
||||
}
|
||||
#endif // __ANDROID__
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
439
absl/container/flat_hash_set.h
Normal file
439
absl/container/flat_hash_set.h
Normal file
|
@ -0,0 +1,439 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: flat_hash_set.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_set<T>` is an unordered associative container designed to
|
||||
// be a more efficient replacement for `std::unordered_set`. Like
|
||||
// `unordered_set`, search, insertion, and deletion of set elements can be done
|
||||
// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
|
||||
// associative containers known as the collection of Abseil "Swiss tables")
|
||||
// contain other optimizations that result in both memory and computation
|
||||
// advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash set should be a set of type
|
||||
// `flat_hash_set`.
|
||||
#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
|
||||
#define ABSL_CONTAINER_FLAT_HASH_SET_H_
|
||||
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/base/macros.h"
|
||||
#include "absl/container/internal/container_memory.h"
|
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
|
||||
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
|
||||
#include "absl/memory/memory.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
template <typename T>
|
||||
struct FlatHashSetPolicy;
|
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::flat_hash_set
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_set<T>` is an unordered associative container which has
|
||||
// been optimized for both speed and memory footprint in most common use cases.
|
||||
// Its interface is similar to that of `std::unordered_set<T>` with the
|
||||
// following notable differences:
|
||||
//
|
||||
// * Requires keys that are CopyConstructible
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the set is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Invalidates any references and pointers to elements within the table after
|
||||
// `rehash()`.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash set.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
|
||||
// fundamental and Abseil types that support the `absl::Hash` framework have a
|
||||
// compatible equality operator for comparing insertions into `flat_hash_map`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
|
||||
// array to avoid memory indirection. Because a `flat_hash_set` is designed to
|
||||
// move data when rehashed, set keys will not retain pointer stability. If you
|
||||
// require pointer stability, consider using
|
||||
// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
|
||||
// you require pointer stability, consider `absl::node_hash_set` instead.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a flat hash set of three strings
|
||||
// absl::flat_hash_set<std::string> ducks =
|
||||
// {"huey", "dewey", "louie"};
|
||||
//
|
||||
// // Insert a new element into the flat hash set
|
||||
// ducks.insert("donald"};
|
||||
//
|
||||
// // Force a rehash of the flat hash set
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // See if "dewey" is present
|
||||
// if (ducks.contains("dewey")) {
|
||||
// std::cout << "We found dewey!" << std::endl;
|
||||
// }
|
||||
template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
|
||||
class Eq = absl::container_internal::hash_default_eq<T>,
|
||||
class Allocator = std::allocator<T>>
|
||||
class flat_hash_set
|
||||
: public absl::container_internal::raw_hash_set<
|
||||
absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
|
||||
using Base = typename flat_hash_set::raw_hash_set;
|
||||
|
||||
public:
|
||||
flat_hash_set() {}
|
||||
using Base::Base;
|
||||
|
||||
// flat_hash_set::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `flat_hash_set`.
|
||||
using Base::begin;
|
||||
|
||||
// flat_hash_set::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `flat_hash_set`.
|
||||
using Base::cbegin;
|
||||
|
||||
// flat_hash_set::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `flat_hash_set`.
|
||||
using Base::cend;
|
||||
|
||||
// flat_hash_set::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `flat_hash_set`.
|
||||
using Base::end;
|
||||
|
||||
// flat_hash_set::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `flat_hash_set`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::flat_hash_set` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity;
|
||||
|
||||
// flat_hash_set::empty()
|
||||
//
|
||||
// Returns whether or not the `flat_hash_set` is empty.
|
||||
using Base::empty;
|
||||
|
||||
// flat_hash_set::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `flat_hash_set` under current memory constraints. This value can be thought
|
||||
// of the largest value of `std::distance(begin(), end())` for a
|
||||
// `flat_hash_set<T>`.
|
||||
using Base::max_size;
|
||||
|
||||
// flat_hash_set::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `flat_hash_set`.
|
||||
using Base::size;
|
||||
|
||||
// flat_hash_set::clear()
|
||||
//
|
||||
// Removes all elements from the `flat_hash_set`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear;
|
||||
|
||||
// flat_hash_set::erase()
|
||||
//
|
||||
// Erases elements within the `flat_hash_set`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `flat_hash_set`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase;
|
||||
|
||||
// flat_hash_set::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `flat_hash_set`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const T& value):
|
||||
//
|
||||
// Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a bool denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
//
|
||||
// Inserts a moveable value into the `flat_hash_set`. Returns a pair
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a bool denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const T& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `flat_hash_set` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<T> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `flat_hash_set` we guarantee the first match is inserted.
|
||||
using Base::insert;
|
||||
|
||||
// flat_hash_set::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_set`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace;
|
||||
|
||||
// flat_hash_set::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_set`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint;
|
||||
|
||||
// flat_hash_set::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the element at the indicated position and returns a node handle
|
||||
// owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the element with the key matching the passed key value and
|
||||
// returns a node handle owning that extracted data. If the `flat_hash_set`
|
||||
// does not contain an element with a matching key, this function returns an
|
||||
// empty node handle.
|
||||
using Base::extract;
|
||||
|
||||
// flat_hash_set::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` flat hash map into this
|
||||
// `flat_hash_set`. If the destination `flat_hash_set` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge;
|
||||
|
||||
// flat_hash_set::swap(flat_hash_set& other)
|
||||
//
|
||||
// Exchanges the contents of this `flat_hash_set` with those of the `other`
|
||||
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `flat_hash_set` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the flat hash set's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap;
|
||||
|
||||
// flat_hash_set::rehash(count)
|
||||
//
|
||||
// Rehashes the `flat_hash_set`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
//
|
||||
// NOTE: unlike behavior in `std::unordered_set`, references are also
|
||||
// invalidated upon a `rehash()`.
|
||||
using Base::rehash;
|
||||
|
||||
// flat_hash_set::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `flat_hash_set` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve;
|
||||
|
||||
// flat_hash_set::contains()
|
||||
//
|
||||
// Determines whether an element comparing equal to the given `key` exists
|
||||
// within the `flat_hash_set`, returning `true` if so or `false` otherwise.
|
||||
using Base::contains;
|
||||
|
||||
// flat_hash_set::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements comparing equal to the given `key` within
|
||||
// the `flat_hash_set`. note that this function will return either `1` or `0`
|
||||
// since duplicate elements are not allowed within a `flat_hash_set`.
|
||||
using Base::count;
|
||||
|
||||
// flat_hash_set::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `flat_hash_set`.
|
||||
using Base::equal_range;
|
||||
|
||||
// flat_hash_set::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `flat_hash_set`.
|
||||
using Base::find;
|
||||
|
||||
// flat_hash_set::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `flat_hash_set`. Note that
|
||||
// because a flat hash map contains all elements within its internal storage,
|
||||
// this value simply equals the current capacity of the `flat_hash_set`.
|
||||
using Base::bucket_count;
|
||||
|
||||
// flat_hash_set::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `flat_hash_set` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor;
|
||||
|
||||
// flat_hash_set::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `flat_hash_set`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float flat_hash_set::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `flat_hash_set`.
|
||||
//
|
||||
// void flat_hash_set::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `flat_hash_set` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `flat_hash_set` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor;
|
||||
|
||||
// flat_hash_set::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `flat_hash_set`.
|
||||
using Base::get_allocator;
|
||||
|
||||
// flat_hash_set::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `flat_hash_set`.
|
||||
using Base::hash_function;
|
||||
|
||||
// flat_hash_set::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq;
|
||||
};
|
||||
|
||||
namespace container_internal {
|
||||
|
||||
template <class T>
|
||||
struct FlatHashSetPolicy {
|
||||
using slot_type = T;
|
||||
using key_type = T;
|
||||
using init_type = T;
|
||||
using constant_iterators = std::true_type;
|
||||
|
||||
template <class Allocator, class... Args>
|
||||
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, slot,
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void destroy(Allocator* alloc, slot_type* slot) {
|
||||
absl::allocator_traits<Allocator>::destroy(*alloc, slot);
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void transfer(Allocator* alloc, slot_type* new_slot,
|
||||
slot_type* old_slot) {
|
||||
construct(alloc, new_slot, std::move(*old_slot));
|
||||
destroy(alloc, old_slot);
|
||||
}
|
||||
|
||||
static T& element(slot_type* slot) { return *slot; }
|
||||
|
||||
template <class F, class... Args>
|
||||
static decltype(absl::container_internal::DecomposeValue(
|
||||
std::declval<F>(), std::declval<Args>()...))
|
||||
apply(F&& f, Args&&... args) {
|
||||
return absl::container_internal::DecomposeValue(
|
||||
std::forward<F>(f), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
static size_t space_used(const T*) { return 0; }
|
||||
};
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
|
126
absl/container/flat_hash_set_test.cc
Normal file
126
absl/container/flat_hash_set_test.cc
Normal file
|
@ -0,0 +1,126 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/unordered_set_constructor_test.h"
|
||||
#include "absl/container/internal/unordered_set_lookup_test.h"
|
||||
#include "absl/container/internal/unordered_set_modifiers_test.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::absl::container_internal::hash_internal::Enum;
|
||||
using ::absl::container_internal::hash_internal::EnumClass;
|
||||
using ::testing::Pointee;
|
||||
using ::testing::UnorderedElementsAre;
|
||||
using ::testing::UnorderedElementsAreArray;
|
||||
|
||||
template <class T>
|
||||
using Set =
|
||||
absl::flat_hash_set<T, StatefulTestingHash, StatefulTestingEqual, Alloc<T>>;
|
||||
|
||||
using SetTypes =
|
||||
::testing::Types<Set<int>, Set<std::string>, Set<Enum>, Set<EnumClass>>;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ConstructorTest, SetTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, LookupTest, SetTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ModifiersTest, SetTypes);
|
||||
|
||||
TEST(FlatHashSet, EmplaceString) {
|
||||
std::vector<std::string> v = {"a", "b"};
|
||||
absl::flat_hash_set<absl::string_view> hs(v.begin(), v.end());
|
||||
EXPECT_THAT(hs, UnorderedElementsAreArray(v));
|
||||
}
|
||||
|
||||
TEST(FlatHashSet, BitfieldArgument) {
|
||||
union {
|
||||
int n : 1;
|
||||
};
|
||||
n = 0;
|
||||
absl::flat_hash_set<int> s = {n};
|
||||
s.insert(n);
|
||||
s.insert(s.end(), n);
|
||||
s.insert({n});
|
||||
s.erase(n);
|
||||
s.count(n);
|
||||
s.prefetch(n);
|
||||
s.find(n);
|
||||
s.contains(n);
|
||||
s.equal_range(n);
|
||||
}
|
||||
|
||||
TEST(FlatHashSet, MergeExtractInsert) {
|
||||
struct Hash {
|
||||
size_t operator()(const std::unique_ptr<int>& p) const { return *p; }
|
||||
};
|
||||
struct Eq {
|
||||
bool operator()(const std::unique_ptr<int>& a,
|
||||
const std::unique_ptr<int>& b) const {
|
||||
return *a == *b;
|
||||
}
|
||||
};
|
||||
absl::flat_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2;
|
||||
set1.insert(absl::make_unique<int>(7));
|
||||
set1.insert(absl::make_unique<int>(17));
|
||||
|
||||
set2.insert(absl::make_unique<int>(7));
|
||||
set2.insert(absl::make_unique<int>(19));
|
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17)));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19)));
|
||||
|
||||
set1.merge(set2);
|
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19)));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
|
||||
|
||||
auto node = set1.extract(absl::make_unique<int>(7));
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_THAT(node.value(), Pointee(7));
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19)));
|
||||
|
||||
auto insert_result = set2.insert(std::move(node));
|
||||
EXPECT_FALSE(node);
|
||||
EXPECT_FALSE(insert_result.inserted);
|
||||
EXPECT_TRUE(insert_result.node);
|
||||
EXPECT_THAT(insert_result.node.value(), Pointee(7));
|
||||
EXPECT_EQ(**insert_result.position, 7);
|
||||
EXPECT_NE(insert_result.position->get(), insert_result.node.value().get());
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
|
||||
|
||||
node = set1.extract(absl::make_unique<int>(17));
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_THAT(node.value(), Pointee(17));
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19)));
|
||||
|
||||
node.value() = absl::make_unique<int>(23);
|
||||
|
||||
insert_result = set2.insert(std::move(node));
|
||||
EXPECT_FALSE(node);
|
||||
EXPECT_TRUE(insert_result.inserted);
|
||||
EXPECT_FALSE(insert_result.node);
|
||||
EXPECT_EQ(**insert_result.position, 23);
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
405
absl/container/internal/container_memory.h
Normal file
405
absl/container/internal/container_memory.h
Normal file
|
@ -0,0 +1,405 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|
||||
|
||||
#ifdef ADDRESS_SANITIZER
|
||||
#include <sanitizer/asan_interface.h>
|
||||
#endif
|
||||
|
||||
#ifdef MEMORY_SANITIZER
|
||||
#include <sanitizer/msan_interface.h>
|
||||
#endif
|
||||
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include <tuple>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/utility/utility.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
// Allocates at least n bytes aligned to the specified alignment.
|
||||
// Alignment must be a power of 2. It must be positive.
|
||||
//
|
||||
// Note that many allocators don't honor alignment requirements above certain
|
||||
// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
|
||||
// Allocate() doesn't apply alignment corrections. If the underlying allocator
|
||||
// returns insufficiently alignment pointer, that's what you are going to get.
|
||||
template <size_t Alignment, class Alloc>
|
||||
void* Allocate(Alloc* alloc, size_t n) {
|
||||
static_assert(Alignment > 0, "");
|
||||
assert(n && "n must be positive");
|
||||
struct alignas(Alignment) M {};
|
||||
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
|
||||
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
|
||||
A mem_alloc(*alloc);
|
||||
void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
|
||||
assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
|
||||
"allocator does not respect alignment");
|
||||
return p;
|
||||
}
|
||||
|
||||
// The pointer must have been previously obtained by calling
|
||||
// Allocate<Alignment>(alloc, n).
|
||||
template <size_t Alignment, class Alloc>
|
||||
void Deallocate(Alloc* alloc, void* p, size_t n) {
|
||||
static_assert(Alignment > 0, "");
|
||||
assert(n && "n must be positive");
|
||||
struct alignas(Alignment) M {};
|
||||
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
|
||||
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
|
||||
A mem_alloc(*alloc);
|
||||
AT::deallocate(mem_alloc, static_cast<M*>(p),
|
||||
(n + sizeof(M) - 1) / sizeof(M));
|
||||
}
|
||||
|
||||
namespace memory_internal {
|
||||
|
||||
// Constructs T into uninitialized storage pointed by `ptr` using the args
|
||||
// specified in the tuple.
|
||||
template <class Alloc, class T, class Tuple, size_t... I>
|
||||
void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
|
||||
absl::index_sequence<I...>) {
|
||||
absl::allocator_traits<Alloc>::construct(
|
||||
*alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
|
||||
}
|
||||
|
||||
template <class T, class F>
|
||||
struct WithConstructedImplF {
|
||||
template <class... Args>
|
||||
decltype(std::declval<F>()(std::declval<T>())) operator()(
|
||||
Args&&... args) const {
|
||||
return std::forward<F>(f)(T(std::forward<Args>(args)...));
|
||||
}
|
||||
F&& f;
|
||||
};
|
||||
|
||||
template <class T, class Tuple, size_t... Is, class F>
|
||||
decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
|
||||
Tuple&& t, absl::index_sequence<Is...>, F&& f) {
|
||||
return WithConstructedImplF<T, F>{std::forward<F>(f)}(
|
||||
std::get<Is>(std::forward<Tuple>(t))...);
|
||||
}
|
||||
|
||||
template <class T, size_t... Is>
|
||||
auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
|
||||
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
|
||||
return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
|
||||
}
|
||||
|
||||
// Returns a tuple of references to the elements of the input tuple. T must be a
|
||||
// tuple.
|
||||
template <class T>
|
||||
auto TupleRef(T&& t) -> decltype(
|
||||
TupleRefImpl(std::forward<T>(t),
|
||||
absl::make_index_sequence<
|
||||
std::tuple_size<typename std::decay<T>::type>::value>())) {
|
||||
return TupleRefImpl(
|
||||
std::forward<T>(t),
|
||||
absl::make_index_sequence<
|
||||
std::tuple_size<typename std::decay<T>::type>::value>());
|
||||
}
|
||||
|
||||
template <class F, class K, class V>
|
||||
decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
|
||||
std::declval<std::tuple<K>>(), std::declval<V>()))
|
||||
DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
|
||||
const auto& key = std::get<0>(p.first);
|
||||
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
|
||||
std::move(p.second));
|
||||
}
|
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// Constructs T into uninitialized storage pointed by `ptr` using the args
|
||||
// specified in the tuple.
|
||||
template <class Alloc, class T, class Tuple>
|
||||
void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
|
||||
memory_internal::ConstructFromTupleImpl(
|
||||
alloc, ptr, std::forward<Tuple>(t),
|
||||
absl::make_index_sequence<
|
||||
std::tuple_size<typename std::decay<Tuple>::type>::value>());
|
||||
}
|
||||
|
||||
// Constructs T using the args specified in the tuple and calls F with the
|
||||
// constructed value.
|
||||
template <class T, class Tuple, class F>
|
||||
decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
|
||||
Tuple&& t, F&& f) {
|
||||
return memory_internal::WithConstructedImpl<T>(
|
||||
std::forward<Tuple>(t),
|
||||
absl::make_index_sequence<
|
||||
std::tuple_size<typename std::decay<Tuple>::type>::value>(),
|
||||
std::forward<F>(f));
|
||||
}
|
||||
|
||||
// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
|
||||
// tuples with references to the passed arguments. The tuples contain
|
||||
// constructor arguments for the first and the second elements of the pair.
|
||||
//
|
||||
// The following two snippets are equivalent.
|
||||
//
|
||||
// 1. std::pair<F, S> p(args...);
|
||||
//
|
||||
// 2. auto a = PairArgs(args...);
|
||||
// std::pair<F, S> p(std::piecewise_construct,
|
||||
// std::move(p.first), std::move(p.second));
|
||||
inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
|
||||
template <class F, class S>
|
||||
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
|
||||
return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
|
||||
std::forward_as_tuple(std::forward<S>(s))};
|
||||
}
|
||||
template <class F, class S>
|
||||
std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
|
||||
const std::pair<F, S>& p) {
|
||||
return PairArgs(p.first, p.second);
|
||||
}
|
||||
template <class F, class S>
|
||||
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
|
||||
return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
|
||||
}
|
||||
template <class F, class S>
|
||||
auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
|
||||
-> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
|
||||
memory_internal::TupleRef(std::forward<S>(s)))) {
|
||||
return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
|
||||
memory_internal::TupleRef(std::forward<S>(s)));
|
||||
}
|
||||
|
||||
// A helper function for implementing apply() in map policies.
|
||||
template <class F, class... Args>
|
||||
auto DecomposePair(F&& f, Args&&... args)
|
||||
-> decltype(memory_internal::DecomposePairImpl(
|
||||
std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
|
||||
return memory_internal::DecomposePairImpl(
|
||||
std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
|
||||
}
|
||||
|
||||
// A helper function for implementing apply() in set policies.
|
||||
template <class F, class Arg>
|
||||
decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
|
||||
DecomposeValue(F&& f, Arg&& arg) {
|
||||
const auto& key = arg;
|
||||
return std::forward<F>(f)(key, std::forward<Arg>(arg));
|
||||
}
|
||||
|
||||
// Helper functions for asan and msan.
|
||||
inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
|
||||
#ifdef ADDRESS_SANITIZER
|
||||
ASAN_POISON_MEMORY_REGION(m, s);
|
||||
#endif
|
||||
#ifdef MEMORY_SANITIZER
|
||||
__msan_poison(m, s);
|
||||
#endif
|
||||
(void)m;
|
||||
(void)s;
|
||||
}
|
||||
|
||||
inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
|
||||
#ifdef ADDRESS_SANITIZER
|
||||
ASAN_UNPOISON_MEMORY_REGION(m, s);
|
||||
#endif
|
||||
#ifdef MEMORY_SANITIZER
|
||||
__msan_unpoison(m, s);
|
||||
#endif
|
||||
(void)m;
|
||||
(void)s;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void SanitizerPoisonObject(const T* object) {
|
||||
SanitizerPoisonMemoryRegion(object, sizeof(T));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void SanitizerUnpoisonObject(const T* object) {
|
||||
SanitizerUnpoisonMemoryRegion(object, sizeof(T));
|
||||
}
|
||||
|
||||
namespace memory_internal {
|
||||
|
||||
// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
|
||||
// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
|
||||
// offsetof(Pair, second) respectively. Otherwise they are -1.
|
||||
//
|
||||
// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
|
||||
// type, which is non-portable.
|
||||
template <class Pair, class = std::true_type>
|
||||
struct OffsetOf {
|
||||
static constexpr size_t kFirst = -1;
|
||||
static constexpr size_t kSecond = -1;
|
||||
};
|
||||
|
||||
template <class Pair>
|
||||
struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
|
||||
static constexpr size_t kFirst = offsetof(Pair, first);
|
||||
static constexpr size_t kSecond = offsetof(Pair, second);
|
||||
};
|
||||
|
||||
template <class K, class V>
|
||||
struct IsLayoutCompatible {
|
||||
private:
|
||||
struct Pair {
|
||||
K first;
|
||||
V second;
|
||||
};
|
||||
|
||||
// Is P layout-compatible with Pair?
|
||||
template <class P>
|
||||
static constexpr bool LayoutCompatible() {
|
||||
return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
|
||||
alignof(P) == alignof(Pair) &&
|
||||
memory_internal::OffsetOf<P>::kFirst ==
|
||||
memory_internal::OffsetOf<Pair>::kFirst &&
|
||||
memory_internal::OffsetOf<P>::kSecond ==
|
||||
memory_internal::OffsetOf<Pair>::kSecond;
|
||||
}
|
||||
|
||||
public:
|
||||
// Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
|
||||
// then it is safe to store them in a union and read from either.
|
||||
static constexpr bool value = std::is_standard_layout<K>() &&
|
||||
std::is_standard_layout<Pair>() &&
|
||||
memory_internal::OffsetOf<Pair>::kFirst == 0 &&
|
||||
LayoutCompatible<std::pair<K, V>>() &&
|
||||
LayoutCompatible<std::pair<const K, V>>();
|
||||
};
|
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// If kMutableKeys is false, only the value member is accessed.
|
||||
//
|
||||
// If kMutableKeys is true, key is accessed through all slots while value and
|
||||
// mutable_value are accessed only via INITIALIZED slots. Slots are created and
|
||||
// destroyed via mutable_value so that the key can be moved later.
|
||||
template <class K, class V>
|
||||
union slot_type {
|
||||
private:
|
||||
static void emplace(slot_type* slot) {
|
||||
// The construction of union doesn't do anything at runtime but it allows us
|
||||
// to access its members without violating aliasing rules.
|
||||
new (slot) slot_type;
|
||||
}
|
||||
// If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
|
||||
// or the other via slot_type. We are also free to access the key via
|
||||
// slot_type::key in this case.
|
||||
using kMutableKeys =
|
||||
std::integral_constant<bool,
|
||||
memory_internal::IsLayoutCompatible<K, V>::value>;
|
||||
|
||||
public:
|
||||
slot_type() {}
|
||||
~slot_type() = delete;
|
||||
using value_type = std::pair<const K, V>;
|
||||
using mutable_value_type = std::pair<K, V>;
|
||||
|
||||
value_type value;
|
||||
mutable_value_type mutable_value;
|
||||
K key;
|
||||
|
||||
template <class Allocator, class... Args>
|
||||
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
|
||||
emplace(slot);
|
||||
if (kMutableKeys::value) {
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
|
||||
std::forward<Args>(args)...);
|
||||
} else {
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
}
|
||||
|
||||
// Construct this slot by moving from another slot.
|
||||
template <class Allocator>
|
||||
static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
|
||||
emplace(slot);
|
||||
if (kMutableKeys::value) {
|
||||
absl::allocator_traits<Allocator>::construct(
|
||||
*alloc, &slot->mutable_value, std::move(other->mutable_value));
|
||||
} else {
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
|
||||
std::move(other->value));
|
||||
}
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void destroy(Allocator* alloc, slot_type* slot) {
|
||||
if (kMutableKeys::value) {
|
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
|
||||
} else {
|
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void transfer(Allocator* alloc, slot_type* new_slot,
|
||||
slot_type* old_slot) {
|
||||
emplace(new_slot);
|
||||
if (kMutableKeys::value) {
|
||||
absl::allocator_traits<Allocator>::construct(
|
||||
*alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
|
||||
} else {
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
|
||||
std::move(old_slot->value));
|
||||
}
|
||||
destroy(alloc, old_slot);
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
|
||||
if (kMutableKeys::value) {
|
||||
using std::swap;
|
||||
swap(a->mutable_value, b->mutable_value);
|
||||
} else {
|
||||
value_type tmp = std::move(a->value);
|
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
|
||||
std::move(b->value));
|
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
|
||||
std::move(tmp));
|
||||
}
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
|
||||
if (kMutableKeys::value) {
|
||||
dest->mutable_value = std::move(src->mutable_value);
|
||||
} else {
|
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
|
||||
absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
|
||||
std::move(src->value));
|
||||
}
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void move(Allocator* alloc, slot_type* first, slot_type* last,
|
||||
slot_type* result) {
|
||||
for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
|
||||
move(alloc, src, dest);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|
188
absl/container/internal/container_memory_test.cc
Normal file
188
absl/container/internal/container_memory_test.cc
Normal file
|
@ -0,0 +1,188 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/container_memory.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::testing::Pair;
|
||||
|
||||
TEST(Memory, AlignmentLargerThanBase) {
|
||||
std::allocator<int8_t> alloc;
|
||||
void* mem = Allocate<2>(&alloc, 3);
|
||||
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2);
|
||||
memcpy(mem, "abc", 3);
|
||||
Deallocate<2>(&alloc, mem, 3);
|
||||
}
|
||||
|
||||
TEST(Memory, AlignmentSmallerThanBase) {
|
||||
std::allocator<int64_t> alloc;
|
||||
void* mem = Allocate<2>(&alloc, 3);
|
||||
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2);
|
||||
memcpy(mem, "abc", 3);
|
||||
Deallocate<2>(&alloc, mem, 3);
|
||||
}
|
||||
|
||||
class Fixture : public ::testing::Test {
|
||||
using Alloc = std::allocator<std::string>;
|
||||
|
||||
public:
|
||||
Fixture() { ptr_ = std::allocator_traits<Alloc>::allocate(*alloc(), 1); }
|
||||
~Fixture() override {
|
||||
std::allocator_traits<Alloc>::destroy(*alloc(), ptr_);
|
||||
std::allocator_traits<Alloc>::deallocate(*alloc(), ptr_, 1);
|
||||
}
|
||||
std::string* ptr() { return ptr_; }
|
||||
Alloc* alloc() { return &alloc_; }
|
||||
|
||||
private:
|
||||
Alloc alloc_;
|
||||
std::string* ptr_;
|
||||
};
|
||||
|
||||
TEST_F(Fixture, ConstructNoArgs) {
|
||||
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple());
|
||||
EXPECT_EQ(*ptr(), "");
|
||||
}
|
||||
|
||||
TEST_F(Fixture, ConstructOneArg) {
|
||||
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple("abcde"));
|
||||
EXPECT_EQ(*ptr(), "abcde");
|
||||
}
|
||||
|
||||
TEST_F(Fixture, ConstructTwoArg) {
|
||||
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple(5, 'a'));
|
||||
EXPECT_EQ(*ptr(), "aaaaa");
|
||||
}
|
||||
|
||||
TEST(PairArgs, NoArgs) {
|
||||
EXPECT_THAT(PairArgs(),
|
||||
Pair(std::forward_as_tuple(), std::forward_as_tuple()));
|
||||
}
|
||||
|
||||
TEST(PairArgs, TwoArgs) {
|
||||
EXPECT_EQ(
|
||||
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
|
||||
PairArgs(1, 'A'));
|
||||
}
|
||||
|
||||
TEST(PairArgs, Pair) {
|
||||
EXPECT_EQ(
|
||||
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
|
||||
PairArgs(std::make_pair(1, 'A')));
|
||||
}
|
||||
|
||||
TEST(PairArgs, Piecewise) {
|
||||
EXPECT_EQ(
|
||||
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
|
||||
PairArgs(std::piecewise_construct, std::forward_as_tuple(1),
|
||||
std::forward_as_tuple('A')));
|
||||
}
|
||||
|
||||
TEST(WithConstructed, Simple) {
|
||||
EXPECT_EQ(1, WithConstructed<absl::string_view>(
|
||||
std::make_tuple(std::string("a")),
|
||||
[](absl::string_view str) { return str.size(); }));
|
||||
}
|
||||
|
||||
template <class F, class Arg>
|
||||
decltype(DecomposeValue(std::declval<F>(), std::declval<Arg>()))
|
||||
DecomposeValueImpl(int, F&& f, Arg&& arg) {
|
||||
return DecomposeValue(std::forward<F>(f), std::forward<Arg>(arg));
|
||||
}
|
||||
|
||||
template <class F, class Arg>
|
||||
const char* DecomposeValueImpl(char, F&& f, Arg&& arg) {
|
||||
return "not decomposable";
|
||||
}
|
||||
|
||||
template <class F, class Arg>
|
||||
decltype(DecomposeValueImpl(0, std::declval<F>(), std::declval<Arg>()))
|
||||
TryDecomposeValue(F&& f, Arg&& arg) {
|
||||
return DecomposeValueImpl(0, std::forward<F>(f), std::forward<Arg>(arg));
|
||||
}
|
||||
|
||||
TEST(DecomposeValue, Decomposable) {
|
||||
auto f = [](const int& x, int&& y) {
|
||||
EXPECT_EQ(&x, &y);
|
||||
EXPECT_EQ(42, x);
|
||||
return 'A';
|
||||
};
|
||||
EXPECT_EQ('A', TryDecomposeValue(f, 42));
|
||||
}
|
||||
|
||||
TEST(DecomposeValue, NotDecomposable) {
|
||||
auto f = [](void*) {
|
||||
ADD_FAILURE() << "Must not be called";
|
||||
return 'A';
|
||||
};
|
||||
EXPECT_STREQ("not decomposable", TryDecomposeValue(f, 42));
|
||||
}
|
||||
|
||||
template <class F, class... Args>
|
||||
decltype(DecomposePair(std::declval<F>(), std::declval<Args>()...))
|
||||
DecomposePairImpl(int, F&& f, Args&&... args) {
|
||||
return DecomposePair(std::forward<F>(f), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class F, class... Args>
|
||||
const char* DecomposePairImpl(char, F&& f, Args&&... args) {
|
||||
return "not decomposable";
|
||||
}
|
||||
|
||||
template <class F, class... Args>
|
||||
decltype(DecomposePairImpl(0, std::declval<F>(), std::declval<Args>()...))
|
||||
TryDecomposePair(F&& f, Args&&... args) {
|
||||
return DecomposePairImpl(0, std::forward<F>(f), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
TEST(DecomposePair, Decomposable) {
|
||||
auto f = [](const int& x, std::piecewise_construct_t, std::tuple<int&&> k,
|
||||
std::tuple<double>&& v) {
|
||||
EXPECT_EQ(&x, &std::get<0>(k));
|
||||
EXPECT_EQ(42, x);
|
||||
EXPECT_EQ(0.5, std::get<0>(v));
|
||||
return 'A';
|
||||
};
|
||||
EXPECT_EQ('A', TryDecomposePair(f, 42, 0.5));
|
||||
EXPECT_EQ('A', TryDecomposePair(f, std::make_pair(42, 0.5)));
|
||||
EXPECT_EQ('A', TryDecomposePair(f, std::piecewise_construct,
|
||||
std::make_tuple(42), std::make_tuple(0.5)));
|
||||
}
|
||||
|
||||
TEST(DecomposePair, NotDecomposable) {
|
||||
auto f = [](...) {
|
||||
ADD_FAILURE() << "Must not be called";
|
||||
return 'A';
|
||||
};
|
||||
EXPECT_STREQ("not decomposable",
|
||||
TryDecomposePair(f));
|
||||
EXPECT_STREQ("not decomposable",
|
||||
TryDecomposePair(f, std::piecewise_construct, std::make_tuple(),
|
||||
std::make_tuple(0.5)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
148
absl/container/internal/hash_function_defaults.h
Normal file
148
absl/container/internal/hash_function_defaults.h
Normal file
|
@ -0,0 +1,148 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Define the default Hash and Eq functions for SwissTable containers.
|
||||
//
|
||||
// std::hash<T> and std::equal_to<T> are not appropriate hash and equal
|
||||
// functions for SwissTable containers. There are two reasons for this.
|
||||
//
|
||||
// SwissTable containers are power of 2 sized containers:
|
||||
//
|
||||
// This means they use the lower bits of the hash value to find the slot for
|
||||
// each entry. The typical hash function for integral types is the identity.
|
||||
// This is a very weak hash function for SwissTable and any power of 2 sized
|
||||
// hashtable implementation which will lead to excessive collisions. For
|
||||
// SwissTable we use murmur3 style mixing to reduce collisions to a minimum.
|
||||
//
|
||||
// SwissTable containers support heterogeneous lookup:
|
||||
//
|
||||
// In order to make heterogeneous lookup work, hash and equal functions must be
|
||||
// polymorphic. At the same time they have to satisfy the same requirements the
|
||||
// C++ standard imposes on hash functions and equality operators. That is:
|
||||
//
|
||||
// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then
|
||||
// hash_default_hash<T>(a) must equal hash_default_hash<T>(b)
|
||||
//
|
||||
// For SwissTable containers this requirement is relaxed to allow a and b of
|
||||
// any and possibly different types. Note that like the standard the hash and
|
||||
// equal functions are still bound to T. This is important because some type U
|
||||
// can be hashed by/tested for equality differently depending on T. A notable
|
||||
// example is `const char*`. `const char*` is treated as a c-style string when
|
||||
// the hash function is hash<string> but as a pointer when the hash function is
|
||||
// hash<void*>.
|
||||
//
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
|
||||
#include "absl/base/config.h"
|
||||
#include "absl/hash/hash.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
// The hash of an object of type T is computed by using absl::Hash.
|
||||
template <class T, class E = void>
|
||||
struct HashEq {
|
||||
using Hash = absl::Hash<T>;
|
||||
using Eq = std::equal_to<T>;
|
||||
};
|
||||
|
||||
struct StringHash {
|
||||
using is_transparent = void;
|
||||
|
||||
size_t operator()(absl::string_view v) const {
|
||||
return absl::Hash<absl::string_view>{}(v);
|
||||
}
|
||||
};
|
||||
|
||||
// Supports heterogeneous lookup for string-like elements.
|
||||
struct StringHashEq {
|
||||
using Hash = StringHash;
|
||||
struct Eq {
|
||||
using is_transparent = void;
|
||||
bool operator()(absl::string_view lhs, absl::string_view rhs) const {
|
||||
return lhs == rhs;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
#if defined(HAS_GLOBAL_STRING)
|
||||
template <>
|
||||
struct HashEq<std::string> : StringHashEq {};
|
||||
#endif
|
||||
template <>
|
||||
struct HashEq<std::string> : StringHashEq {};
|
||||
template <>
|
||||
struct HashEq<absl::string_view> : StringHashEq {};
|
||||
|
||||
// Supports heterogeneous lookup for pointers and smart pointers.
|
||||
template <class T>
|
||||
struct HashEq<T*> {
|
||||
struct Hash {
|
||||
using is_transparent = void;
|
||||
template <class U>
|
||||
size_t operator()(const U& ptr) const {
|
||||
return absl::Hash<const T*>{}(HashEq::ToPtr(ptr));
|
||||
}
|
||||
};
|
||||
struct Eq {
|
||||
using is_transparent = void;
|
||||
template <class A, class B>
|
||||
bool operator()(const A& a, const B& b) const {
|
||||
return HashEq::ToPtr(a) == HashEq::ToPtr(b);
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
static const T* ToPtr(const T* ptr) { return ptr; }
|
||||
template <class U, class D>
|
||||
static const T* ToPtr(const std::unique_ptr<U, D>& ptr) {
|
||||
return ptr.get();
|
||||
}
|
||||
template <class U>
|
||||
static const T* ToPtr(const std::shared_ptr<U>& ptr) {
|
||||
return ptr.get();
|
||||
}
|
||||
};
|
||||
|
||||
template <class T, class D>
|
||||
struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {};
|
||||
template <class T>
|
||||
struct HashEq<std::shared_ptr<T>> : HashEq<T*> {};
|
||||
|
||||
// This header's visibility is restricted. If you need to access the default
|
||||
// hasher please use the container's ::hasher alias instead.
|
||||
//
|
||||
// Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher
|
||||
template <class T>
|
||||
using hash_default_hash = typename container_internal::HashEq<T>::Hash;
|
||||
|
||||
// This header's visibility is restricted. If you need to access the default
|
||||
// key equal please use the container's ::key_equal alias instead.
|
||||
//
|
||||
// Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal
|
||||
template <class T>
|
||||
using hash_default_eq = typename container_internal::HashEq<T>::Eq;
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
|
299
absl/container/internal/hash_function_defaults_test.cc
Normal file
299
absl/container/internal/hash_function_defaults_test.cc
Normal file
|
@ -0,0 +1,299 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_function_defaults.h"
|
||||
|
||||
#include <functional>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::testing::Types;
|
||||
|
||||
TEST(Eq, Int32) {
|
||||
hash_default_eq<int32_t> eq;
|
||||
EXPECT_TRUE(eq(1, 1u));
|
||||
EXPECT_TRUE(eq(1, char{1}));
|
||||
EXPECT_TRUE(eq(1, true));
|
||||
EXPECT_TRUE(eq(1, double{1.1}));
|
||||
EXPECT_FALSE(eq(1, char{2}));
|
||||
EXPECT_FALSE(eq(1, 2u));
|
||||
EXPECT_FALSE(eq(1, false));
|
||||
EXPECT_FALSE(eq(1, 2.));
|
||||
}
|
||||
|
||||
TEST(Hash, Int32) {
|
||||
hash_default_hash<int32_t> hash;
|
||||
auto h = hash(1);
|
||||
EXPECT_EQ(h, hash(1u));
|
||||
EXPECT_EQ(h, hash(char{1}));
|
||||
EXPECT_EQ(h, hash(true));
|
||||
EXPECT_EQ(h, hash(double{1.1}));
|
||||
EXPECT_NE(h, hash(2u));
|
||||
EXPECT_NE(h, hash(char{2}));
|
||||
EXPECT_NE(h, hash(false));
|
||||
EXPECT_NE(h, hash(2.));
|
||||
}
|
||||
|
||||
enum class MyEnum { A, B, C, D };
|
||||
|
||||
TEST(Eq, Enum) {
|
||||
hash_default_eq<MyEnum> eq;
|
||||
EXPECT_TRUE(eq(MyEnum::A, MyEnum::A));
|
||||
EXPECT_FALSE(eq(MyEnum::A, MyEnum::B));
|
||||
}
|
||||
|
||||
TEST(Hash, Enum) {
|
||||
hash_default_hash<MyEnum> hash;
|
||||
|
||||
for (MyEnum e : {MyEnum::A, MyEnum::B, MyEnum::C}) {
|
||||
auto h = hash(e);
|
||||
EXPECT_EQ(h, hash_default_hash<int>{}(static_cast<int>(e)));
|
||||
EXPECT_NE(h, hash(MyEnum::D));
|
||||
}
|
||||
}
|
||||
|
||||
using StringTypes = ::testing::Types<std::string, absl::string_view>;
|
||||
|
||||
template <class T>
|
||||
struct EqString : ::testing::Test {
|
||||
hash_default_eq<T> key_eq;
|
||||
};
|
||||
|
||||
TYPED_TEST_CASE(EqString, StringTypes);
|
||||
|
||||
template <class T>
|
||||
struct HashString : ::testing::Test {
|
||||
hash_default_hash<T> hasher;
|
||||
};
|
||||
|
||||
TYPED_TEST_CASE(HashString, StringTypes);
|
||||
|
||||
TYPED_TEST(EqString, Works) {
|
||||
auto eq = this->key_eq;
|
||||
EXPECT_TRUE(eq("a", "a"));
|
||||
EXPECT_TRUE(eq("a", absl::string_view("a")));
|
||||
EXPECT_TRUE(eq("a", std::string("a")));
|
||||
EXPECT_FALSE(eq("a", "b"));
|
||||
EXPECT_FALSE(eq("a", absl::string_view("b")));
|
||||
EXPECT_FALSE(eq("a", std::string("b")));
|
||||
}
|
||||
|
||||
TYPED_TEST(HashString, Works) {
|
||||
auto hash = this->hasher;
|
||||
auto h = hash("a");
|
||||
EXPECT_EQ(h, hash(absl::string_view("a")));
|
||||
EXPECT_EQ(h, hash(std::string("a")));
|
||||
EXPECT_NE(h, hash(absl::string_view("b")));
|
||||
EXPECT_NE(h, hash(std::string("b")));
|
||||
}
|
||||
|
||||
struct NoDeleter {
|
||||
template <class T>
|
||||
void operator()(const T* ptr) const {}
|
||||
};
|
||||
|
||||
using PointerTypes =
|
||||
::testing::Types<const int*, int*, std::unique_ptr<const int>,
|
||||
std::unique_ptr<const int, NoDeleter>,
|
||||
std::unique_ptr<int>, std::unique_ptr<int, NoDeleter>,
|
||||
std::shared_ptr<const int>, std::shared_ptr<int>>;
|
||||
|
||||
template <class T>
|
||||
struct EqPointer : ::testing::Test {
|
||||
hash_default_eq<T> key_eq;
|
||||
};
|
||||
|
||||
TYPED_TEST_CASE(EqPointer, PointerTypes);
|
||||
|
||||
template <class T>
|
||||
struct HashPointer : ::testing::Test {
|
||||
hash_default_hash<T> hasher;
|
||||
};
|
||||
|
||||
TYPED_TEST_CASE(HashPointer, PointerTypes);
|
||||
|
||||
TYPED_TEST(EqPointer, Works) {
|
||||
int dummy;
|
||||
auto eq = this->key_eq;
|
||||
auto sptr = std::make_shared<int>();
|
||||
std::shared_ptr<const int> csptr = sptr;
|
||||
int* ptr = sptr.get();
|
||||
const int* cptr = ptr;
|
||||
std::unique_ptr<int, NoDeleter> uptr(ptr);
|
||||
std::unique_ptr<const int, NoDeleter> cuptr(ptr);
|
||||
|
||||
EXPECT_TRUE(eq(ptr, cptr));
|
||||
EXPECT_TRUE(eq(ptr, sptr));
|
||||
EXPECT_TRUE(eq(ptr, uptr));
|
||||
EXPECT_TRUE(eq(ptr, csptr));
|
||||
EXPECT_TRUE(eq(ptr, cuptr));
|
||||
EXPECT_FALSE(eq(&dummy, cptr));
|
||||
EXPECT_FALSE(eq(&dummy, sptr));
|
||||
EXPECT_FALSE(eq(&dummy, uptr));
|
||||
EXPECT_FALSE(eq(&dummy, csptr));
|
||||
EXPECT_FALSE(eq(&dummy, cuptr));
|
||||
}
|
||||
|
||||
TEST(Hash, DerivedAndBase) {
|
||||
struct Base {};
|
||||
struct Derived : Base {};
|
||||
|
||||
hash_default_hash<Base*> hasher;
|
||||
|
||||
Base base;
|
||||
Derived derived;
|
||||
EXPECT_NE(hasher(&base), hasher(&derived));
|
||||
EXPECT_EQ(hasher(static_cast<Base*>(&derived)), hasher(&derived));
|
||||
|
||||
auto dp = std::make_shared<Derived>();
|
||||
EXPECT_EQ(hasher(static_cast<Base*>(dp.get())), hasher(dp));
|
||||
}
|
||||
|
||||
TEST(Hash, FunctionPointer) {
|
||||
using Func = int (*)();
|
||||
hash_default_hash<Func> hasher;
|
||||
hash_default_eq<Func> eq;
|
||||
|
||||
Func p1 = [] { return 1; }, p2 = [] { return 2; };
|
||||
EXPECT_EQ(hasher(p1), hasher(p1));
|
||||
EXPECT_TRUE(eq(p1, p1));
|
||||
|
||||
EXPECT_NE(hasher(p1), hasher(p2));
|
||||
EXPECT_FALSE(eq(p1, p2));
|
||||
}
|
||||
|
||||
TYPED_TEST(HashPointer, Works) {
|
||||
int dummy;
|
||||
auto hash = this->hasher;
|
||||
auto sptr = std::make_shared<int>();
|
||||
std::shared_ptr<const int> csptr = sptr;
|
||||
int* ptr = sptr.get();
|
||||
const int* cptr = ptr;
|
||||
std::unique_ptr<int, NoDeleter> uptr(ptr);
|
||||
std::unique_ptr<const int, NoDeleter> cuptr(ptr);
|
||||
|
||||
EXPECT_EQ(hash(ptr), hash(cptr));
|
||||
EXPECT_EQ(hash(ptr), hash(sptr));
|
||||
EXPECT_EQ(hash(ptr), hash(uptr));
|
||||
EXPECT_EQ(hash(ptr), hash(csptr));
|
||||
EXPECT_EQ(hash(ptr), hash(cuptr));
|
||||
EXPECT_NE(hash(&dummy), hash(cptr));
|
||||
EXPECT_NE(hash(&dummy), hash(sptr));
|
||||
EXPECT_NE(hash(&dummy), hash(uptr));
|
||||
EXPECT_NE(hash(&dummy), hash(csptr));
|
||||
EXPECT_NE(hash(&dummy), hash(cuptr));
|
||||
}
|
||||
|
||||
// Cartesian product of (string, std::string, absl::string_view)
|
||||
// with (string, std::string, absl::string_view, const char*).
|
||||
using StringTypesCartesianProduct = Types<
|
||||
// clang-format off
|
||||
|
||||
std::pair<std::string, std::string>,
|
||||
std::pair<std::string, absl::string_view>,
|
||||
std::pair<std::string, const char*>,
|
||||
|
||||
std::pair<absl::string_view, std::string>,
|
||||
std::pair<absl::string_view, absl::string_view>,
|
||||
std::pair<absl::string_view, const char*>>;
|
||||
// clang-format on
|
||||
|
||||
constexpr char kFirstString[] = "abc123";
|
||||
constexpr char kSecondString[] = "ijk456";
|
||||
|
||||
template <typename T>
|
||||
struct StringLikeTest : public ::testing::Test {
|
||||
typename T::first_type a1{kFirstString};
|
||||
typename T::second_type b1{kFirstString};
|
||||
typename T::first_type a2{kSecondString};
|
||||
typename T::second_type b2{kSecondString};
|
||||
hash_default_eq<typename T::first_type> eq;
|
||||
hash_default_hash<typename T::first_type> hash;
|
||||
};
|
||||
|
||||
TYPED_TEST_CASE_P(StringLikeTest);
|
||||
|
||||
TYPED_TEST_P(StringLikeTest, Eq) {
|
||||
EXPECT_TRUE(this->eq(this->a1, this->b1));
|
||||
EXPECT_TRUE(this->eq(this->b1, this->a1));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(StringLikeTest, NotEq) {
|
||||
EXPECT_FALSE(this->eq(this->a1, this->b2));
|
||||
EXPECT_FALSE(this->eq(this->b2, this->a1));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(StringLikeTest, HashEq) {
|
||||
EXPECT_EQ(this->hash(this->a1), this->hash(this->b1));
|
||||
EXPECT_EQ(this->hash(this->a2), this->hash(this->b2));
|
||||
// It would be a poor hash function which collides on these strings.
|
||||
EXPECT_NE(this->hash(this->a1), this->hash(this->b2));
|
||||
}
|
||||
|
||||
TYPED_TEST_CASE(StringLikeTest, StringTypesCartesianProduct);
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
enum Hash : size_t {
|
||||
kStd = 0x2, // std::hash
|
||||
#ifdef _MSC_VER
|
||||
kExtension = kStd, // In MSVC, std::hash == ::hash
|
||||
#else // _MSC_VER
|
||||
kExtension = 0x4, // ::hash (GCC extension)
|
||||
#endif // _MSC_VER
|
||||
};
|
||||
|
||||
// H is a bitmask of Hash enumerations.
|
||||
// Hashable<H> is hashable via all means specified in H.
|
||||
template <int H>
|
||||
struct Hashable {
|
||||
static constexpr bool HashableBy(Hash h) { return h & H; }
|
||||
};
|
||||
|
||||
namespace std {
|
||||
template <int H>
|
||||
struct hash<Hashable<H>> {
|
||||
template <class E = Hashable<H>,
|
||||
class = typename std::enable_if<E::HashableBy(kStd)>::type>
|
||||
size_t operator()(E) const {
|
||||
return kStd;
|
||||
}
|
||||
};
|
||||
} // namespace std
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
template <class T>
|
||||
size_t Hash(const T& v) {
|
||||
return hash_default_hash<T>()(v);
|
||||
}
|
||||
|
||||
TEST(Delegate, HashDispatch) {
|
||||
EXPECT_EQ(Hash(kStd), Hash(Hashable<kStd>()));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
72
absl/container/internal/hash_generator_testing.cc
Normal file
72
absl/container/internal/hash_generator_testing.cc
Normal file
|
@ -0,0 +1,72 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
|
||||
#include <deque>
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace hash_internal {
|
||||
namespace {
|
||||
|
||||
class RandomDeviceSeedSeq {
|
||||
public:
|
||||
using result_type = typename std::random_device::result_type;
|
||||
|
||||
template <class Iterator>
|
||||
void generate(Iterator start, Iterator end) {
|
||||
while (start != end) {
|
||||
*start = gen_();
|
||||
++start;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::random_device gen_;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
std::mt19937_64* GetThreadLocalRng() {
|
||||
RandomDeviceSeedSeq seed_seq;
|
||||
thread_local auto* rng = new std::mt19937_64(seed_seq);
|
||||
return rng;
|
||||
}
|
||||
|
||||
std::string Generator<std::string>::operator()() const {
|
||||
// NOLINTNEXTLINE(runtime/int)
|
||||
std::uniform_int_distribution<short> chars(0x20, 0x7E);
|
||||
std::string res;
|
||||
res.resize(32);
|
||||
std::generate(res.begin(), res.end(),
|
||||
[&]() { return chars(*GetThreadLocalRng()); });
|
||||
return res;
|
||||
}
|
||||
|
||||
absl::string_view Generator<absl::string_view>::operator()() const {
|
||||
static auto* arena = new std::deque<std::string>();
|
||||
// NOLINTNEXTLINE(runtime/int)
|
||||
std::uniform_int_distribution<short> chars(0x20, 0x7E);
|
||||
arena->emplace_back();
|
||||
auto& res = arena->back();
|
||||
res.resize(32);
|
||||
std::generate(res.begin(), res.end(),
|
||||
[&]() { return chars(*GetThreadLocalRng()); });
|
||||
return res;
|
||||
}
|
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
150
absl/container/internal/hash_generator_testing.h
Normal file
150
absl/container/internal/hash_generator_testing.h
Normal file
|
@ -0,0 +1,150 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Generates random values for testing. Specialized only for the few types we
|
||||
// care about.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <random>
|
||||
#include <tuple>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace hash_internal {
|
||||
namespace generator_internal {
|
||||
|
||||
template <class Container, class = void>
|
||||
struct IsMap : std::false_type {};
|
||||
|
||||
template <class Map>
|
||||
struct IsMap<Map, absl::void_t<typename Map::mapped_type>> : std::true_type {};
|
||||
|
||||
} // namespace generator_internal
|
||||
|
||||
std::mt19937_64* GetThreadLocalRng();
|
||||
|
||||
enum Enum {
|
||||
kEnumEmpty,
|
||||
kEnumDeleted,
|
||||
};
|
||||
|
||||
enum class EnumClass : uint64_t {
|
||||
kEmpty,
|
||||
kDeleted,
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& o, const EnumClass& ec) {
|
||||
return o << static_cast<uint64_t>(ec);
|
||||
}
|
||||
|
||||
template <class T, class E = void>
|
||||
struct Generator;
|
||||
|
||||
template <class T>
|
||||
struct Generator<T, typename std::enable_if<std::is_integral<T>::value>::type> {
|
||||
T operator()() const {
|
||||
std::uniform_int_distribution<T> dist;
|
||||
return dist(*GetThreadLocalRng());
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct Generator<Enum> {
|
||||
Enum operator()() const {
|
||||
std::uniform_int_distribution<typename std::underlying_type<Enum>::type>
|
||||
dist;
|
||||
while (true) {
|
||||
auto variate = dist(*GetThreadLocalRng());
|
||||
if (variate != kEnumEmpty && variate != kEnumDeleted)
|
||||
return static_cast<Enum>(variate);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct Generator<EnumClass> {
|
||||
EnumClass operator()() const {
|
||||
std::uniform_int_distribution<
|
||||
typename std::underlying_type<EnumClass>::type>
|
||||
dist;
|
||||
while (true) {
|
||||
EnumClass variate = static_cast<EnumClass>(dist(*GetThreadLocalRng()));
|
||||
if (variate != EnumClass::kEmpty && variate != EnumClass::kDeleted)
|
||||
return static_cast<EnumClass>(variate);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct Generator<std::string> {
|
||||
std::string operator()() const;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct Generator<absl::string_view> {
|
||||
absl::string_view operator()() const;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct Generator<NonStandardLayout> {
|
||||
NonStandardLayout operator()() const {
|
||||
return NonStandardLayout(Generator<std::string>()());
|
||||
}
|
||||
};
|
||||
|
||||
template <class K, class V>
|
||||
struct Generator<std::pair<K, V>> {
|
||||
std::pair<K, V> operator()() const {
|
||||
return std::pair<K, V>(Generator<typename std::decay<K>::type>()(),
|
||||
Generator<typename std::decay<V>::type>()());
|
||||
}
|
||||
};
|
||||
|
||||
template <class... Ts>
|
||||
struct Generator<std::tuple<Ts...>> {
|
||||
std::tuple<Ts...> operator()() const {
|
||||
return std::tuple<Ts...>(Generator<typename std::decay<Ts>::type>()()...);
|
||||
}
|
||||
};
|
||||
|
||||
template <class U>
|
||||
struct Generator<U, absl::void_t<decltype(std::declval<U&>().key()),
|
||||
decltype(std::declval<U&>().value())>>
|
||||
: Generator<std::pair<
|
||||
typename std::decay<decltype(std::declval<U&>().key())>::type,
|
||||
typename std::decay<decltype(std::declval<U&>().value())>::type>> {};
|
||||
|
||||
template <class Container>
|
||||
using GeneratedType = decltype(
|
||||
std::declval<const Generator<
|
||||
typename std::conditional<generator_internal::IsMap<Container>::value,
|
||||
typename Container::value_type,
|
||||
typename Container::key_type>::type>&>()());
|
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
|
178
absl/container/internal/hash_policy_testing.h
Normal file
178
absl/container/internal/hash_policy_testing.h
Normal file
|
@ -0,0 +1,178 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Utilities to help tests verify that hash tables properly handle stateful
|
||||
// allocators and hash functions.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
|
||||
|
||||
#include <cstdlib>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <ostream>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/hash/hash.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace hash_testing_internal {
|
||||
|
||||
template <class Derived>
|
||||
struct WithId {
|
||||
WithId() : id_(next_id<Derived>()) {}
|
||||
WithId(const WithId& that) : id_(that.id_) {}
|
||||
WithId(WithId&& that) : id_(that.id_) { that.id_ = 0; }
|
||||
WithId& operator=(const WithId& that) {
|
||||
id_ = that.id_;
|
||||
return *this;
|
||||
}
|
||||
WithId& operator=(WithId&& that) {
|
||||
id_ = that.id_;
|
||||
that.id_ = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
size_t id() const { return id_; }
|
||||
|
||||
friend bool operator==(const WithId& a, const WithId& b) {
|
||||
return a.id_ == b.id_;
|
||||
}
|
||||
friend bool operator!=(const WithId& a, const WithId& b) { return !(a == b); }
|
||||
|
||||
protected:
|
||||
explicit WithId(size_t id) : id_(id) {}
|
||||
|
||||
private:
|
||||
size_t id_;
|
||||
|
||||
template <class T>
|
||||
static size_t next_id() {
|
||||
// 0 is reserved for moved from state.
|
||||
static size_t gId = 1;
|
||||
return gId++;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace hash_testing_internal
|
||||
|
||||
struct NonStandardLayout {
|
||||
NonStandardLayout() {}
|
||||
explicit NonStandardLayout(std::string s) : value(std::move(s)) {}
|
||||
virtual ~NonStandardLayout() {}
|
||||
|
||||
friend bool operator==(const NonStandardLayout& a,
|
||||
const NonStandardLayout& b) {
|
||||
return a.value == b.value;
|
||||
}
|
||||
friend bool operator!=(const NonStandardLayout& a,
|
||||
const NonStandardLayout& b) {
|
||||
return a.value != b.value;
|
||||
}
|
||||
|
||||
template <typename H>
|
||||
friend H AbslHashValue(H h, const NonStandardLayout& v) {
|
||||
return H::combine(std::move(h), v.value);
|
||||
}
|
||||
|
||||
std::string value;
|
||||
};
|
||||
|
||||
struct StatefulTestingHash
|
||||
: absl::container_internal::hash_testing_internal::WithId<
|
||||
StatefulTestingHash> {
|
||||
template <class T>
|
||||
size_t operator()(const T& t) const {
|
||||
return absl::Hash<T>{}(t);
|
||||
}
|
||||
};
|
||||
|
||||
struct StatefulTestingEqual
|
||||
: absl::container_internal::hash_testing_internal::WithId<
|
||||
StatefulTestingEqual> {
|
||||
template <class T, class U>
|
||||
bool operator()(const T& t, const U& u) const {
|
||||
return t == u;
|
||||
}
|
||||
};
|
||||
|
||||
// It is expected that Alloc() == Alloc() for all allocators so we cannot use
|
||||
// WithId base. We need to explicitly assign ids.
|
||||
template <class T = int>
|
||||
struct Alloc : std::allocator<T> {
|
||||
using propagate_on_container_swap = std::true_type;
|
||||
|
||||
// Using old paradigm for this to ensure compatibility.
|
||||
explicit Alloc(size_t id = 0) : id_(id) {}
|
||||
|
||||
Alloc(const Alloc&) = default;
|
||||
Alloc& operator=(const Alloc&) = default;
|
||||
|
||||
template <class U>
|
||||
Alloc(const Alloc<U>& that) : std::allocator<T>(that), id_(that.id()) {}
|
||||
|
||||
template <class U>
|
||||
struct rebind {
|
||||
using other = Alloc<U>;
|
||||
};
|
||||
|
||||
size_t id() const { return id_; }
|
||||
|
||||
friend bool operator==(const Alloc& a, const Alloc& b) {
|
||||
return a.id_ == b.id_;
|
||||
}
|
||||
friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); }
|
||||
|
||||
private:
|
||||
size_t id_ = std::numeric_limits<size_t>::max();
|
||||
};
|
||||
|
||||
template <class Map>
|
||||
auto items(const Map& m) -> std::vector<
|
||||
std::pair<typename Map::key_type, typename Map::mapped_type>> {
|
||||
using std::get;
|
||||
std::vector<std::pair<typename Map::key_type, typename Map::mapped_type>> res;
|
||||
res.reserve(m.size());
|
||||
for (const auto& v : m) res.emplace_back(get<0>(v), get<1>(v));
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class Set>
|
||||
auto keys(const Set& s)
|
||||
-> std::vector<typename std::decay<typename Set::key_type>::type> {
|
||||
std::vector<typename std::decay<typename Set::key_type>::type> res;
|
||||
res.reserve(s.size());
|
||||
for (const auto& v : s) res.emplace_back(v);
|
||||
return res;
|
||||
}
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
// ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS is false for glibcxx versions
|
||||
// where the unordered containers are missing certain constructors that
|
||||
// take allocator arguments. This test is defined ad-hoc for the platforms
|
||||
// we care about (notably Crosstool 17) because libstdcxx's useless
|
||||
// versioning scheme precludes a more principled solution.
|
||||
#if defined(__GLIBCXX__) && __GLIBCXX__ <= 20140425
|
||||
#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 0
|
||||
#else
|
||||
#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 1
|
||||
#endif
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
|
43
absl/container/internal/hash_policy_testing_test.cc
Normal file
43
absl/container/internal/hash_policy_testing_test.cc
Normal file
|
@ -0,0 +1,43 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
TEST(_, Hash) {
|
||||
StatefulTestingHash h1;
|
||||
EXPECT_EQ(1, h1.id());
|
||||
StatefulTestingHash h2;
|
||||
EXPECT_EQ(2, h2.id());
|
||||
StatefulTestingHash h1c(h1);
|
||||
EXPECT_EQ(1, h1c.id());
|
||||
StatefulTestingHash h2m(std::move(h2));
|
||||
EXPECT_EQ(2, h2m.id());
|
||||
EXPECT_EQ(0, h2.id());
|
||||
StatefulTestingHash h3;
|
||||
EXPECT_EQ(3, h3.id());
|
||||
h3 = StatefulTestingHash();
|
||||
EXPECT_EQ(4, h3.id());
|
||||
h3 = std::move(h1);
|
||||
EXPECT_EQ(1, h3.id());
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
189
absl/container/internal/hash_policy_traits.h
Normal file
189
absl/container/internal/hash_policy_traits.h
Normal file
|
@ -0,0 +1,189 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/meta/type_traits.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
// Defines how slots are initialized/destroyed/moved.
|
||||
template <class Policy, class = void>
|
||||
struct hash_policy_traits {
|
||||
private:
|
||||
struct ReturnKey {
|
||||
// We return `Key` here.
|
||||
// When Key=T&, we forward the lvalue reference.
|
||||
// When Key=T, we return by value to avoid a dangling reference.
|
||||
// eg, for string_hash_map.
|
||||
template <class Key, class... Args>
|
||||
Key operator()(Key&& k, const Args&...) const {
|
||||
return std::forward<Key>(k);
|
||||
}
|
||||
};
|
||||
|
||||
template <class P = Policy, class = void>
|
||||
struct ConstantIteratorsImpl : std::false_type {};
|
||||
|
||||
template <class P>
|
||||
struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>>
|
||||
: P::constant_iterators {};
|
||||
|
||||
public:
|
||||
// The actual object stored in the hash table.
|
||||
using slot_type = typename Policy::slot_type;
|
||||
|
||||
// The type of the keys stored in the hashtable.
|
||||
using key_type = typename Policy::key_type;
|
||||
|
||||
// The argument type for insertions into the hashtable. This is different
|
||||
// from value_type for increased performance. See initializer_list constructor
|
||||
// and insert() member functions for more details.
|
||||
using init_type = typename Policy::init_type;
|
||||
|
||||
using reference = decltype(Policy::element(std::declval<slot_type*>()));
|
||||
using pointer = typename std::remove_reference<reference>::type*;
|
||||
using value_type = typename std::remove_reference<reference>::type;
|
||||
|
||||
// Policies can set this variable to tell raw_hash_set that all iterators
|
||||
// should be constant, even `iterator`. This is useful for set-like
|
||||
// containers.
|
||||
// Defaults to false if not provided by the policy.
|
||||
using constant_iterators = ConstantIteratorsImpl<>;
|
||||
|
||||
// PRECONDITION: `slot` is UNINITIALIZED
|
||||
// POSTCONDITION: `slot` is INITIALIZED
|
||||
template <class Alloc, class... Args>
|
||||
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
|
||||
Policy::construct(alloc, slot, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
// PRECONDITION: `slot` is INITIALIZED
|
||||
// POSTCONDITION: `slot` is UNINITIALIZED
|
||||
template <class Alloc>
|
||||
static void destroy(Alloc* alloc, slot_type* slot) {
|
||||
Policy::destroy(alloc, slot);
|
||||
}
|
||||
|
||||
// Transfers the `old_slot` to `new_slot`. Any memory allocated by the
|
||||
// allocator inside `old_slot` to `new_slot` can be transfered.
|
||||
//
|
||||
// OPTIONAL: defaults to:
|
||||
//
|
||||
// clone(new_slot, std::move(*old_slot));
|
||||
// destroy(old_slot);
|
||||
//
|
||||
// PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED
|
||||
// POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is
|
||||
// UNINITIALIZED
|
||||
template <class Alloc>
|
||||
static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) {
|
||||
transfer_impl(alloc, new_slot, old_slot, 0);
|
||||
}
|
||||
|
||||
// PRECONDITION: `slot` is INITIALIZED
|
||||
// POSTCONDITION: `slot` is INITIALIZED
|
||||
template <class P = Policy>
|
||||
static auto element(slot_type* slot) -> decltype(P::element(slot)) {
|
||||
return P::element(slot);
|
||||
}
|
||||
|
||||
// Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`.
|
||||
//
|
||||
// If `slot` is nullptr, returns the constant amount of memory owned by any
|
||||
// full slot or -1 if slots own variable amounts of memory.
|
||||
//
|
||||
// PRECONDITION: `slot` is INITIALIZED or nullptr
|
||||
template <class P = Policy>
|
||||
static size_t space_used(const slot_type* slot) {
|
||||
return P::space_used(slot);
|
||||
}
|
||||
|
||||
// Provides generalized access to the key for elements, both for elements in
|
||||
// the table and for elements that have not yet been inserted (or even
|
||||
// constructed). We would like an API that allows us to say: `key(args...)`
|
||||
// but we cannot do that for all cases, so we use this more general API that
|
||||
// can be used for many things, including the following:
|
||||
//
|
||||
// - Given an element in a table, get its key.
|
||||
// - Given an element initializer, get its key.
|
||||
// - Given `emplace()` arguments, get the element key.
|
||||
//
|
||||
// Implementations of this must adhere to a very strict technical
|
||||
// specification around aliasing and consuming arguments:
|
||||
//
|
||||
// Let `value_type` be the result type of `element()` without ref- and
|
||||
// cv-qualifiers. The first argument is a functor, the rest are constructor
|
||||
// arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where
|
||||
// `k` is the element key, and `xs...` are the new constructor arguments for
|
||||
// `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias
|
||||
// `ts...`. The key won't be touched once `xs...` are used to construct an
|
||||
// element; `ts...` won't be touched at all, which allows `apply()` to consume
|
||||
// any rvalues among them.
|
||||
//
|
||||
// If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not
|
||||
// trigger a hard compile error unless it originates from `f`. In other words,
|
||||
// `Policy::apply()` must be SFINAE-friendly. If `value_type` is not
|
||||
// constructible from `Ts&&...`, either SFINAE or a hard compile error is OK.
|
||||
//
|
||||
// If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`,
|
||||
// `Policy::apply()` must work. A compile error is not allowed, SFINAE or not.
|
||||
template <class F, class... Ts, class P = Policy>
|
||||
static auto apply(F&& f, Ts&&... ts)
|
||||
-> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) {
|
||||
return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...);
|
||||
}
|
||||
|
||||
// Returns the "key" portion of the slot.
|
||||
// Used for node handle manipulation.
|
||||
template <class P = Policy>
|
||||
static auto key(slot_type* slot)
|
||||
-> decltype(P::apply(ReturnKey(), element(slot))) {
|
||||
return P::apply(ReturnKey(), element(slot));
|
||||
}
|
||||
|
||||
// Returns the "value" (as opposed to the "key") portion of the element. Used
|
||||
// by maps to implement `operator[]`, `at()` and `insert_or_assign()`.
|
||||
template <class T, class P = Policy>
|
||||
static auto value(T* elem) -> decltype(P::value(elem)) {
|
||||
return P::value(elem);
|
||||
}
|
||||
|
||||
private:
|
||||
// Use auto -> decltype as an enabler.
|
||||
template <class Alloc, class P = Policy>
|
||||
static auto transfer_impl(Alloc* alloc, slot_type* new_slot,
|
||||
slot_type* old_slot, int)
|
||||
-> decltype((void)P::transfer(alloc, new_slot, old_slot)) {
|
||||
P::transfer(alloc, new_slot, old_slot);
|
||||
}
|
||||
template <class Alloc>
|
||||
static void transfer_impl(Alloc* alloc, slot_type* new_slot,
|
||||
slot_type* old_slot, char) {
|
||||
construct(alloc, new_slot, std::move(element(old_slot)));
|
||||
destroy(alloc, old_slot);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
|
142
absl/container/internal/hash_policy_traits_test.cc
Normal file
142
absl/container/internal/hash_policy_traits_test.cc
Normal file
|
@ -0,0 +1,142 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_policy_traits.h"
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <new>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::testing::MockFunction;
|
||||
using ::testing::Return;
|
||||
using ::testing::ReturnRef;
|
||||
|
||||
using Alloc = std::allocator<int>;
|
||||
using Slot = int;
|
||||
|
||||
struct PolicyWithoutOptionalOps {
|
||||
using slot_type = Slot;
|
||||
using key_type = Slot;
|
||||
using init_type = Slot;
|
||||
|
||||
static std::function<void(void*, Slot*, Slot)> construct;
|
||||
static std::function<void(void*, Slot*)> destroy;
|
||||
|
||||
static std::function<Slot&(Slot*)> element;
|
||||
static int apply(int v) { return apply_impl(v); }
|
||||
static std::function<int(int)> apply_impl;
|
||||
static std::function<Slot&(Slot*)> value;
|
||||
};
|
||||
|
||||
std::function<void(void*, Slot*, Slot)> PolicyWithoutOptionalOps::construct;
|
||||
std::function<void(void*, Slot*)> PolicyWithoutOptionalOps::destroy;
|
||||
|
||||
std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::element;
|
||||
std::function<int(int)> PolicyWithoutOptionalOps::apply_impl;
|
||||
std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::value;
|
||||
|
||||
struct PolicyWithOptionalOps : PolicyWithoutOptionalOps {
|
||||
static std::function<void(void*, Slot*, Slot*)> transfer;
|
||||
};
|
||||
|
||||
std::function<void(void*, Slot*, Slot*)> PolicyWithOptionalOps::transfer;
|
||||
|
||||
struct Test : ::testing::Test {
|
||||
Test() {
|
||||
PolicyWithoutOptionalOps::construct = [&](void* a1, Slot* a2, Slot a3) {
|
||||
construct.Call(a1, a2, std::move(a3));
|
||||
};
|
||||
PolicyWithoutOptionalOps::destroy = [&](void* a1, Slot* a2) {
|
||||
destroy.Call(a1, a2);
|
||||
};
|
||||
|
||||
PolicyWithoutOptionalOps::element = [&](Slot* a1) -> Slot& {
|
||||
return element.Call(a1);
|
||||
};
|
||||
PolicyWithoutOptionalOps::apply_impl = [&](int a1) -> int {
|
||||
return apply.Call(a1);
|
||||
};
|
||||
PolicyWithoutOptionalOps::value = [&](Slot* a1) -> Slot& {
|
||||
return value.Call(a1);
|
||||
};
|
||||
|
||||
PolicyWithOptionalOps::transfer = [&](void* a1, Slot* a2, Slot* a3) {
|
||||
return transfer.Call(a1, a2, a3);
|
||||
};
|
||||
}
|
||||
|
||||
std::allocator<int> alloc;
|
||||
int a = 53;
|
||||
|
||||
MockFunction<void(void*, Slot*, Slot)> construct;
|
||||
MockFunction<void(void*, Slot*)> destroy;
|
||||
|
||||
MockFunction<Slot&(Slot*)> element;
|
||||
MockFunction<int(int)> apply;
|
||||
MockFunction<Slot&(Slot*)> value;
|
||||
|
||||
MockFunction<void(void*, Slot*, Slot*)> transfer;
|
||||
};
|
||||
|
||||
TEST_F(Test, construct) {
|
||||
EXPECT_CALL(construct, Call(&alloc, &a, 53));
|
||||
hash_policy_traits<PolicyWithoutOptionalOps>::construct(&alloc, &a, 53);
|
||||
}
|
||||
|
||||
TEST_F(Test, destroy) {
|
||||
EXPECT_CALL(destroy, Call(&alloc, &a));
|
||||
hash_policy_traits<PolicyWithoutOptionalOps>::destroy(&alloc, &a);
|
||||
}
|
||||
|
||||
TEST_F(Test, element) {
|
||||
int b = 0;
|
||||
EXPECT_CALL(element, Call(&a)).WillOnce(ReturnRef(b));
|
||||
EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::element(&a));
|
||||
}
|
||||
|
||||
TEST_F(Test, apply) {
|
||||
EXPECT_CALL(apply, Call(42)).WillOnce(Return(1337));
|
||||
EXPECT_EQ(1337, (hash_policy_traits<PolicyWithoutOptionalOps>::apply(42)));
|
||||
}
|
||||
|
||||
TEST_F(Test, value) {
|
||||
int b = 0;
|
||||
EXPECT_CALL(value, Call(&a)).WillOnce(ReturnRef(b));
|
||||
EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::value(&a));
|
||||
}
|
||||
|
||||
TEST_F(Test, without_transfer) {
|
||||
int b = 42;
|
||||
EXPECT_CALL(element, Call(&b)).WillOnce(::testing::ReturnRef(b));
|
||||
EXPECT_CALL(construct, Call(&alloc, &a, b));
|
||||
EXPECT_CALL(destroy, Call(&alloc, &b));
|
||||
hash_policy_traits<PolicyWithoutOptionalOps>::transfer(&alloc, &a, &b);
|
||||
}
|
||||
|
||||
TEST_F(Test, with_transfer) {
|
||||
int b = 42;
|
||||
EXPECT_CALL(transfer, Call(&alloc, &a, &b));
|
||||
hash_policy_traits<PolicyWithOptionalOps>::transfer(&alloc, &a, &b);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
108
absl/container/internal/hashtable_debug.h
Normal file
108
absl/container/internal/hashtable_debug.h
Normal file
|
@ -0,0 +1,108 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// This library provides APIs to debug the probing behavior of hash tables.
|
||||
//
|
||||
// In general, the probing behavior is a black box for users and only the
|
||||
// side effects can be measured in the form of performance differences.
|
||||
// These APIs give a glimpse on the actual behavior of the probing algorithms in
|
||||
// these hashtables given a specified hash function and a set of elements.
|
||||
//
|
||||
// The probe count distribution can be used to assess the quality of the hash
|
||||
// function for that particular hash table. Note that a hash function that
|
||||
// performs well in one hash table implementation does not necessarily performs
|
||||
// well in a different one.
|
||||
//
|
||||
// This library supports std::unordered_{set,map}, dense_hash_{set,map} and
|
||||
// absl::{flat,node,string}_hash_{set,map}.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/container/internal/hashtable_debug_hooks.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
// Returns the number of probes required to lookup `key`. Returns 0 for a
|
||||
// search with no collisions. Higher values mean more hash collisions occurred;
|
||||
// however, the exact meaning of this number varies according to the container
|
||||
// type.
|
||||
template <typename C>
|
||||
size_t GetHashtableDebugNumProbes(
|
||||
const C& c, const typename C::key_type& key) {
|
||||
return absl::container_internal::hashtable_debug_internal::
|
||||
HashtableDebugAccess<C>::GetNumProbes(c, key);
|
||||
}
|
||||
|
||||
// Gets a histogram of the number of probes for each elements in the container.
|
||||
// The sum of all the values in the vector is equal to container.size().
|
||||
template <typename C>
|
||||
std::vector<size_t> GetHashtableDebugNumProbesHistogram(const C& container) {
|
||||
std::vector<size_t> v;
|
||||
for (auto it = container.begin(); it != container.end(); ++it) {
|
||||
size_t num_probes = GetHashtableDebugNumProbes(
|
||||
container,
|
||||
absl::container_internal::hashtable_debug_internal::GetKey<C>(*it, 0));
|
||||
v.resize(std::max(v.size(), num_probes + 1));
|
||||
v[num_probes]++;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
struct HashtableDebugProbeSummary {
|
||||
size_t total_elements;
|
||||
size_t total_num_probes;
|
||||
double mean;
|
||||
};
|
||||
|
||||
// Gets a summary of the probe count distribution for the elements in the
|
||||
// container.
|
||||
template <typename C>
|
||||
HashtableDebugProbeSummary GetHashtableDebugProbeSummary(const C& container) {
|
||||
auto probes = GetHashtableDebugNumProbesHistogram(container);
|
||||
HashtableDebugProbeSummary summary = {};
|
||||
for (size_t i = 0; i < probes.size(); ++i) {
|
||||
summary.total_elements += probes[i];
|
||||
summary.total_num_probes += probes[i] * i;
|
||||
}
|
||||
summary.mean = 1.0 * summary.total_num_probes / summary.total_elements;
|
||||
return summary;
|
||||
}
|
||||
|
||||
// Returns the number of bytes requested from the allocator by the container
|
||||
// and not freed.
|
||||
template <typename C>
|
||||
size_t AllocatedByteSize(const C& c) {
|
||||
return absl::container_internal::hashtable_debug_internal::
|
||||
HashtableDebugAccess<C>::AllocatedByteSize(c);
|
||||
}
|
||||
|
||||
// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type `C`
|
||||
// and `c.size()` is equal to `num_elements`.
|
||||
template <typename C>
|
||||
size_t LowerBoundAllocatedByteSize(size_t num_elements) {
|
||||
return absl::container_internal::hashtable_debug_internal::
|
||||
HashtableDebugAccess<C>::LowerBoundAllocatedByteSize(num_elements);
|
||||
}
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
|
81
absl/container/internal/hashtable_debug_hooks.h
Normal file
81
absl/container/internal/hashtable_debug_hooks.h
Normal file
|
@ -0,0 +1,81 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Provides the internal API for hashtable_debug.h.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace hashtable_debug_internal {
|
||||
|
||||
// If it is a map, call get<0>().
|
||||
using std::get;
|
||||
template <typename T, typename = typename T::mapped_type>
|
||||
auto GetKey(const typename T::value_type& pair, int) -> decltype(get<0>(pair)) {
|
||||
return get<0>(pair);
|
||||
}
|
||||
|
||||
// If it is not a map, return the value directly.
|
||||
template <typename T>
|
||||
const typename T::key_type& GetKey(const typename T::key_type& key, char) {
|
||||
return key;
|
||||
}
|
||||
|
||||
// Containers should specialize this to provide debug information for that
|
||||
// container.
|
||||
template <class Container, typename Enabler = void>
|
||||
struct HashtableDebugAccess {
|
||||
// Returns the number of probes required to find `key` in `c`. The "number of
|
||||
// probes" is a concept that can vary by container. Implementations should
|
||||
// return 0 when `key` was found in the minimum number of operations and
|
||||
// should increment the result for each non-trivial operation required to find
|
||||
// `key`.
|
||||
//
|
||||
// The default implementation uses the bucket api from the standard and thus
|
||||
// works for `std::unordered_*` containers.
|
||||
static size_t GetNumProbes(const Container& c,
|
||||
const typename Container::key_type& key) {
|
||||
if (!c.bucket_count()) return {};
|
||||
size_t num_probes = 0;
|
||||
size_t bucket = c.bucket(key);
|
||||
for (auto it = c.begin(bucket), e = c.end(bucket);; ++it, ++num_probes) {
|
||||
if (it == e) return num_probes;
|
||||
if (c.key_eq()(key, GetKey<Container>(*it, 0))) return num_probes;
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the number of bytes requested from the allocator by the container
|
||||
// and not freed.
|
||||
//
|
||||
// static size_t AllocatedByteSize(const Container& c);
|
||||
|
||||
// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type
|
||||
// `Container` and `c.size()` is equal to `num_elements`.
|
||||
//
|
||||
// static size_t LowerBoundAllocatedByteSize(size_t num_elements);
|
||||
};
|
||||
|
||||
} // namespace hashtable_debug_internal
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
|
732
absl/container/internal/layout.h
Normal file
732
absl/container/internal/layout.h
Normal file
|
@ -0,0 +1,732 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// MOTIVATION AND TUTORIAL
|
||||
//
|
||||
// If you want to put in a single heap allocation N doubles followed by M ints,
|
||||
// it's easy if N and M are known at compile time.
|
||||
//
|
||||
// struct S {
|
||||
// double a[N];
|
||||
// int b[M];
|
||||
// };
|
||||
//
|
||||
// S* p = new S;
|
||||
//
|
||||
// But what if N and M are known only in run time? Class template Layout to the
|
||||
// rescue! It's a portable generalization of the technique known as struct hack.
|
||||
//
|
||||
// // This object will tell us everything we need to know about the memory
|
||||
// // layout of double[N] followed by int[M]. It's structurally identical to
|
||||
// // size_t[2] that stores N and M. It's very cheap to create.
|
||||
// const Layout<double, int> layout(N, M);
|
||||
//
|
||||
// // Allocate enough memory for both arrays. `AllocSize()` tells us how much
|
||||
// // memory is needed. We are free to use any allocation function we want as
|
||||
// // long as it returns aligned memory.
|
||||
// std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
|
||||
//
|
||||
// // Obtain the pointer to the array of doubles.
|
||||
// // Equivalent to `reinterpret_cast<double*>(p.get())`.
|
||||
// //
|
||||
// // We could have written layout.Pointer<0>(p) instead. If all the types are
|
||||
// // unique you can use either form, but if some types are repeated you must
|
||||
// // use the index form.
|
||||
// double* a = layout.Pointer<double>(p.get());
|
||||
//
|
||||
// // Obtain the pointer to the array of ints.
|
||||
// // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
|
||||
// int* b = layout.Pointer<int>(p);
|
||||
//
|
||||
// If we are unable to specify sizes of all fields, we can pass as many sizes as
|
||||
// we can to `Partial()`. In return, it'll allow us to access the fields whose
|
||||
// locations and sizes can be computed from the provided information.
|
||||
// `Partial()` comes in handy when the array sizes are embedded into the
|
||||
// allocation.
|
||||
//
|
||||
// // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
|
||||
// using L = Layout<size_t, size_t, double, int>;
|
||||
//
|
||||
// unsigned char* Allocate(size_t n, size_t m) {
|
||||
// const L layout(1, 1, n, m);
|
||||
// unsigned char* p = new unsigned char[layout.AllocSize()];
|
||||
// *layout.Pointer<0>(p) = n;
|
||||
// *layout.Pointer<1>(p) = m;
|
||||
// return p;
|
||||
// }
|
||||
//
|
||||
// void Use(unsigned char* p) {
|
||||
// // First, extract N and M.
|
||||
// // Specify that the first array has only one element. Using `prefix` we
|
||||
// // can access the first two arrays but not more.
|
||||
// constexpr auto prefix = L::Partial(1);
|
||||
// size_t n = *prefix.Pointer<0>(p);
|
||||
// size_t m = *prefix.Pointer<1>(p);
|
||||
//
|
||||
// // Now we can get pointers to the payload.
|
||||
// const L layout(1, 1, n, m);
|
||||
// double* a = layout.Pointer<double>(p);
|
||||
// int* b = layout.Pointer<int>(p);
|
||||
// }
|
||||
//
|
||||
// The layout we used above combines fixed-size with dynamically-sized fields.
|
||||
// This is quite common. Layout is optimized for this use case and generates
|
||||
// optimal code. All computations that can be performed at compile time are
|
||||
// indeed performed at compile time.
|
||||
//
|
||||
// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
|
||||
// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
|
||||
// padding in between arrays.
|
||||
//
|
||||
// You can manually override the alignment of an array by wrapping the type in
|
||||
// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
|
||||
// and behavior as `Layout<..., T, ...>` except that the first element of the
|
||||
// array of `T` is aligned to `N` (the rest of the elements follow without
|
||||
// padding). `N` cannot be less than `alignof(T)`.
|
||||
//
|
||||
// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
|
||||
// memory layouts. Check out the reference or code below to discover more.
|
||||
//
|
||||
// EXAMPLE
|
||||
//
|
||||
// // Immutable move-only string with sizeof equal to sizeof(void*). The
|
||||
// // string size and the characters are kept in the same heap allocation.
|
||||
// class CompactString {
|
||||
// public:
|
||||
// CompactString(const char* s = "") {
|
||||
// const size_t size = strlen(s);
|
||||
// // size_t[1] followed by char[size + 1].
|
||||
// const L layout(1, size + 1);
|
||||
// p_.reset(new unsigned char[layout.AllocSize()]);
|
||||
// // If running under ASAN, mark the padding bytes, if any, to catch
|
||||
// // memory errors.
|
||||
// layout.PoisonPadding(p_.get());
|
||||
// // Store the size in the allocation.
|
||||
// *layout.Pointer<size_t>(p_.get()) = size;
|
||||
// // Store the characters in the allocation.
|
||||
// memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
|
||||
// }
|
||||
//
|
||||
// size_t size() const {
|
||||
// // Equivalent to reinterpret_cast<size_t&>(*p).
|
||||
// return *L::Partial().Pointer<size_t>(p_.get());
|
||||
// }
|
||||
//
|
||||
// const char* c_str() const {
|
||||
// // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
|
||||
// // The argument in Partial(1) specifies that we have size_t[1] in front
|
||||
// // of the characters.
|
||||
// return L::Partial(1).Pointer<char>(p_.get());
|
||||
// }
|
||||
//
|
||||
// private:
|
||||
// // Our heap allocation contains a size_t followed by an array of chars.
|
||||
// using L = Layout<size_t, char>;
|
||||
// std::unique_ptr<unsigned char[]> p_;
|
||||
// };
|
||||
//
|
||||
// int main() {
|
||||
// CompactString s = "hello";
|
||||
// assert(s.size() == 5);
|
||||
// assert(strcmp(s.c_str(), "hello") == 0);
|
||||
// }
|
||||
//
|
||||
// DOCUMENTATION
|
||||
//
|
||||
// The interface exported by this file consists of:
|
||||
// - class `Layout<>` and its public members.
|
||||
// - The public members of class `internal_layout::LayoutImpl<>`. That class
|
||||
// isn't intended to be used directly, and its name and template parameter
|
||||
// list are internal implementation details, but the class itself provides
|
||||
// most of the functionality in this file. See comments on its members for
|
||||
// detailed documentation.
|
||||
//
|
||||
// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
|
||||
// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
|
||||
// creates a `Layout` object, which exposes the same functionality by inheriting
|
||||
// from `LayoutImpl<>`.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|
||||
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <type_traits>
|
||||
#include <typeinfo>
|
||||
#include <utility>
|
||||
|
||||
#ifdef ADDRESS_SANITIZER
|
||||
#include <sanitizer/asan_interface.h>
|
||||
#endif
|
||||
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "absl/types/span.h"
|
||||
#include "absl/utility/utility.h"
|
||||
|
||||
#if defined(__GXX_RTTI)
|
||||
#define ABSL_INTERNAL_HAS_CXA_DEMANGLE
|
||||
#endif
|
||||
|
||||
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
|
||||
#include <cxxabi.h>
|
||||
#endif
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
// A type wrapper that instructs `Layout` to use the specific alignment for the
|
||||
// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
|
||||
// and behavior as `Layout<..., T, ...>` except that the first element of the
|
||||
// array of `T` is aligned to `N` (the rest of the elements follow without
|
||||
// padding).
|
||||
//
|
||||
// Requires: `N >= alignof(T)` and `N` is a power of 2.
|
||||
template <class T, size_t N>
|
||||
struct Aligned;
|
||||
|
||||
namespace internal_layout {
|
||||
|
||||
template <class T>
|
||||
struct NotAligned {};
|
||||
|
||||
template <class T, size_t N>
|
||||
struct NotAligned<const Aligned<T, N>> {
|
||||
static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
|
||||
};
|
||||
|
||||
template <size_t>
|
||||
using IntToSize = size_t;
|
||||
|
||||
template <class>
|
||||
using TypeToSize = size_t;
|
||||
|
||||
template <class T>
|
||||
struct Type : NotAligned<T> {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <class T, size_t N>
|
||||
struct Type<Aligned<T, N>> {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <class T>
|
||||
struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
|
||||
|
||||
template <class T, size_t N>
|
||||
struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
|
||||
|
||||
template <class T>
|
||||
struct AlignOf : NotAligned<T>, std::integral_constant<size_t, alignof(T)> {};
|
||||
|
||||
template <class T, size_t N>
|
||||
struct AlignOf<Aligned<T, N>> : std::integral_constant<size_t, N> {
|
||||
static_assert(N % alignof(T) == 0,
|
||||
"Custom alignment can't be lower than the type's alignment");
|
||||
};
|
||||
|
||||
// Does `Ts...` contain `T`?
|
||||
template <class T, class... Ts>
|
||||
using Contains = absl::disjunction<std::is_same<T, Ts>...>;
|
||||
|
||||
template <class From, class To>
|
||||
using CopyConst =
|
||||
typename std::conditional<std::is_const<From>::value, const To, To>::type;
|
||||
|
||||
template <class T>
|
||||
using SliceType = absl::Span<T>;
|
||||
|
||||
// This namespace contains no types. It prevents functions defined in it from
|
||||
// being found by ADL.
|
||||
namespace adl_barrier {
|
||||
|
||||
template <class Needle, class... Ts>
|
||||
constexpr size_t Find(Needle, Needle, Ts...) {
|
||||
static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <class Needle, class T, class... Ts>
|
||||
constexpr size_t Find(Needle, T, Ts...) {
|
||||
return adl_barrier::Find(Needle(), Ts()...) + 1;
|
||||
}
|
||||
|
||||
constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
|
||||
|
||||
// Returns `q * m` for the smallest `q` such that `q * m >= n`.
|
||||
// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
|
||||
constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
|
||||
|
||||
constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
|
||||
|
||||
constexpr size_t Max(size_t a) { return a; }
|
||||
|
||||
template <class... Ts>
|
||||
constexpr size_t Max(size_t a, size_t b, Ts... rest) {
|
||||
return adl_barrier::Max(b < a ? a : b, rest...);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
std::string TypeName() {
|
||||
std::string out;
|
||||
int status = 0;
|
||||
char* demangled = nullptr;
|
||||
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
|
||||
demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
|
||||
#endif
|
||||
if (status == 0 && demangled != nullptr) { // Demangling succeeeded.
|
||||
absl::StrAppend(&out, "<", demangled, ">");
|
||||
free(demangled);
|
||||
} else {
|
||||
#if defined(__GXX_RTTI) || defined(_CPPRTTI)
|
||||
absl::StrAppend(&out, "<", typeid(T).name(), ">");
|
||||
#endif
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace adl_barrier
|
||||
|
||||
template <bool C>
|
||||
using EnableIf = typename std::enable_if<C, int>::type;
|
||||
|
||||
// Can `T` be a template argument of `Layout`?
|
||||
template <class T>
|
||||
using IsLegalElementType = std::integral_constant<
|
||||
bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
|
||||
!std::is_reference<typename Type<T>::type>::value &&
|
||||
!std::is_volatile<typename Type<T>::type>::value &&
|
||||
adl_barrier::IsPow2(AlignOf<T>::value)>;
|
||||
|
||||
template <class Elements, class SizeSeq, class OffsetSeq>
|
||||
class LayoutImpl;
|
||||
|
||||
// Public base class of `Layout` and the result type of `Layout::Partial()`.
|
||||
//
|
||||
// `Elements...` contains all template arguments of `Layout` that created this
|
||||
// instance.
|
||||
//
|
||||
// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
|
||||
// passed to `Layout::Partial()` or `Layout::Layout()`.
|
||||
//
|
||||
// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
|
||||
// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
|
||||
// can compute offsets).
|
||||
template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
|
||||
class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
|
||||
absl::index_sequence<OffsetSeq...>> {
|
||||
private:
|
||||
static_assert(sizeof...(Elements) > 0, "At least one field is required");
|
||||
static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
|
||||
"Invalid element type (see IsLegalElementType)");
|
||||
|
||||
enum {
|
||||
NumTypes = sizeof...(Elements),
|
||||
NumSizes = sizeof...(SizeSeq),
|
||||
NumOffsets = sizeof...(OffsetSeq),
|
||||
};
|
||||
|
||||
// These are guaranteed by `Layout`.
|
||||
static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
|
||||
"Internal error");
|
||||
static_assert(NumTypes > 0, "Internal error");
|
||||
|
||||
// Returns the index of `T` in `Elements...`. Results in a compilation error
|
||||
// if `Elements...` doesn't contain exactly one instance of `T`.
|
||||
template <class T>
|
||||
static constexpr size_t ElementIndex() {
|
||||
static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
|
||||
"Type not found");
|
||||
return adl_barrier::Find(Type<T>(),
|
||||
Type<typename Type<Elements>::type>()...);
|
||||
}
|
||||
|
||||
template <size_t N>
|
||||
using ElementAlignment =
|
||||
AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
|
||||
|
||||
public:
|
||||
// Element types of all arrays packed in a tuple.
|
||||
using ElementTypes = std::tuple<typename Type<Elements>::type...>;
|
||||
|
||||
// Element type of the Nth array.
|
||||
template <size_t N>
|
||||
using ElementType = typename std::tuple_element<N, ElementTypes>::type;
|
||||
|
||||
constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
|
||||
: size_{sizes...} {}
|
||||
|
||||
// Alignment of the layout, equal to the strictest alignment of all elements.
|
||||
// All pointers passed to the methods of layout must be aligned to this value.
|
||||
static constexpr size_t Alignment() {
|
||||
return adl_barrier::Max(AlignOf<Elements>::value...);
|
||||
}
|
||||
|
||||
// Offset in bytes of the Nth array.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Offset<0>() == 0); // The ints starts from 0.
|
||||
// assert(x.Offset<1>() == 16); // The doubles starts from 16.
|
||||
//
|
||||
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
|
||||
template <size_t N, EnableIf<N == 0> = 0>
|
||||
constexpr size_t Offset() const {
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <size_t N, EnableIf<N != 0> = 0>
|
||||
constexpr size_t Offset() const {
|
||||
static_assert(N < NumOffsets, "Index out of bounds");
|
||||
return adl_barrier::Align(
|
||||
Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1],
|
||||
ElementAlignment<N>());
|
||||
}
|
||||
|
||||
// Offset in bytes of the array with the specified element type. There must
|
||||
// be exactly one such array and its zero-based index must be at most
|
||||
// `NumSizes`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Offset<int>() == 0); // The ints starts from 0.
|
||||
// assert(x.Offset<double>() == 16); // The doubles starts from 16.
|
||||
template <class T>
|
||||
constexpr size_t Offset() const {
|
||||
return Offset<ElementIndex<T>()>();
|
||||
}
|
||||
|
||||
// Offsets in bytes of all arrays for which the offsets are known.
|
||||
constexpr std::array<size_t, NumOffsets> Offsets() const {
|
||||
return {{Offset<OffsetSeq>()...}};
|
||||
}
|
||||
|
||||
// The number of elements in the Nth array. This is the Nth argument of
|
||||
// `Layout::Partial()` or `Layout::Layout()` (zero-based).
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Size<0>() == 3);
|
||||
// assert(x.Size<1>() == 4);
|
||||
//
|
||||
// Requires: `N < NumSizes`.
|
||||
template <size_t N>
|
||||
constexpr size_t Size() const {
|
||||
static_assert(N < NumSizes, "Index out of bounds");
|
||||
return size_[N];
|
||||
}
|
||||
|
||||
// The number of elements in the array with the specified element type.
|
||||
// There must be exactly one such array and its zero-based index must be
|
||||
// at most `NumSizes`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Size<int>() == 3);
|
||||
// assert(x.Size<double>() == 4);
|
||||
template <class T>
|
||||
constexpr size_t Size() const {
|
||||
return Size<ElementIndex<T>()>();
|
||||
}
|
||||
|
||||
// The number of elements of all arrays for which they are known.
|
||||
constexpr std::array<size_t, NumSizes> Sizes() const {
|
||||
return {{Size<SizeSeq>()...}};
|
||||
}
|
||||
|
||||
// Pointer to the beginning of the Nth array.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = unsigned char[x.AllocSize()];
|
||||
// int* ints = x.Pointer<0>(p);
|
||||
// double* doubles = x.Pointer<1>(p);
|
||||
//
|
||||
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <size_t N, class Char>
|
||||
CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
|
||||
using C = typename std::remove_const<Char>::type;
|
||||
static_assert(
|
||||
std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
|
||||
std::is_same<C, signed char>(),
|
||||
"The argument must be a pointer to [const] [signed|unsigned] char");
|
||||
constexpr size_t alignment = Alignment();
|
||||
(void)alignment;
|
||||
assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
|
||||
return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
|
||||
}
|
||||
|
||||
// Pointer to the beginning of the array with the specified element type.
|
||||
// There must be exactly one such array and its zero-based index must be at
|
||||
// most `NumSizes`.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
// int* ints = x.Pointer<int>(p);
|
||||
// double* doubles = x.Pointer<double>(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <class T, class Char>
|
||||
CopyConst<Char, T>* Pointer(Char* p) const {
|
||||
return Pointer<ElementIndex<T>()>(p);
|
||||
}
|
||||
|
||||
// Pointers to all arrays for which pointers are known.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
//
|
||||
// int* ints;
|
||||
// double* doubles;
|
||||
// std::tie(ints, doubles) = x.Pointers(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
//
|
||||
// Note: We're not using ElementType alias here because it does not compile
|
||||
// under MSVC.
|
||||
template <class Char>
|
||||
std::tuple<CopyConst<
|
||||
Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
|
||||
Pointers(Char* p) const {
|
||||
return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
|
||||
Pointer<OffsetSeq>(p)...);
|
||||
}
|
||||
|
||||
// The Nth array.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
// Span<int> ints = x.Slice<0>(p);
|
||||
// Span<double> doubles = x.Slice<1>(p);
|
||||
//
|
||||
// Requires: `N < NumSizes`.
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <size_t N, class Char>
|
||||
SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
|
||||
return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
|
||||
}
|
||||
|
||||
// The array with the specified element type. There must be exactly one
|
||||
// such array and its zero-based index must be less than `NumSizes`.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
// Span<int> ints = x.Slice<int>(p);
|
||||
// Span<double> doubles = x.Slice<double>(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <class T, class Char>
|
||||
SliceType<CopyConst<Char, T>> Slice(Char* p) const {
|
||||
return Slice<ElementIndex<T>()>(p);
|
||||
}
|
||||
|
||||
// All arrays with known sizes.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
//
|
||||
// Span<int> ints;
|
||||
// Span<double> doubles;
|
||||
// std::tie(ints, doubles) = x.Slices(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
//
|
||||
// Note: We're not using ElementType alias here because it does not compile
|
||||
// under MSVC.
|
||||
template <class Char>
|
||||
std::tuple<SliceType<CopyConst<
|
||||
Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
|
||||
Slices(Char* p) const {
|
||||
// Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
|
||||
// in 6.1).
|
||||
(void)p;
|
||||
return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
|
||||
Slice<SizeSeq>(p)...);
|
||||
}
|
||||
|
||||
// The size of the allocation that fits all arrays.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes
|
||||
//
|
||||
// Requires: `NumSizes == sizeof...(Ts)`.
|
||||
constexpr size_t AllocSize() const {
|
||||
static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
|
||||
return Offset<NumTypes - 1>() +
|
||||
SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1];
|
||||
}
|
||||
|
||||
// If built with --config=asan, poisons padding bytes (if any) in the
|
||||
// allocation. The pointer must point to a memory block at least
|
||||
// `AllocSize()` bytes in length.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
|
||||
void PoisonPadding(const Char* p) const {
|
||||
Pointer<0>(p); // verify the requirements on `Char` and `p`
|
||||
}
|
||||
|
||||
template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
|
||||
void PoisonPadding(const Char* p) const {
|
||||
static_assert(N < NumOffsets, "Index out of bounds");
|
||||
(void)p;
|
||||
#ifdef ADDRESS_SANITIZER
|
||||
PoisonPadding<Char, N - 1>(p);
|
||||
// The `if` is an optimization. It doesn't affect the observable behaviour.
|
||||
if (ElementAlignment<N - 1>() % ElementAlignment<N>()) {
|
||||
size_t start =
|
||||
Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1];
|
||||
ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Human-readable description of the memory layout. Useful for debugging.
|
||||
// Slow.
|
||||
//
|
||||
// // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
|
||||
// // by an unknown number of doubles.
|
||||
// auto x = Layout<char, int, double>::Partial(5, 3);
|
||||
// assert(x.DebugString() ==
|
||||
// "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
|
||||
//
|
||||
// Each field is in the following format: @offset<type>(sizeof)[size] (<type>
|
||||
// may be missing depending on the target platform). For example,
|
||||
// @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
|
||||
// int is 4 bytes, and we have 3 of those ints. The size of the last field may
|
||||
// be missing (as in the example above). Only fields with known offsets are
|
||||
// described. Type names may differ across platforms: one compiler might
|
||||
// produce "unsigned*" where another produces "unsigned int *".
|
||||
std::string DebugString() const {
|
||||
const auto offsets = Offsets();
|
||||
const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...};
|
||||
const std::string types[] = {adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
|
||||
std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
|
||||
for (size_t i = 0; i != NumOffsets - 1; ++i) {
|
||||
absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
|
||||
"(", sizes[i + 1], ")");
|
||||
}
|
||||
// NumSizes is a constant that may be zero. Some compilers cannot see that
|
||||
// inside the if statement "size_[NumSizes - 1]" must be valid.
|
||||
int last = static_cast<int>(NumSizes) - 1;
|
||||
if (NumTypes == NumSizes && last >= 0) {
|
||||
absl::StrAppend(&res, "[", size_[last], "]");
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private:
|
||||
// Arguments of `Layout::Partial()` or `Layout::Layout()`.
|
||||
size_t size_[NumSizes > 0 ? NumSizes : 1];
|
||||
};
|
||||
|
||||
template <size_t NumSizes, class... Ts>
|
||||
using LayoutType = LayoutImpl<
|
||||
std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
|
||||
absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
|
||||
|
||||
} // namespace internal_layout
|
||||
|
||||
// Descriptor of arrays of various types and sizes laid out in memory one after
|
||||
// another. See the top of the file for documentation.
|
||||
//
|
||||
// Check out the public API of internal_layout::LayoutImpl above. The type is
|
||||
// internal to the library but its methods are public, and they are inherited
|
||||
// by `Layout`.
|
||||
template <class... Ts>
|
||||
class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
|
||||
public:
|
||||
static_assert(sizeof...(Ts) > 0, "At least one field is required");
|
||||
static_assert(
|
||||
absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
|
||||
"Invalid element type (see IsLegalElementType)");
|
||||
|
||||
// The result type of `Partial()` with `NumSizes` arguments.
|
||||
template <size_t NumSizes>
|
||||
using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
|
||||
|
||||
// `Layout` knows the element types of the arrays we want to lay out in
|
||||
// memory but not the number of elements in each array.
|
||||
// `Partial(size1, ..., sizeN)` allows us to specify the latter. The
|
||||
// resulting immutable object can be used to obtain pointers to the
|
||||
// individual arrays.
|
||||
//
|
||||
// It's allowed to pass fewer array sizes than the number of arrays. E.g.,
|
||||
// if all you need is to the offset of the second array, you only need to
|
||||
// pass one argument -- the number of elements in the first arrays.
|
||||
//
|
||||
// // int[3] followed by 4 bytes of padding and an unknown number of
|
||||
// // doubles.
|
||||
// auto x = Layout<int, double>::Partial(3);
|
||||
// // doubles start at byte 16.
|
||||
// assert(x.Offset<1>() == 16);
|
||||
//
|
||||
// If you know the number of elements in all arrays, you can still call
|
||||
// `Partial()` but it's more convenient to use the constructor of `Layout`.
|
||||
//
|
||||
// Layout<int, double> x(3, 5);
|
||||
//
|
||||
// Note: The sizes of the arrays must be specified in number of elements,
|
||||
// not in bytes.
|
||||
//
|
||||
// Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
|
||||
// Requires: all arguments are convertible to `size_t`.
|
||||
template <class... Sizes>
|
||||
static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
|
||||
static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
|
||||
return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
|
||||
}
|
||||
|
||||
// Creates a layout with the sizes of all arrays specified. If you know
|
||||
// only the sizes of the first N arrays (where N can be zero), you can use
|
||||
// `Partial()` defined above. The constructor is essentially equivalent to
|
||||
// calling `Partial()` and passing in all array sizes; the constructor is
|
||||
// provided as a convenient abbreviation.
|
||||
//
|
||||
// Note: The sizes of the arrays must be specified in number of elements,
|
||||
// not in bytes.
|
||||
constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
|
||||
: internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|
1552
absl/container/internal/layout_test.cc
Normal file
1552
absl/container/internal/layout_test.cc
Normal file
File diff suppressed because it is too large
Load diff
88
absl/container/internal/node_hash_policy.h
Normal file
88
absl/container/internal/node_hash_policy.h
Normal file
|
@ -0,0 +1,88 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Adapts a policy for nodes.
|
||||
//
|
||||
// The node policy should model:
|
||||
//
|
||||
// struct Policy {
|
||||
// // Returns a new node allocated and constructed using the allocator, using
|
||||
// // the specified arguments.
|
||||
// template <class Alloc, class... Args>
|
||||
// value_type* new_element(Alloc* alloc, Args&&... args) const;
|
||||
//
|
||||
// // Destroys and deallocates node using the allocator.
|
||||
// template <class Alloc>
|
||||
// void delete_element(Alloc* alloc, value_type* node) const;
|
||||
// };
|
||||
//
|
||||
// It may also optionally define `value()` and `apply()`. For documentation on
|
||||
// these, see hash_policy_traits.h.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
|
||||
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class Reference, class Policy>
|
||||
struct node_hash_policy {
|
||||
static_assert(std::is_lvalue_reference<Reference>::value, "");
|
||||
|
||||
using slot_type = typename std::remove_cv<
|
||||
typename std::remove_reference<Reference>::type>::type*;
|
||||
|
||||
template <class Alloc, class... Args>
|
||||
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
|
||||
*slot = Policy::new_element(alloc, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class Alloc>
|
||||
static void destroy(Alloc* alloc, slot_type* slot) {
|
||||
Policy::delete_element(alloc, *slot);
|
||||
}
|
||||
|
||||
template <class Alloc>
|
||||
static void transfer(Alloc*, slot_type* new_slot, slot_type* old_slot) {
|
||||
*new_slot = *old_slot;
|
||||
}
|
||||
|
||||
static size_t space_used(const slot_type* slot) {
|
||||
if (slot == nullptr) return Policy::element_space_used(nullptr);
|
||||
return Policy::element_space_used(*slot);
|
||||
}
|
||||
|
||||
static Reference element(slot_type* slot) { return **slot; }
|
||||
|
||||
template <class T, class P = Policy>
|
||||
static auto value(T* elem) -> decltype(P::value(elem)) {
|
||||
return P::value(elem);
|
||||
}
|
||||
|
||||
template <class... Ts, class P = Policy>
|
||||
static auto apply(Ts&&... ts) -> decltype(P::apply(std::forward<Ts>(ts)...)) {
|
||||
return P::apply(std::forward<Ts>(ts)...);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
|
67
absl/container/internal/node_hash_policy_test.cc
Normal file
67
absl/container/internal/node_hash_policy_test.cc
Normal file
|
@ -0,0 +1,67 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/node_hash_policy.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_policy_traits.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::testing::Pointee;
|
||||
|
||||
struct Policy : node_hash_policy<int&, Policy> {
|
||||
using key_type = int;
|
||||
using init_type = int;
|
||||
|
||||
template <class Alloc>
|
||||
static int* new_element(Alloc* alloc, int value) {
|
||||
return new int(value);
|
||||
}
|
||||
|
||||
template <class Alloc>
|
||||
static void delete_element(Alloc* alloc, int* elem) {
|
||||
delete elem;
|
||||
}
|
||||
};
|
||||
|
||||
using NodePolicy = hash_policy_traits<Policy>;
|
||||
|
||||
struct NodeTest : ::testing::Test {
|
||||
std::allocator<int> alloc;
|
||||
int n = 53;
|
||||
int* a = &n;
|
||||
};
|
||||
|
||||
TEST_F(NodeTest, ConstructDestroy) {
|
||||
NodePolicy::construct(&alloc, &a, 42);
|
||||
EXPECT_THAT(a, Pointee(42));
|
||||
NodePolicy::destroy(&alloc, &a);
|
||||
}
|
||||
|
||||
TEST_F(NodeTest, transfer) {
|
||||
int s = 42;
|
||||
int* b = &s;
|
||||
NodePolicy::transfer(&alloc, &a, &b);
|
||||
EXPECT_EQ(&s, a);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
182
absl/container/internal/raw_hash_map.h
Normal file
182
absl/container/internal/raw_hash_map.h
Normal file
|
@ -0,0 +1,182 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
|
||||
|
||||
#include <tuple>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/container/internal/container_memory.h"
|
||||
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class Policy, class Hash, class Eq, class Alloc>
|
||||
class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc> {
|
||||
// P is Policy. It's passed as a template argument to support maps that have
|
||||
// incomplete types as values, as in unordered_map<K, IncompleteType>.
|
||||
// MappedReference<> may be a non-reference type.
|
||||
template <class P>
|
||||
using MappedReference = decltype(P::value(
|
||||
std::addressof(std::declval<typename raw_hash_map::reference>())));
|
||||
|
||||
// MappedConstReference<> may be a non-reference type.
|
||||
template <class P>
|
||||
using MappedConstReference = decltype(P::value(
|
||||
std::addressof(std::declval<typename raw_hash_map::const_reference>())));
|
||||
|
||||
public:
|
||||
using key_type = typename Policy::key_type;
|
||||
using mapped_type = typename Policy::mapped_type;
|
||||
template <typename K>
|
||||
using key_arg = typename raw_hash_map::raw_hash_set::template key_arg<K>;
|
||||
|
||||
static_assert(!std::is_reference<key_type>::value, "");
|
||||
// TODO(alkis): remove this assertion and verify that reference mapped_type is
|
||||
// supported.
|
||||
static_assert(!std::is_reference<mapped_type>::value, "");
|
||||
|
||||
using iterator = typename raw_hash_map::raw_hash_set::iterator;
|
||||
using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator;
|
||||
|
||||
raw_hash_map() {}
|
||||
using raw_hash_map::raw_hash_set::raw_hash_set;
|
||||
|
||||
// The last two template parameters ensure that both arguments are rvalues
|
||||
// (lvalue arguments are handled by the overloads below). This is necessary
|
||||
// for supporting bitfield arguments.
|
||||
//
|
||||
// union { int n : 1; };
|
||||
// flat_hash_map<int, int> m;
|
||||
// m.insert_or_assign(n, n);
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr,
|
||||
V* = nullptr>
|
||||
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) {
|
||||
return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v));
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr>
|
||||
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) {
|
||||
return insert_or_assign_impl(std::forward<K>(k), v);
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type, V* = nullptr>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) {
|
||||
return insert_or_assign_impl(k, std::forward<V>(v));
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) {
|
||||
return insert_or_assign_impl(k, v);
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr,
|
||||
V* = nullptr>
|
||||
iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) {
|
||||
return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first;
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr>
|
||||
iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) {
|
||||
return insert_or_assign(std::forward<K>(k), v).first;
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type, V* = nullptr>
|
||||
iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) {
|
||||
return insert_or_assign(k, std::forward<V>(v)).first;
|
||||
}
|
||||
|
||||
template <class K = key_type, class V = mapped_type>
|
||||
iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) {
|
||||
return insert_or_assign(k, v).first;
|
||||
}
|
||||
|
||||
template <class K = key_type, class... Args,
|
||||
typename std::enable_if<
|
||||
!std::is_convertible<K, const_iterator>::value, int>::type = 0,
|
||||
K* = nullptr>
|
||||
std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) {
|
||||
return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class K = key_type, class... Args,
|
||||
typename std::enable_if<
|
||||
!std::is_convertible<K, const_iterator>::value, int>::type = 0>
|
||||
std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) {
|
||||
return try_emplace_impl(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class K = key_type, class... Args, K* = nullptr>
|
||||
iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) {
|
||||
return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first;
|
||||
}
|
||||
|
||||
template <class K = key_type, class... Args>
|
||||
iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) {
|
||||
return try_emplace(k, std::forward<Args>(args)...).first;
|
||||
}
|
||||
|
||||
template <class K = key_type, class P = Policy>
|
||||
MappedReference<P> at(const key_arg<K>& key) {
|
||||
auto it = this->find(key);
|
||||
if (it == this->end()) std::abort();
|
||||
return Policy::value(&*it);
|
||||
}
|
||||
|
||||
template <class K = key_type, class P = Policy>
|
||||
MappedConstReference<P> at(const key_arg<K>& key) const {
|
||||
auto it = this->find(key);
|
||||
if (it == this->end()) std::abort();
|
||||
return Policy::value(&*it);
|
||||
}
|
||||
|
||||
template <class K = key_type, class P = Policy, K* = nullptr>
|
||||
MappedReference<P> operator[](key_arg<K>&& key) {
|
||||
return Policy::value(&*try_emplace(std::forward<K>(key)).first);
|
||||
}
|
||||
|
||||
template <class K = key_type, class P = Policy>
|
||||
MappedReference<P> operator[](const key_arg<K>& key) {
|
||||
return Policy::value(&*try_emplace(key).first);
|
||||
}
|
||||
|
||||
private:
|
||||
template <class K, class V>
|
||||
std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) {
|
||||
auto res = this->find_or_prepare_insert(k);
|
||||
if (res.second)
|
||||
this->emplace_at(res.first, std::forward<K>(k), std::forward<V>(v));
|
||||
else
|
||||
Policy::value(&*this->iterator_at(res.first)) = std::forward<V>(v);
|
||||
return {this->iterator_at(res.first), res.second};
|
||||
}
|
||||
|
||||
template <class K = key_type, class... Args>
|
||||
std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) {
|
||||
auto res = this->find_or_prepare_insert(k);
|
||||
if (res.second)
|
||||
this->emplace_at(res.first, std::piecewise_construct,
|
||||
std::forward_as_tuple(std::forward<K>(k)),
|
||||
std::forward_as_tuple(std::forward<Args>(args)...));
|
||||
return {this->iterator_at(res.first), res.second};
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
|
45
absl/container/internal/raw_hash_set.cc
Normal file
45
absl/container/internal/raw_hash_set.cc
Normal file
|
@ -0,0 +1,45 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/raw_hash_set.h"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "absl/base/config.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
constexpr size_t Group::kWidth;
|
||||
|
||||
// Returns "random" seed.
|
||||
inline size_t RandomSeed() {
|
||||
#if ABSL_HAVE_THREAD_LOCAL
|
||||
static thread_local size_t counter = 0;
|
||||
size_t value = ++counter;
|
||||
#else // ABSL_HAVE_THREAD_LOCAL
|
||||
static std::atomic<size_t> counter;
|
||||
size_t value = counter.fetch_add(1, std::memory_order_relaxed);
|
||||
#endif // ABSL_HAVE_THREAD_LOCAL
|
||||
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
|
||||
}
|
||||
|
||||
bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl) {
|
||||
// To avoid problems with weak hashes and single bit tests, we use % 13.
|
||||
// TODO(kfm,sbenza): revisit after we do unconditional mixing
|
||||
return (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
|
||||
}
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
1906
absl/container/internal/raw_hash_set.h
Normal file
1906
absl/container/internal/raw_hash_set.h
Normal file
File diff suppressed because it is too large
Load diff
428
absl/container/internal/raw_hash_set_allocator_test.cc
Normal file
428
absl/container/internal/raw_hash_set_allocator_test.cc
Normal file
|
@ -0,0 +1,428 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <limits>
|
||||
#include <scoped_allocator>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/raw_hash_set.h"
|
||||
#include "absl/container/internal/tracked.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
enum AllocSpec {
|
||||
kPropagateOnCopy = 1,
|
||||
kPropagateOnMove = 2,
|
||||
kPropagateOnSwap = 4,
|
||||
};
|
||||
|
||||
struct AllocState {
|
||||
size_t num_allocs = 0;
|
||||
std::set<void*> owned;
|
||||
};
|
||||
|
||||
template <class T,
|
||||
int Spec = kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>
|
||||
class CheckedAlloc {
|
||||
public:
|
||||
template <class, int>
|
||||
friend class CheckedAlloc;
|
||||
|
||||
using value_type = T;
|
||||
|
||||
CheckedAlloc() {}
|
||||
explicit CheckedAlloc(size_t id) : id_(id) {}
|
||||
CheckedAlloc(const CheckedAlloc&) = default;
|
||||
CheckedAlloc& operator=(const CheckedAlloc&) = default;
|
||||
|
||||
template <class U>
|
||||
CheckedAlloc(const CheckedAlloc<U, Spec>& that)
|
||||
: id_(that.id_), state_(that.state_) {}
|
||||
|
||||
template <class U>
|
||||
struct rebind {
|
||||
using other = CheckedAlloc<U, Spec>;
|
||||
};
|
||||
|
||||
using propagate_on_container_copy_assignment =
|
||||
std::integral_constant<bool, (Spec & kPropagateOnCopy) != 0>;
|
||||
|
||||
using propagate_on_container_move_assignment =
|
||||
std::integral_constant<bool, (Spec & kPropagateOnMove) != 0>;
|
||||
|
||||
using propagate_on_container_swap =
|
||||
std::integral_constant<bool, (Spec & kPropagateOnSwap) != 0>;
|
||||
|
||||
CheckedAlloc select_on_container_copy_construction() const {
|
||||
if (Spec & kPropagateOnCopy) return *this;
|
||||
return {};
|
||||
}
|
||||
|
||||
T* allocate(size_t n) {
|
||||
T* ptr = std::allocator<T>().allocate(n);
|
||||
track_alloc(ptr);
|
||||
return ptr;
|
||||
}
|
||||
void deallocate(T* ptr, size_t n) {
|
||||
memset(ptr, 0, n * sizeof(T)); // The freed memory must be unpoisoned.
|
||||
track_dealloc(ptr);
|
||||
return std::allocator<T>().deallocate(ptr, n);
|
||||
}
|
||||
|
||||
friend bool operator==(const CheckedAlloc& a, const CheckedAlloc& b) {
|
||||
return a.id_ == b.id_;
|
||||
}
|
||||
friend bool operator!=(const CheckedAlloc& a, const CheckedAlloc& b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
size_t num_allocs() const { return state_->num_allocs; }
|
||||
|
||||
void swap(CheckedAlloc& that) {
|
||||
using std::swap;
|
||||
swap(id_, that.id_);
|
||||
swap(state_, that.state_);
|
||||
}
|
||||
|
||||
friend void swap(CheckedAlloc& a, CheckedAlloc& b) { a.swap(b); }
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& o, const CheckedAlloc& a) {
|
||||
return o << "alloc(" << a.id_ << ")";
|
||||
}
|
||||
|
||||
private:
|
||||
void track_alloc(void* ptr) {
|
||||
AllocState* state = state_.get();
|
||||
++state->num_allocs;
|
||||
if (!state->owned.insert(ptr).second)
|
||||
ADD_FAILURE() << *this << " got previously allocated memory: " << ptr;
|
||||
}
|
||||
void track_dealloc(void* ptr) {
|
||||
if (state_->owned.erase(ptr) != 1)
|
||||
ADD_FAILURE() << *this
|
||||
<< " deleting memory owned by another allocator: " << ptr;
|
||||
}
|
||||
|
||||
size_t id_ = std::numeric_limits<size_t>::max();
|
||||
|
||||
std::shared_ptr<AllocState> state_ = std::make_shared<AllocState>();
|
||||
};
|
||||
|
||||
struct Identity {
|
||||
int32_t operator()(int32_t v) const { return v; }
|
||||
};
|
||||
|
||||
struct Policy {
|
||||
using slot_type = Tracked<int32_t>;
|
||||
using init_type = Tracked<int32_t>;
|
||||
using key_type = int32_t;
|
||||
|
||||
template <class allocator_type, class... Args>
|
||||
static void construct(allocator_type* alloc, slot_type* slot,
|
||||
Args&&... args) {
|
||||
std::allocator_traits<allocator_type>::construct(
|
||||
*alloc, slot, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <class allocator_type>
|
||||
static void destroy(allocator_type* alloc, slot_type* slot) {
|
||||
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
|
||||
}
|
||||
|
||||
template <class allocator_type>
|
||||
static void transfer(allocator_type* alloc, slot_type* new_slot,
|
||||
slot_type* old_slot) {
|
||||
construct(alloc, new_slot, std::move(*old_slot));
|
||||
destroy(alloc, old_slot);
|
||||
}
|
||||
|
||||
template <class F>
|
||||
static auto apply(F&& f, int32_t v) -> decltype(std::forward<F>(f)(v, v)) {
|
||||
return std::forward<F>(f)(v, v);
|
||||
}
|
||||
|
||||
template <class F>
|
||||
static auto apply(F&& f, const slot_type& v)
|
||||
-> decltype(std::forward<F>(f)(v.val(), v)) {
|
||||
return std::forward<F>(f)(v.val(), v);
|
||||
}
|
||||
|
||||
template <class F>
|
||||
static auto apply(F&& f, slot_type&& v)
|
||||
-> decltype(std::forward<F>(f)(v.val(), std::move(v))) {
|
||||
return std::forward<F>(f)(v.val(), std::move(v));
|
||||
}
|
||||
|
||||
static slot_type& element(slot_type* slot) { return *slot; }
|
||||
};
|
||||
|
||||
template <int Spec>
|
||||
struct PropagateTest : public ::testing::Test {
|
||||
using Alloc = CheckedAlloc<Tracked<int32_t>, Spec>;
|
||||
|
||||
using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, Alloc>;
|
||||
|
||||
PropagateTest() {
|
||||
EXPECT_EQ(a1, t1.get_allocator());
|
||||
EXPECT_NE(a2, t1.get_allocator());
|
||||
}
|
||||
|
||||
Alloc a1 = Alloc(1);
|
||||
Table t1 = Table(0, a1);
|
||||
Alloc a2 = Alloc(2);
|
||||
};
|
||||
|
||||
using PropagateOnAll =
|
||||
PropagateTest<kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>;
|
||||
using NoPropagateOnCopy = PropagateTest<kPropagateOnMove | kPropagateOnSwap>;
|
||||
using NoPropagateOnMove = PropagateTest<kPropagateOnCopy | kPropagateOnSwap>;
|
||||
|
||||
TEST_F(PropagateOnAll, Empty) { EXPECT_EQ(0, a1.num_allocs()); }
|
||||
|
||||
TEST_F(PropagateOnAll, InsertAllocates) {
|
||||
auto it = t1.insert(0).first;
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, InsertDecomposes) {
|
||||
auto it = t1.insert(0).first;
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
|
||||
EXPECT_FALSE(t1.insert(0).second);
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, RehashMoves) {
|
||||
auto it = t1.insert(0).first;
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
t1.rehash(2 * t1.capacity());
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
it = t1.find(0);
|
||||
EXPECT_EQ(1, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, CopyConstructor) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(t1);
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyConstructor) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(t1);
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, u.get_allocator().num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, CopyConstructorWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(t1, a1);
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyConstructorWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(t1, a1);
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, CopyConstructorWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(t1, a2);
|
||||
EXPECT_EQ(a2, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, a2.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyConstructorWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(t1, a2);
|
||||
EXPECT_EQ(a2, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, a2.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, MoveConstructor) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(std::move(t1));
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnMove, MoveConstructor) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(std::move(t1));
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, MoveConstructorWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(std::move(t1), a1);
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnMove, MoveConstructorWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(std::move(t1), a1);
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, MoveConstructorWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(std::move(t1), a2);
|
||||
it = u.find(0);
|
||||
EXPECT_EQ(a2, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, a2.num_allocs());
|
||||
EXPECT_EQ(1, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnMove, MoveConstructorWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(std::move(t1), a2);
|
||||
it = u.find(0);
|
||||
EXPECT_EQ(a2, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, a2.num_allocs());
|
||||
EXPECT_EQ(1, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, CopyAssignmentWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a1);
|
||||
u = t1;
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyAssignmentWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a1);
|
||||
u = t1;
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, CopyAssignmentWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a2);
|
||||
u = t1;
|
||||
EXPECT_EQ(a1, u.get_allocator());
|
||||
EXPECT_EQ(2, a1.num_allocs());
|
||||
EXPECT_EQ(0, a2.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyAssignmentWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a2);
|
||||
u = t1;
|
||||
EXPECT_EQ(a2, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, a2.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(1, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, MoveAssignmentWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a1);
|
||||
u = std::move(t1);
|
||||
EXPECT_EQ(a1, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnMove, MoveAssignmentWithSameAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a1);
|
||||
u = std::move(t1);
|
||||
EXPECT_EQ(a1, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, MoveAssignmentWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a2);
|
||||
u = std::move(t1);
|
||||
EXPECT_EQ(a1, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, a2.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(NoPropagateOnMove, MoveAssignmentWithDifferentAlloc) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a2);
|
||||
u = std::move(t1);
|
||||
it = u.find(0);
|
||||
EXPECT_EQ(a2, u.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(1, a2.num_allocs());
|
||||
EXPECT_EQ(1, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
TEST_F(PropagateOnAll, Swap) {
|
||||
auto it = t1.insert(0).first;
|
||||
Table u(0, a2);
|
||||
u.swap(t1);
|
||||
EXPECT_EQ(a1, u.get_allocator());
|
||||
EXPECT_EQ(a2, t1.get_allocator());
|
||||
EXPECT_EQ(1, a1.num_allocs());
|
||||
EXPECT_EQ(0, a2.num_allocs());
|
||||
EXPECT_EQ(0, it->num_moves());
|
||||
EXPECT_EQ(0, it->num_copies());
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
1961
absl/container/internal/raw_hash_set_test.cc
Normal file
1961
absl/container/internal/raw_hash_set_test.cc
Normal file
File diff suppressed because it is too large
Load diff
78
absl/container/internal/tracked.h
Normal file
78
absl/container/internal/tracked.h
Normal file
|
@ -0,0 +1,78 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_TRACKED_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_TRACKED_H_
|
||||
|
||||
#include <stddef.h>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
// A class that tracks its copies and moves so that it can be queried in tests.
|
||||
template <class T>
|
||||
class Tracked {
|
||||
public:
|
||||
Tracked() {}
|
||||
// NOLINTNEXTLINE(runtime/explicit)
|
||||
Tracked(const T& val) : val_(val) {}
|
||||
Tracked(const Tracked& that)
|
||||
: val_(that.val_),
|
||||
num_moves_(that.num_moves_),
|
||||
num_copies_(that.num_copies_) {
|
||||
++(*num_copies_);
|
||||
}
|
||||
Tracked(Tracked&& that)
|
||||
: val_(std::move(that.val_)),
|
||||
num_moves_(std::move(that.num_moves_)),
|
||||
num_copies_(std::move(that.num_copies_)) {
|
||||
++(*num_moves_);
|
||||
}
|
||||
Tracked& operator=(const Tracked& that) {
|
||||
val_ = that.val_;
|
||||
num_moves_ = that.num_moves_;
|
||||
num_copies_ = that.num_copies_;
|
||||
++(*num_copies_);
|
||||
}
|
||||
Tracked& operator=(Tracked&& that) {
|
||||
val_ = std::move(that.val_);
|
||||
num_moves_ = std::move(that.num_moves_);
|
||||
num_copies_ = std::move(that.num_copies_);
|
||||
++(*num_moves_);
|
||||
}
|
||||
|
||||
const T& val() const { return val_; }
|
||||
|
||||
friend bool operator==(const Tracked& a, const Tracked& b) {
|
||||
return a.val_ == b.val_;
|
||||
}
|
||||
friend bool operator!=(const Tracked& a, const Tracked& b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
size_t num_copies() { return *num_copies_; }
|
||||
size_t num_moves() { return *num_moves_; }
|
||||
|
||||
private:
|
||||
T val_;
|
||||
std::shared_ptr<size_t> num_moves_ = std::make_shared<size_t>(0);
|
||||
std::shared_ptr<size_t> num_copies_ = std::make_shared<size_t>(0);
|
||||
};
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_TRACKED_H_
|
404
absl/container/internal/unordered_map_constructor_test.h
Normal file
404
absl/container/internal/unordered_map_constructor_test.h
Normal file
|
@ -0,0 +1,404 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class UnordMap>
|
||||
class ConstructorTest : public ::testing::Test {};
|
||||
|
||||
TYPED_TEST_CASE_P(ConstructorTest);
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, NoArgs) {
|
||||
TypeParam m;
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCount) {
|
||||
TypeParam m(123);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHash) {
|
||||
using H = typename TypeParam::hasher;
|
||||
H hasher;
|
||||
TypeParam m(123, hasher);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) {
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
H hasher;
|
||||
E equal;
|
||||
TypeParam m(123, hasher, equal);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) {
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountAlloc) {
|
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
|
||||
using A = typename TypeParam::allocator_type;
|
||||
A alloc(0);
|
||||
TypeParam m(123, alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) {
|
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
|
||||
using H = typename TypeParam::hasher;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketAlloc) {
|
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
|
||||
using A = typename TypeParam::allocator_type;
|
||||
A alloc(0);
|
||||
TypeParam m(alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre());
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) {
|
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
A alloc(0);
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end(), 123, alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) {
|
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
A alloc(0);
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end(), 123, hasher, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructor) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam n(m);
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) {
|
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam n(m, A(11));
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_NE(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO(alkis): Test non-propagating allocators on copy constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructor) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam t(m);
|
||||
TypeParam n(std::move(t));
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) {
|
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam t(m);
|
||||
TypeParam n(std::move(t), A(1));
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_NE(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO(alkis): Test non-propagating allocators on move constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(values, 123, hasher, equal, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) {
|
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
A alloc(0);
|
||||
TypeParam m(values, 123, alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) {
|
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
A alloc(0);
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m(values, 123, hasher, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, Assignment) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
|
||||
TypeParam n;
|
||||
n = m;
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
|
||||
// (it depends on traits).
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignment) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
|
||||
TypeParam t(m);
|
||||
TypeParam n;
|
||||
n = std::move(t);
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m;
|
||||
m = values;
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()});
|
||||
TypeParam n({gen()});
|
||||
n = m;
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()});
|
||||
TypeParam t(m);
|
||||
TypeParam n({gen()});
|
||||
n = std::move(t);
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m;
|
||||
m = values;
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m(values);
|
||||
m = *&m; // Avoid -Wself-assign
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
// We cannot test self move as standard states that it leaves standard
|
||||
// containers in unspecified state (and in practice in causes memory-leak
|
||||
// according to heap-checker!).
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(
|
||||
ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual,
|
||||
BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc,
|
||||
BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc,
|
||||
InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc,
|
||||
MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc,
|
||||
InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment,
|
||||
MoveAssignment, AssignmentFromInitializerList,
|
||||
AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting,
|
||||
AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf);
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
|
114
absl/container/internal/unordered_map_lookup_test.h
Normal file
114
absl/container/internal/unordered_map_lookup_test.h
Normal file
|
@ -0,0 +1,114 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class UnordMap>
|
||||
class LookupTest : public ::testing::Test {};
|
||||
|
||||
TYPED_TEST_CASE_P(LookupTest);
|
||||
|
||||
TYPED_TEST_P(LookupTest, At) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
for (const auto& p : values) {
|
||||
const auto& val = m.at(p.first);
|
||||
EXPECT_EQ(p.second, val) << ::testing::PrintToString(p.first);
|
||||
}
|
||||
}
|
||||
|
||||
TYPED_TEST_P(LookupTest, OperatorBracket) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& p : values) {
|
||||
auto& val = m[p.first];
|
||||
EXPECT_EQ(V(), val) << ::testing::PrintToString(p.first);
|
||||
val = p.second;
|
||||
}
|
||||
for (const auto& p : values)
|
||||
EXPECT_EQ(p.second, m[p.first]) << ::testing::PrintToString(p.first);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(LookupTest, Count) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& p : values)
|
||||
EXPECT_EQ(0, m.count(p.first)) << ::testing::PrintToString(p.first);
|
||||
m.insert(values.begin(), values.end());
|
||||
for (const auto& p : values)
|
||||
EXPECT_EQ(1, m.count(p.first)) << ::testing::PrintToString(p.first);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(LookupTest, Find) {
|
||||
using std::get;
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& p : values)
|
||||
EXPECT_TRUE(m.end() == m.find(p.first))
|
||||
<< ::testing::PrintToString(p.first);
|
||||
m.insert(values.begin(), values.end());
|
||||
for (const auto& p : values) {
|
||||
auto it = m.find(p.first);
|
||||
EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(p.first);
|
||||
EXPECT_EQ(p.second, get<1>(*it)) << ::testing::PrintToString(p.first);
|
||||
}
|
||||
}
|
||||
|
||||
TYPED_TEST_P(LookupTest, EqualRange) {
|
||||
using std::get;
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& p : values) {
|
||||
auto r = m.equal_range(p.first);
|
||||
ASSERT_EQ(0, std::distance(r.first, r.second));
|
||||
}
|
||||
m.insert(values.begin(), values.end());
|
||||
for (const auto& p : values) {
|
||||
auto r = m.equal_range(p.first);
|
||||
ASSERT_EQ(1, std::distance(r.first, r.second));
|
||||
EXPECT_EQ(p.second, get<1>(*r.first)) << ::testing::PrintToString(p.first);
|
||||
}
|
||||
}
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(LookupTest, At, OperatorBracket, Count, Find,
|
||||
EqualRange);
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
|
272
absl/container/internal/unordered_map_modifiers_test.h
Normal file
272
absl/container/internal/unordered_map_modifiers_test.h
Normal file
|
@ -0,0 +1,272 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class UnordMap>
|
||||
class ModifiersTest : public ::testing::Test {};
|
||||
|
||||
TYPED_TEST_CASE_P(ModifiersTest);
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Clear) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
m.clear();
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_TRUE(m.empty());
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Insert) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
auto p = m.insert(val);
|
||||
EXPECT_TRUE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
T val2 = {val.first, hash_internal::Generator<V>()()};
|
||||
p = m.insert(val2);
|
||||
EXPECT_FALSE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertHint) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
auto it = m.insert(m.end(), val);
|
||||
EXPECT_TRUE(it != m.end());
|
||||
EXPECT_EQ(val, *it);
|
||||
T val2 = {val.first, hash_internal::Generator<V>()()};
|
||||
it = m.insert(it, val2);
|
||||
EXPECT_TRUE(it != m.end());
|
||||
EXPECT_EQ(val, *it);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertRange) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
m.insert(values.begin(), values.end());
|
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertOrAssign) {
|
||||
#ifdef UNORDERED_MAP_CXX17
|
||||
using std::get;
|
||||
using K = typename TypeParam::key_type;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
K k = hash_internal::Generator<K>()();
|
||||
V val = hash_internal::Generator<V>()();
|
||||
TypeParam m;
|
||||
auto p = m.insert_or_assign(k, val);
|
||||
EXPECT_TRUE(p.second);
|
||||
EXPECT_EQ(k, get<0>(*p.first));
|
||||
EXPECT_EQ(val, get<1>(*p.first));
|
||||
V val2 = hash_internal::Generator<V>()();
|
||||
p = m.insert_or_assign(k, val2);
|
||||
EXPECT_FALSE(p.second);
|
||||
EXPECT_EQ(k, get<0>(*p.first));
|
||||
EXPECT_EQ(val2, get<1>(*p.first));
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertOrAssignHint) {
|
||||
#ifdef UNORDERED_MAP_CXX17
|
||||
using std::get;
|
||||
using K = typename TypeParam::key_type;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
K k = hash_internal::Generator<K>()();
|
||||
V val = hash_internal::Generator<V>()();
|
||||
TypeParam m;
|
||||
auto it = m.insert_or_assign(m.end(), k, val);
|
||||
EXPECT_TRUE(it != m.end());
|
||||
EXPECT_EQ(k, get<0>(*it));
|
||||
EXPECT_EQ(val, get<1>(*it));
|
||||
V val2 = hash_internal::Generator<V>()();
|
||||
it = m.insert_or_assign(it, k, val2);
|
||||
EXPECT_EQ(k, get<0>(*it));
|
||||
EXPECT_EQ(val2, get<1>(*it));
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Emplace) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto p = m.emplace(val);
|
||||
EXPECT_TRUE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
T val2 = {val.first, hash_internal::Generator<V>()()};
|
||||
p = m.emplace(val2);
|
||||
EXPECT_FALSE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, EmplaceHint) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto it = m.emplace_hint(m.end(), val);
|
||||
EXPECT_EQ(val, *it);
|
||||
T val2 = {val.first, hash_internal::Generator<V>()()};
|
||||
it = m.emplace_hint(it, val2);
|
||||
EXPECT_EQ(val, *it);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, TryEmplace) {
|
||||
#ifdef UNORDERED_MAP_CXX17
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto p = m.try_emplace(val.first, val.second);
|
||||
EXPECT_TRUE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
T val2 = {val.first, hash_internal::Generator<V>()()};
|
||||
p = m.try_emplace(val2.first, val2.second);
|
||||
EXPECT_FALSE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, TryEmplaceHint) {
|
||||
#ifdef UNORDERED_MAP_CXX17
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using V = typename TypeParam::mapped_type;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto it = m.try_emplace(m.end(), val.first, val.second);
|
||||
EXPECT_EQ(val, *it);
|
||||
T val2 = {val.first, hash_internal::Generator<V>()()};
|
||||
it = m.try_emplace(it, val2.first, val2.second);
|
||||
EXPECT_EQ(val, *it);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <class V>
|
||||
using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type;
|
||||
|
||||
// In openmap we chose not to return the iterator from erase because that's
|
||||
// more expensive. As such we adapt erase to return an iterator here.
|
||||
struct EraseFirst {
|
||||
template <class Map>
|
||||
auto operator()(Map* m, int) const
|
||||
-> IfNotVoid<decltype(m->erase(m->begin()))> {
|
||||
return m->erase(m->begin());
|
||||
}
|
||||
template <class Map>
|
||||
typename Map::iterator operator()(Map* m, ...) const {
|
||||
auto it = m->begin();
|
||||
m->erase(it++);
|
||||
return it;
|
||||
}
|
||||
};
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Erase) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using std::get;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
auto& first = *m.begin();
|
||||
std::vector<T> values2;
|
||||
for (const auto& val : values)
|
||||
if (get<0>(val) != get<0>(first)) values2.push_back(val);
|
||||
auto it = EraseFirst()(&m, 0);
|
||||
ASSERT_TRUE(it != m.end());
|
||||
EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it));
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values2.begin(),
|
||||
values2.end()));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseRange) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
auto it = m.erase(m.begin(), m.end());
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_TRUE(it == m.end());
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseKey) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_EQ(1, m.erase(values[0].first));
|
||||
EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0]));
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values.begin() + 1,
|
||||
values.end()));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Swap) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> v1;
|
||||
std::vector<T> v2;
|
||||
std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>());
|
||||
std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>());
|
||||
TypeParam m1(v1.begin(), v1.end());
|
||||
TypeParam m2(v2.begin(), v2.end());
|
||||
EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v1));
|
||||
EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v2));
|
||||
m1.swap(m2);
|
||||
EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v2));
|
||||
EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v1));
|
||||
}
|
||||
|
||||
// TODO(alkis): Write tests for extract.
|
||||
// TODO(alkis): Write tests for merge.
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint,
|
||||
InsertRange, InsertOrAssign, InsertOrAssignHint,
|
||||
Emplace, EmplaceHint, TryEmplace, TryEmplaceHint,
|
||||
Erase, EraseRange, EraseKey, Swap);
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
|
38
absl/container/internal/unordered_map_test.cc
Normal file
38
absl/container/internal/unordered_map_test.cc
Normal file
|
@ -0,0 +1,38 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
#include "absl/container/internal/unordered_map_constructor_test.h"
|
||||
#include "absl/container/internal/unordered_map_lookup_test.h"
|
||||
#include "absl/container/internal/unordered_map_modifiers_test.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using MapTypes = ::testing::Types<
|
||||
std::unordered_map<int, int, StatefulTestingHash, StatefulTestingEqual,
|
||||
Alloc<std::pair<const int, int>>>,
|
||||
std::unordered_map<std::string, std::string, StatefulTestingHash,
|
||||
StatefulTestingEqual,
|
||||
Alloc<std::pair<const std::string, std::string>>>>;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ConstructorTest, MapTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, LookupTest, MapTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ModifiersTest, MapTypes);
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
408
absl/container/internal/unordered_set_constructor_test.h
Normal file
408
absl/container/internal/unordered_set_constructor_test.h
Normal file
|
@ -0,0 +1,408 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class UnordMap>
|
||||
class ConstructorTest : public ::testing::Test {};
|
||||
|
||||
TYPED_TEST_CASE_P(ConstructorTest);
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, NoArgs) {
|
||||
TypeParam m;
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCount) {
|
||||
TypeParam m(123);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHash) {
|
||||
using H = typename TypeParam::hasher;
|
||||
H hasher;
|
||||
TypeParam m(123, hasher);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) {
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
H hasher;
|
||||
E equal;
|
||||
TypeParam m(123, hasher, equal);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) {
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
|
||||
const auto& cm = m;
|
||||
EXPECT_EQ(cm.hash_function(), hasher);
|
||||
EXPECT_EQ(cm.key_eq(), equal);
|
||||
EXPECT_EQ(cm.get_allocator(), alloc);
|
||||
EXPECT_TRUE(cm.empty());
|
||||
EXPECT_THAT(keys(cm), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(cm.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountAlloc) {
|
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
|
||||
using A = typename TypeParam::allocator_type;
|
||||
A alloc(0);
|
||||
TypeParam m(123, alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) {
|
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
|
||||
using H = typename TypeParam::hasher;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketAlloc) {
|
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
|
||||
using A = typename TypeParam::allocator_type;
|
||||
A alloc(0);
|
||||
TypeParam m(alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_TRUE(m.empty());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
std::vector<T> values;
|
||||
for (size_t i = 0; i != 10; ++i)
|
||||
values.push_back(hash_internal::Generator<T>()());
|
||||
TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) {
|
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
A alloc(0);
|
||||
std::vector<T> values;
|
||||
for (size_t i = 0; i != 10; ++i)
|
||||
values.push_back(hash_internal::Generator<T>()());
|
||||
TypeParam m(values.begin(), values.end(), 123, alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) {
|
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
A alloc(0);
|
||||
std::vector<T> values;
|
||||
for (size_t i = 0; i != 10; ++i)
|
||||
values.push_back(hash_internal::Generator<T>()());
|
||||
TypeParam m(values.begin(), values.end(), 123, hasher, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructor) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam n(m);
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) {
|
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam n(m, A(11));
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_NE(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO(alkis): Test non-propagating allocators on copy constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructor) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam t(m);
|
||||
TypeParam n(std::move(t));
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) {
|
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(123, hasher, equal, alloc);
|
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
|
||||
TypeParam t(m);
|
||||
TypeParam n(std::move(t), A(1));
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_NE(m.get_allocator(), n.get_allocator());
|
||||
EXPECT_EQ(m, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO(alkis): Test non-propagating allocators on move constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
TypeParam m(values, 123, hasher, equal, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.key_eq(), equal);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) {
|
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
A alloc(0);
|
||||
TypeParam m(values, 123, alloc);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) {
|
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
A alloc(0);
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m(values, 123, hasher, alloc);
|
||||
EXPECT_EQ(m.hash_function(), hasher);
|
||||
EXPECT_EQ(m.get_allocator(), alloc);
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_GE(m.bucket_count(), 123);
|
||||
#endif
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, Assignment) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
|
||||
TypeParam n;
|
||||
n = m;
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
|
||||
// (it depends on traits).
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignment) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
using H = typename TypeParam::hasher;
|
||||
using E = typename TypeParam::key_equal;
|
||||
using A = typename TypeParam::allocator_type;
|
||||
H hasher;
|
||||
E equal;
|
||||
A alloc(0);
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
|
||||
TypeParam t(m);
|
||||
TypeParam n;
|
||||
n = std::move(t);
|
||||
EXPECT_EQ(m.hash_function(), n.hash_function());
|
||||
EXPECT_EQ(m.key_eq(), n.key_eq());
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m;
|
||||
m = values;
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()});
|
||||
TypeParam n({gen()});
|
||||
n = m;
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
TypeParam m({gen(), gen(), gen()});
|
||||
TypeParam t(m);
|
||||
TypeParam n({gen()});
|
||||
n = std::move(t);
|
||||
EXPECT_EQ(m, n);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m;
|
||||
m = values;
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
hash_internal::Generator<T> gen;
|
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
|
||||
TypeParam m(values);
|
||||
m = *&m; // Avoid -Wself-assign.
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(
|
||||
ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual,
|
||||
BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc,
|
||||
BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc,
|
||||
InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc,
|
||||
MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc,
|
||||
InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment,
|
||||
MoveAssignment, AssignmentFromInitializerList,
|
||||
AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting,
|
||||
AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf);
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
|
88
absl/container/internal/unordered_set_lookup_test.h
Normal file
88
absl/container/internal/unordered_set_lookup_test.h
Normal file
|
@ -0,0 +1,88 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class UnordSet>
|
||||
class LookupTest : public ::testing::Test {};
|
||||
|
||||
TYPED_TEST_CASE_P(LookupTest);
|
||||
|
||||
TYPED_TEST_P(LookupTest, Count) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& v : values)
|
||||
EXPECT_EQ(0, m.count(v)) << ::testing::PrintToString(v);
|
||||
m.insert(values.begin(), values.end());
|
||||
for (const auto& v : values)
|
||||
EXPECT_EQ(1, m.count(v)) << ::testing::PrintToString(v);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(LookupTest, Find) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& v : values)
|
||||
EXPECT_TRUE(m.end() == m.find(v)) << ::testing::PrintToString(v);
|
||||
m.insert(values.begin(), values.end());
|
||||
for (const auto& v : values) {
|
||||
typename TypeParam::iterator it = m.find(v);
|
||||
static_assert(std::is_same<const typename TypeParam::value_type&,
|
||||
decltype(*it)>::value,
|
||||
"");
|
||||
static_assert(std::is_same<const typename TypeParam::value_type*,
|
||||
decltype(it.operator->())>::value,
|
||||
"");
|
||||
EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(v);
|
||||
EXPECT_EQ(v, *it) << ::testing::PrintToString(v);
|
||||
}
|
||||
}
|
||||
|
||||
TYPED_TEST_P(LookupTest, EqualRange) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
for (const auto& v : values) {
|
||||
auto r = m.equal_range(v);
|
||||
ASSERT_EQ(0, std::distance(r.first, r.second));
|
||||
}
|
||||
m.insert(values.begin(), values.end());
|
||||
for (const auto& v : values) {
|
||||
auto r = m.equal_range(v);
|
||||
ASSERT_EQ(1, std::distance(r.first, r.second));
|
||||
EXPECT_EQ(v, *r.first);
|
||||
}
|
||||
}
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(LookupTest, Count, Find, EqualRange);
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
|
187
absl/container/internal/unordered_set_modifiers_test.h
Normal file
187
absl/container/internal/unordered_set_modifiers_test.h
Normal file
|
@ -0,0 +1,187 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
|
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "absl/container/internal/hash_generator_testing.h"
|
||||
#include "absl/container/internal/hash_policy_testing.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
||||
template <class UnordSet>
|
||||
class ModifiersTest : public ::testing::Test {};
|
||||
|
||||
TYPED_TEST_CASE_P(ModifiersTest);
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Clear) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
m.clear();
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_TRUE(m.empty());
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Insert) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
auto p = m.insert(val);
|
||||
EXPECT_TRUE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
p = m.insert(val);
|
||||
EXPECT_FALSE(p.second);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertHint) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
auto it = m.insert(m.end(), val);
|
||||
EXPECT_TRUE(it != m.end());
|
||||
EXPECT_EQ(val, *it);
|
||||
it = m.insert(it, val);
|
||||
EXPECT_TRUE(it != m.end());
|
||||
EXPECT_EQ(val, *it);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertRange) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m;
|
||||
m.insert(values.begin(), values.end());
|
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Emplace) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto p = m.emplace(val);
|
||||
EXPECT_TRUE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
p = m.emplace(val);
|
||||
EXPECT_FALSE(p.second);
|
||||
EXPECT_EQ(val, *p.first);
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, EmplaceHint) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
T val = hash_internal::Generator<T>()();
|
||||
TypeParam m;
|
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto it = m.emplace_hint(m.end(), val);
|
||||
EXPECT_EQ(val, *it);
|
||||
it = m.emplace_hint(it, val);
|
||||
EXPECT_EQ(val, *it);
|
||||
}
|
||||
|
||||
template <class V>
|
||||
using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type;
|
||||
|
||||
// In openmap we chose not to return the iterator from erase because that's
|
||||
// more expensive. As such we adapt erase to return an iterator here.
|
||||
struct EraseFirst {
|
||||
template <class Map>
|
||||
auto operator()(Map* m, int) const
|
||||
-> IfNotVoid<decltype(m->erase(m->begin()))> {
|
||||
return m->erase(m->begin());
|
||||
}
|
||||
template <class Map>
|
||||
typename Map::iterator operator()(Map* m, ...) const {
|
||||
auto it = m->begin();
|
||||
m->erase(it++);
|
||||
return it;
|
||||
}
|
||||
};
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Erase) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
std::vector<T> values2;
|
||||
for (const auto& val : values)
|
||||
if (val != *m.begin()) values2.push_back(val);
|
||||
auto it = EraseFirst()(&m, 0);
|
||||
ASSERT_TRUE(it != m.end());
|
||||
EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it));
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values2.begin(),
|
||||
values2.end()));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseRange) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
auto it = m.erase(m.begin(), m.end());
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
|
||||
EXPECT_TRUE(it == m.end());
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseKey) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> values;
|
||||
std::generate_n(std::back_inserter(values), 10,
|
||||
hash_internal::Generator<T>());
|
||||
TypeParam m(values.begin(), values.end());
|
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
|
||||
EXPECT_EQ(1, m.erase(values[0]));
|
||||
EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0]));
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values.begin() + 1,
|
||||
values.end()));
|
||||
}
|
||||
|
||||
TYPED_TEST_P(ModifiersTest, Swap) {
|
||||
using T = hash_internal::GeneratedType<TypeParam>;
|
||||
std::vector<T> v1;
|
||||
std::vector<T> v2;
|
||||
std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>());
|
||||
std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>());
|
||||
TypeParam m1(v1.begin(), v1.end());
|
||||
TypeParam m2(v2.begin(), v2.end());
|
||||
EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v1));
|
||||
EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v2));
|
||||
m1.swap(m2);
|
||||
EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v2));
|
||||
EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v1));
|
||||
}
|
||||
|
||||
// TODO(alkis): Write tests for extract.
|
||||
// TODO(alkis): Write tests for merge.
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint,
|
||||
InsertRange, Emplace, EmplaceHint, Erase, EraseRange,
|
||||
EraseKey, Swap);
|
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
|
37
absl/container/internal/unordered_set_test.cc
Normal file
37
absl/container/internal/unordered_set_test.cc
Normal file
|
@ -0,0 +1,37 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <unordered_set>
|
||||
|
||||
#include "absl/container/internal/unordered_set_constructor_test.h"
|
||||
#include "absl/container/internal/unordered_set_lookup_test.h"
|
||||
#include "absl/container/internal/unordered_set_modifiers_test.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using SetTypes =
|
||||
::testing::Types<std::unordered_set<int, StatefulTestingHash,
|
||||
StatefulTestingEqual, Alloc<int>>,
|
||||
std::unordered_set<std::string, StatefulTestingHash,
|
||||
StatefulTestingEqual, Alloc<std::string>>>;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ConstructorTest, SetTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, LookupTest, SetTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ModifiersTest, SetTypes);
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
530
absl/container/node_hash_map.h
Normal file
530
absl/container/node_hash_map.h
Normal file
|
@ -0,0 +1,530 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: node_hash_map.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_map<K, V>` is an unordered associative container of
|
||||
// unique keys and associated values designed to be a more efficient replacement
|
||||
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
|
||||
// deletion of map elements can be done as an `O(1)` operation. However,
|
||||
// `node_hash_map` (and other unordered associative containers known as the
|
||||
// collection of Abseil "Swiss tables") contain other optimizations that result
|
||||
// in both memory and computation advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash map should be a map of type
|
||||
// `flat_hash_map`. However, if you need pointer stability and cannot store
|
||||
// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
|
||||
// valid alternative. As well, if you are migrating your code from using
|
||||
// `std::unordered_map`, a `node_hash_map` provides a more straightforward
|
||||
// migration, because it guarantees pointer stability. Consider migrating to
|
||||
// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
|
||||
// upon further review.
|
||||
|
||||
#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
|
||||
#define ABSL_CONTAINER_NODE_HASH_MAP_H_
|
||||
|
||||
#include <tuple>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/container/internal/container_memory.h"
|
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
|
||||
#include "absl/container/internal/node_hash_policy.h"
|
||||
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
|
||||
#include "absl/memory/memory.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
template <class Key, class Value>
|
||||
class NodeHashMapPolicy;
|
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::node_hash_map
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_map<K, V>` is an unordered associative container which
|
||||
// has been optimized for both speed and memory footprint in most common use
|
||||
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
|
||||
// the following notable differences:
|
||||
//
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the map is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash map.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `node_hash_map` uses the `absl::Hash` hashing framework.
|
||||
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
||||
// a compatible equality operator for comparing insertions into `node_hash_map`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a node hash map of three strings (that map to strings)
|
||||
// absl::node_hash_map<std::string, std::string> ducks =
|
||||
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
|
||||
//
|
||||
// // Insert a new element into the node hash map
|
||||
// ducks.insert({"d", "donald"}};
|
||||
//
|
||||
// // Force a rehash of the node hash map
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // Find the element with the key "b"
|
||||
// std::string search_key = "b";
|
||||
// auto result = ducks.find(search_key);
|
||||
// if (result != ducks.end()) {
|
||||
// std::cout << "Result: " << search_key->second << std::endl;
|
||||
// }
|
||||
template <class Key, class Value,
|
||||
class Hash = absl::container_internal::hash_default_hash<Key>,
|
||||
class Eq = absl::container_internal::hash_default_eq<Key>,
|
||||
class Alloc = std::allocator<std::pair<const Key, Value>>>
|
||||
class node_hash_map
|
||||
: public absl::container_internal::raw_hash_map<
|
||||
absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
|
||||
Alloc> {
|
||||
using Base = typename node_hash_map::raw_hash_map;
|
||||
|
||||
public:
|
||||
node_hash_map() {}
|
||||
using Base::Base;
|
||||
|
||||
// node_hash_map::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `node_hash_map`.
|
||||
using Base::begin;
|
||||
|
||||
// node_hash_map::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `node_hash_map`.
|
||||
using Base::cbegin;
|
||||
|
||||
// node_hash_map::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `node_hash_map`.
|
||||
using Base::cend;
|
||||
|
||||
// node_hash_map::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `node_hash_map`.
|
||||
using Base::end;
|
||||
|
||||
// node_hash_map::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `node_hash_map`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::node_hash_map` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity;
|
||||
|
||||
// node_hash_map::empty()
|
||||
//
|
||||
// Returns whether or not the `node_hash_map` is empty.
|
||||
using Base::empty;
|
||||
|
||||
// node_hash_map::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `node_hash_map` under current memory constraints. This value can be thought
|
||||
// of as the largest value of `std::distance(begin(), end())` for a
|
||||
// `node_hash_map<K, V>`.
|
||||
using Base::max_size;
|
||||
|
||||
// node_hash_map::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `node_hash_map`.
|
||||
using Base::size;
|
||||
|
||||
// node_hash_map::clear()
|
||||
//
|
||||
// Removes all elements from the `node_hash_map`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear;
|
||||
|
||||
// node_hash_map::erase()
|
||||
//
|
||||
// Erases elements within the `node_hash_map`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `node_hash_map`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase;
|
||||
|
||||
// node_hash_map::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `node_hash_map`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const init_type& value):
|
||||
//
|
||||
// Inserts a value into the `node_hash_map`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a `bool` denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
// std::pair<iterator,bool> insert(init_type&& value ):
|
||||
//
|
||||
// Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a `bool` denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const init_type& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
// iterator insert(const_iterator hint, init_type&& value );
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `node_hash_map` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<init_type> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `node_hash_map` we guarantee the first match is inserted.
|
||||
using Base::insert;
|
||||
|
||||
// node_hash_map::insert_or_assign()
|
||||
//
|
||||
// Inserts an element of the specified value into the `node_hash_map` provided
|
||||
// that a value with the given key does not already exist, or replaces it with
|
||||
// the element value if a key for that value already exists, returning an
|
||||
// iterator pointing to the newly inserted element. If rehashing occurs due to
|
||||
// the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
|
||||
// std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `node_hash_map`.
|
||||
//
|
||||
// iterator insert_or_assign(const_iterator hint,
|
||||
// const init_type& k, T&& obj):
|
||||
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `node_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::insert_or_assign;
|
||||
|
||||
// node_hash_map::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_map`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace;
|
||||
|
||||
// node_hash_map::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_map`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint;
|
||||
|
||||
// node_hash_map::try_emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_map`, provided that no element with the given key
|
||||
// already exists. Unlike `emplace()`, if an element with the given key
|
||||
// already exists, we guarantee that no element is constructed.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
// Overloads are listed below.
|
||||
//
|
||||
// std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
|
||||
// std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `node_hash_map`.
|
||||
//
|
||||
// iterator try_emplace(const_iterator hint,
|
||||
// const init_type& k, Args&&... args):
|
||||
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `node_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::try_emplace;
|
||||
|
||||
// node_hash_map::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the key,value pair of the element at the indicated position and
|
||||
// returns a node handle owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the key,value pair of the element with a key matching the passed
|
||||
// key value and returns a node handle owning that extracted data. If the
|
||||
// `node_hash_map` does not contain an element with a matching key, this
|
||||
// function returns an empty node handle.
|
||||
using Base::extract;
|
||||
|
||||
// node_hash_map::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` node hash map into this
|
||||
// `node_hash_map`. If the destination `node_hash_map` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge;
|
||||
|
||||
// node_hash_map::swap(node_hash_map& other)
|
||||
//
|
||||
// Exchanges the contents of this `node_hash_map` with those of the `other`
|
||||
// node hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `node_hash_map` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the node hash map's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap;
|
||||
|
||||
// node_hash_map::rehash(count)
|
||||
//
|
||||
// Rehashes the `node_hash_map`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
using Base::rehash;
|
||||
|
||||
// node_hash_map::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `node_hash_map` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve;
|
||||
|
||||
// node_hash_map::at()
|
||||
//
|
||||
// Returns a reference to the mapped value of the element with key equivalent
|
||||
// to the passed key.
|
||||
using Base::at;
|
||||
|
||||
// node_hash_map::contains()
|
||||
//
|
||||
// Determines whether an element with a key comparing equal to the given `key`
|
||||
// exists within the `node_hash_map`, returning `true` if so or `false`
|
||||
// otherwise.
|
||||
using Base::contains;
|
||||
|
||||
// node_hash_map::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements with a key comparing equal to the given
|
||||
// `key` within the `node_hash_map`. note that this function will return
|
||||
// either `1` or `0` since duplicate keys are not allowed within a
|
||||
// `node_hash_map`.
|
||||
using Base::count;
|
||||
|
||||
// node_hash_map::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `node_hash_map`.
|
||||
using Base::equal_range;
|
||||
|
||||
// node_hash_map::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `node_hash_map`.
|
||||
using Base::find;
|
||||
|
||||
// node_hash_map::operator[]()
|
||||
//
|
||||
// Returns a reference to the value mapped to the passed key within the
|
||||
// `node_hash_map`, performing an `insert()` if the key does not already
|
||||
// exist. If an insertion occurs and results in a rehashing of the container,
|
||||
// all iterators are invalidated. Otherwise iterators are not affected and
|
||||
// references are not invalidated. Overloads are listed below.
|
||||
//
|
||||
// T& operator[](const Key& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place if the element with the
|
||||
// given key does not exist.
|
||||
//
|
||||
// T& operator[]( Key&& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place provided that an element
|
||||
// with the given key does not exist.
|
||||
using Base::operator[];
|
||||
|
||||
// node_hash_map::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `node_hash_map`.
|
||||
using Base::bucket_count;
|
||||
|
||||
// node_hash_map::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `node_hash_map` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor;
|
||||
|
||||
// node_hash_map::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `node_hash_map`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float node_hash_map::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `node_hash_map`.
|
||||
//
|
||||
// void node_hash_map::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `node_hash_map` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `node_hash_map` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor;
|
||||
|
||||
// node_hash_map::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `node_hash_map`.
|
||||
using Base::get_allocator;
|
||||
|
||||
// node_hash_map::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `node_hash_map`.
|
||||
using Base::hash_function;
|
||||
|
||||
// node_hash_map::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq;
|
||||
|
||||
ABSL_DEPRECATED("Call `hash_function()` instead.")
|
||||
typename Base::hasher hash_funct() { return this->hash_function(); }
|
||||
|
||||
ABSL_DEPRECATED("Call `rehash()` instead.")
|
||||
void resize(typename Base::size_type hint) { this->rehash(hint); }
|
||||
};
|
||||
|
||||
namespace container_internal {
|
||||
|
||||
template <class Key, class Value>
|
||||
class NodeHashMapPolicy
|
||||
: public absl::container_internal::node_hash_policy<
|
||||
std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
|
||||
using value_type = std::pair<const Key, Value>;
|
||||
|
||||
public:
|
||||
using key_type = Key;
|
||||
using mapped_type = Value;
|
||||
using init_type = std::pair</*non const*/ key_type, mapped_type>;
|
||||
|
||||
template <class Allocator, class... Args>
|
||||
static value_type* new_element(Allocator* alloc, Args&&... args) {
|
||||
using PairAlloc = typename absl::allocator_traits<
|
||||
Allocator>::template rebind_alloc<value_type>;
|
||||
PairAlloc pair_alloc(*alloc);
|
||||
value_type* res =
|
||||
absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
|
||||
absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
|
||||
std::forward<Args>(args)...);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void delete_element(Allocator* alloc, value_type* pair) {
|
||||
using PairAlloc = typename absl::allocator_traits<
|
||||
Allocator>::template rebind_alloc<value_type>;
|
||||
PairAlloc pair_alloc(*alloc);
|
||||
absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
|
||||
absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
|
||||
}
|
||||
|
||||
template <class F, class... Args>
|
||||
static decltype(absl::container_internal::DecomposePair(
|
||||
std::declval<F>(), std::declval<Args>()...))
|
||||
apply(F&& f, Args&&... args) {
|
||||
return absl::container_internal::DecomposePair(std::forward<F>(f),
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
static size_t element_space_used(const value_type*) {
|
||||
return sizeof(value_type);
|
||||
}
|
||||
|
||||
static Value& value(value_type* elem) { return elem->second; }
|
||||
static const Value& value(const value_type* elem) { return elem->second; }
|
||||
};
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_NODE_HASH_MAP_H_
|
218
absl/container/node_hash_map_test.cc
Normal file
218
absl/container/node_hash_map_test.cc
Normal file
|
@ -0,0 +1,218 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/node_hash_map.h"
|
||||
|
||||
#include "absl/container/internal/tracked.h"
|
||||
#include "absl/container/internal/unordered_map_constructor_test.h"
|
||||
#include "absl/container/internal/unordered_map_lookup_test.h"
|
||||
#include "absl/container/internal/unordered_map_modifiers_test.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
|
||||
using ::testing::Field;
|
||||
using ::testing::Pair;
|
||||
using ::testing::UnorderedElementsAre;
|
||||
|
||||
using MapTypes = ::testing::Types<
|
||||
absl::node_hash_map<int, int, StatefulTestingHash, StatefulTestingEqual,
|
||||
Alloc<std::pair<const int, int>>>,
|
||||
absl::node_hash_map<std::string, std::string, StatefulTestingHash,
|
||||
StatefulTestingEqual,
|
||||
Alloc<std::pair<const std::string, std::string>>>>;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ConstructorTest, MapTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, LookupTest, MapTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ModifiersTest, MapTypes);
|
||||
|
||||
using M = absl::node_hash_map<std::string, Tracked<int>>;
|
||||
|
||||
TEST(NodeHashMap, Emplace) {
|
||||
M m;
|
||||
Tracked<int> t(53);
|
||||
m.emplace("a", t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(1, t.num_copies());
|
||||
|
||||
m.emplace(std::string("a"), t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(1, t.num_copies());
|
||||
|
||||
std::string a("a");
|
||||
m.emplace(a, t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(1, t.num_copies());
|
||||
|
||||
const std::string ca("a");
|
||||
m.emplace(a, t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(1, t.num_copies());
|
||||
|
||||
m.emplace(std::make_pair("a", t));
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(2, t.num_copies());
|
||||
|
||||
m.emplace(std::make_pair(std::string("a"), t));
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(3, t.num_copies());
|
||||
|
||||
std::pair<std::string, Tracked<int>> p("a", t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(4, t.num_copies());
|
||||
m.emplace(p);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(4, t.num_copies());
|
||||
|
||||
const std::pair<std::string, Tracked<int>> cp("a", t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(5, t.num_copies());
|
||||
m.emplace(cp);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(5, t.num_copies());
|
||||
|
||||
std::pair<const std::string, Tracked<int>> pc("a", t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(6, t.num_copies());
|
||||
m.emplace(pc);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(6, t.num_copies());
|
||||
|
||||
const std::pair<const std::string, Tracked<int>> cpc("a", t);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(7, t.num_copies());
|
||||
m.emplace(cpc);
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(7, t.num_copies());
|
||||
|
||||
m.emplace(std::piecewise_construct, std::forward_as_tuple("a"),
|
||||
std::forward_as_tuple(t));
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(7, t.num_copies());
|
||||
|
||||
m.emplace(std::piecewise_construct, std::forward_as_tuple(std::string("a")),
|
||||
std::forward_as_tuple(t));
|
||||
ASSERT_EQ(0, t.num_moves());
|
||||
ASSERT_EQ(7, t.num_copies());
|
||||
}
|
||||
|
||||
TEST(NodeHashMap, AssignRecursive) {
|
||||
struct Tree {
|
||||
// Verify that unordered_map<K, IncompleteType> can be instantiated.
|
||||
absl::node_hash_map<int, Tree> children;
|
||||
};
|
||||
Tree root;
|
||||
const Tree& child = root.children.emplace().first->second;
|
||||
// Verify that `lhs = rhs` doesn't read rhs after clearing lhs.
|
||||
root = child;
|
||||
}
|
||||
|
||||
TEST(FlatHashMap, MoveOnlyKey) {
|
||||
struct Key {
|
||||
Key() = default;
|
||||
Key(Key&&) = default;
|
||||
Key& operator=(Key&&) = default;
|
||||
};
|
||||
struct Eq {
|
||||
bool operator()(const Key&, const Key&) const { return true; }
|
||||
};
|
||||
struct Hash {
|
||||
size_t operator()(const Key&) const { return 0; }
|
||||
};
|
||||
absl::node_hash_map<Key, int, Hash, Eq> m;
|
||||
m[Key()];
|
||||
}
|
||||
|
||||
struct NonMovableKey {
|
||||
explicit NonMovableKey(int i) : i(i) {}
|
||||
NonMovableKey(NonMovableKey&&) = delete;
|
||||
int i;
|
||||
};
|
||||
struct NonMovableKeyHash {
|
||||
using is_transparent = void;
|
||||
size_t operator()(const NonMovableKey& k) const { return k.i; }
|
||||
size_t operator()(int k) const { return k; }
|
||||
};
|
||||
struct NonMovableKeyEq {
|
||||
using is_transparent = void;
|
||||
bool operator()(const NonMovableKey& a, const NonMovableKey& b) const {
|
||||
return a.i == b.i;
|
||||
}
|
||||
bool operator()(const NonMovableKey& a, int b) const { return a.i == b; }
|
||||
};
|
||||
|
||||
TEST(NodeHashMap, MergeExtractInsert) {
|
||||
absl::node_hash_map<NonMovableKey, int, NonMovableKeyHash, NonMovableKeyEq>
|
||||
set1, set2;
|
||||
set1.emplace(std::piecewise_construct, std::make_tuple(7),
|
||||
std::make_tuple(-7));
|
||||
set1.emplace(std::piecewise_construct, std::make_tuple(17),
|
||||
std::make_tuple(-17));
|
||||
|
||||
set2.emplace(std::piecewise_construct, std::make_tuple(7),
|
||||
std::make_tuple(-70));
|
||||
set2.emplace(std::piecewise_construct, std::make_tuple(19),
|
||||
std::make_tuple(-190));
|
||||
|
||||
auto Elem = [](int key, int value) {
|
||||
return Pair(Field(&NonMovableKey::i, key), value);
|
||||
};
|
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Elem(7, -7), Elem(17, -17)));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(19, -190)));
|
||||
|
||||
// NonMovableKey is neither copyable nor movable. We should still be able to
|
||||
// move nodes around.
|
||||
static_assert(!std::is_move_constructible<NonMovableKey>::value, "");
|
||||
set1.merge(set2);
|
||||
|
||||
EXPECT_THAT(set1,
|
||||
UnorderedElementsAre(Elem(7, -7), Elem(17, -17), Elem(19, -190)));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70)));
|
||||
|
||||
auto node = set1.extract(7);
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_EQ(node.key().i, 7);
|
||||
EXPECT_EQ(node.mapped(), -7);
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Elem(17, -17), Elem(19, -190)));
|
||||
|
||||
auto insert_result = set2.insert(std::move(node));
|
||||
EXPECT_FALSE(node);
|
||||
EXPECT_FALSE(insert_result.inserted);
|
||||
EXPECT_TRUE(insert_result.node);
|
||||
EXPECT_EQ(insert_result.node.key().i, 7);
|
||||
EXPECT_EQ(insert_result.node.mapped(), -7);
|
||||
EXPECT_THAT(*insert_result.position, Elem(7, -70));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70)));
|
||||
|
||||
node = set1.extract(17);
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_EQ(node.key().i, 17);
|
||||
EXPECT_EQ(node.mapped(), -17);
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Elem(19, -190)));
|
||||
|
||||
node.mapped() = 23;
|
||||
|
||||
insert_result = set2.insert(std::move(node));
|
||||
EXPECT_FALSE(node);
|
||||
EXPECT_TRUE(insert_result.inserted);
|
||||
EXPECT_FALSE(insert_result.node);
|
||||
EXPECT_THAT(*insert_result.position, Elem(17, 23));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(17, 23)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
439
absl/container/node_hash_set.h
Normal file
439
absl/container/node_hash_set.h
Normal file
|
@ -0,0 +1,439 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: node_hash_set.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_set<T>` is an unordered associative container designed to
|
||||
// be a more efficient replacement for `std::unordered_set`. Like
|
||||
// `unordered_set`, search, insertion, and deletion of map elements can be done
|
||||
// as an `O(1)` operation. However, `node_hash_set` (and other unordered
|
||||
// associative containers known as the collection of Abseil "Swiss tables")
|
||||
// contain other optimizations that result in both memory and computation
|
||||
// advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash table should be a map of type
|
||||
// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
|
||||
// pointer stability, a `node_hash_set` should be your preferred choice. As
|
||||
// well, if you are migrating your code from using `std::unordered_set`, a
|
||||
// `node_hash_set` should be an easy migration. Consider migrating to
|
||||
// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
|
||||
// upon further review.
|
||||
|
||||
#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
|
||||
#define ABSL_CONTAINER_NODE_HASH_SET_H_
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
|
||||
#include "absl/container/internal/node_hash_policy.h"
|
||||
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
|
||||
#include "absl/memory/memory.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
template <typename T>
|
||||
struct NodeHashSetPolicy;
|
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::node_hash_set
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_set<T>` is an unordered associative container which
|
||||
// has been optimized for both speed and memory footprint in most common use
|
||||
// cases. Its interface is similar to that of `std::unordered_set<T>` with the
|
||||
// following notable differences:
|
||||
//
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the map is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash set.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
|
||||
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
||||
// a compatible equality operator for comparing insertions into `node_hash_set`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a node hash set of three strings
|
||||
// absl::node_hash_map<std::string, std::string> ducks =
|
||||
// {"huey", "dewey"}, "louie"};
|
||||
//
|
||||
// // Insert a new element into the node hash map
|
||||
// ducks.insert("donald"};
|
||||
//
|
||||
// // Force a rehash of the node hash map
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // See if "dewey" is present
|
||||
// if (ducks.contains("dewey")) {
|
||||
// std::cout << "We found dewey!" << std::endl;
|
||||
// }
|
||||
template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
|
||||
class Eq = absl::container_internal::hash_default_eq<T>,
|
||||
class Alloc = std::allocator<T>>
|
||||
class node_hash_set
|
||||
: public absl::container_internal::raw_hash_set<
|
||||
absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
|
||||
using Base = typename node_hash_set::raw_hash_set;
|
||||
|
||||
public:
|
||||
node_hash_set() {}
|
||||
using Base::Base;
|
||||
|
||||
// node_hash_set::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `node_hash_set`.
|
||||
using Base::begin;
|
||||
|
||||
// node_hash_set::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `node_hash_set`.
|
||||
using Base::cbegin;
|
||||
|
||||
// node_hash_set::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `node_hash_set`.
|
||||
using Base::cend;
|
||||
|
||||
// node_hash_set::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `node_hash_set`.
|
||||
using Base::end;
|
||||
|
||||
// node_hash_set::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `node_hash_set`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::node_hash_set` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity;
|
||||
|
||||
// node_hash_set::empty()
|
||||
//
|
||||
// Returns whether or not the `node_hash_set` is empty.
|
||||
using Base::empty;
|
||||
|
||||
// node_hash_set::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `node_hash_set` under current memory constraints. This value can be thought
|
||||
// of the largest value of `std::distance(begin(), end())` for a
|
||||
// `node_hash_set<T>`.
|
||||
using Base::max_size;
|
||||
|
||||
// node_hash_set::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `node_hash_set`.
|
||||
using Base::size;
|
||||
|
||||
// node_hash_set::clear()
|
||||
//
|
||||
// Removes all elements from the `node_hash_set`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear;
|
||||
|
||||
// node_hash_set::erase()
|
||||
//
|
||||
// Erases elements within the `node_hash_set`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `node_hash_set`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase;
|
||||
|
||||
// node_hash_set::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `node_hash_set`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const T& value):
|
||||
//
|
||||
// Inserts a value into the `node_hash_set`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a bool denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
//
|
||||
// Inserts a moveable value into the `node_hash_set`. Returns a pair
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a bool denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const T& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `node_hash_set` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<T> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `node_hash_set` we guarantee the first match is inserted.
|
||||
using Base::insert;
|
||||
|
||||
// node_hash_set::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_set`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace;
|
||||
|
||||
// node_hash_set::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_set`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint;
|
||||
|
||||
// node_hash_set::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the element at the indicated position and returns a node handle
|
||||
// owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the element with the key matching the passed key value and
|
||||
// returns a node handle owning that extracted data. If the `node_hash_set`
|
||||
// does not contain an element with a matching key, this function returns an
|
||||
// empty node handle.
|
||||
using Base::extract;
|
||||
|
||||
// node_hash_set::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` flat hash map into this
|
||||
// `node_hash_set`. If the destination `node_hash_set` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge;
|
||||
|
||||
// node_hash_set::swap(node_hash_set& other)
|
||||
//
|
||||
// Exchanges the contents of this `node_hash_set` with those of the `other`
|
||||
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `node_hash_set` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the flat hash set's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap;
|
||||
|
||||
// node_hash_set::rehash(count)
|
||||
//
|
||||
// Rehashes the `node_hash_set`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
//
|
||||
// NOTE: unlike behavior in `std::unordered_set`, references are also
|
||||
// invalidated upon a `rehash()`.
|
||||
using Base::rehash;
|
||||
|
||||
// node_hash_set::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `node_hash_set` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve;
|
||||
|
||||
// node_hash_set::contains()
|
||||
//
|
||||
// Determines whether an element comparing equal to the given `key` exists
|
||||
// within the `node_hash_set`, returning `true` if so or `false` otherwise.
|
||||
using Base::contains;
|
||||
|
||||
// node_hash_set::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements comparing equal to the given `key` within
|
||||
// the `node_hash_set`. note that this function will return either `1` or `0`
|
||||
// since duplicate elements are not allowed within a `node_hash_set`.
|
||||
using Base::count;
|
||||
|
||||
// node_hash_set::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `node_hash_set`.
|
||||
using Base::equal_range;
|
||||
|
||||
// node_hash_set::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `node_hash_set`.
|
||||
using Base::find;
|
||||
|
||||
// node_hash_set::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `node_hash_set`. Note that
|
||||
// because a flat hash map contains all elements within its internal storage,
|
||||
// this value simply equals the current capacity of the `node_hash_set`.
|
||||
using Base::bucket_count;
|
||||
|
||||
// node_hash_set::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `node_hash_set` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor;
|
||||
|
||||
// node_hash_set::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `node_hash_set`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float node_hash_set::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `node_hash_set`.
|
||||
//
|
||||
// void node_hash_set::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `node_hash_set` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `node_hash_set` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor;
|
||||
|
||||
// node_hash_set::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `node_hash_set`.
|
||||
using Base::get_allocator;
|
||||
|
||||
// node_hash_set::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `node_hash_set`.
|
||||
using Base::hash_function;
|
||||
|
||||
// node_hash_set::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq;
|
||||
|
||||
ABSL_DEPRECATED("Call `hash_function()` instead.")
|
||||
typename Base::hasher hash_funct() { return this->hash_function(); }
|
||||
|
||||
ABSL_DEPRECATED("Call `rehash()` instead.")
|
||||
void resize(typename Base::size_type hint) { this->rehash(hint); }
|
||||
};
|
||||
|
||||
namespace container_internal {
|
||||
|
||||
template <class T>
|
||||
struct NodeHashSetPolicy
|
||||
: absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
|
||||
using key_type = T;
|
||||
using init_type = T;
|
||||
using constant_iterators = std::true_type;
|
||||
|
||||
template <class Allocator, class... Args>
|
||||
static T* new_element(Allocator* alloc, Args&&... args) {
|
||||
using ValueAlloc =
|
||||
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
|
||||
ValueAlloc value_alloc(*alloc);
|
||||
T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
|
||||
absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
|
||||
std::forward<Args>(args)...);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class Allocator>
|
||||
static void delete_element(Allocator* alloc, T* elem) {
|
||||
using ValueAlloc =
|
||||
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
|
||||
ValueAlloc value_alloc(*alloc);
|
||||
absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
|
||||
absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
|
||||
}
|
||||
|
||||
template <class F, class... Args>
|
||||
static decltype(absl::container_internal::DecomposeValue(
|
||||
std::declval<F>(), std::declval<Args>()...))
|
||||
apply(F&& f, Args&&... args) {
|
||||
return absl::container_internal::DecomposeValue(
|
||||
std::forward<F>(f), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
static size_t element_space_used(const T*) { return sizeof(T); }
|
||||
};
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_NODE_HASH_SET_H_
|
103
absl/container/node_hash_set_test.cc
Normal file
103
absl/container/node_hash_set_test.cc
Normal file
|
@ -0,0 +1,103 @@
|
|||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/node_hash_set.h"
|
||||
|
||||
#include "absl/container/internal/unordered_set_constructor_test.h"
|
||||
#include "absl/container/internal/unordered_set_lookup_test.h"
|
||||
#include "absl/container/internal/unordered_set_modifiers_test.h"
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
namespace {
|
||||
using ::absl::container_internal::hash_internal::Enum;
|
||||
using ::absl::container_internal::hash_internal::EnumClass;
|
||||
using ::testing::Pointee;
|
||||
using ::testing::UnorderedElementsAre;
|
||||
|
||||
using SetTypes = ::testing::Types<
|
||||
node_hash_set<int, StatefulTestingHash, StatefulTestingEqual, Alloc<int>>,
|
||||
node_hash_set<std::string, StatefulTestingHash, StatefulTestingEqual,
|
||||
Alloc<int>>,
|
||||
node_hash_set<Enum, StatefulTestingHash, StatefulTestingEqual, Alloc<Enum>>,
|
||||
node_hash_set<EnumClass, StatefulTestingHash, StatefulTestingEqual,
|
||||
Alloc<EnumClass>>>;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ConstructorTest, SetTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, LookupTest, SetTypes);
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ModifiersTest, SetTypes);
|
||||
|
||||
TEST(NodeHashSet, MoveableNotCopyableCompiles) {
|
||||
node_hash_set<std::unique_ptr<void*>> t;
|
||||
node_hash_set<std::unique_ptr<void*>> u;
|
||||
u = std::move(t);
|
||||
}
|
||||
|
||||
TEST(NodeHashSet, MergeExtractInsert) {
|
||||
struct Hash {
|
||||
size_t operator()(const std::unique_ptr<int>& p) const { return *p; }
|
||||
};
|
||||
struct Eq {
|
||||
bool operator()(const std::unique_ptr<int>& a,
|
||||
const std::unique_ptr<int>& b) const {
|
||||
return *a == *b;
|
||||
}
|
||||
};
|
||||
absl::node_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2;
|
||||
set1.insert(absl::make_unique<int>(7));
|
||||
set1.insert(absl::make_unique<int>(17));
|
||||
|
||||
set2.insert(absl::make_unique<int>(7));
|
||||
set2.insert(absl::make_unique<int>(19));
|
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17)));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19)));
|
||||
|
||||
set1.merge(set2);
|
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19)));
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
|
||||
|
||||
auto node = set1.extract(absl::make_unique<int>(7));
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_THAT(node.value(), Pointee(7));
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19)));
|
||||
|
||||
auto insert_result = set2.insert(std::move(node));
|
||||
EXPECT_FALSE(node);
|
||||
EXPECT_FALSE(insert_result.inserted);
|
||||
EXPECT_TRUE(insert_result.node);
|
||||
EXPECT_THAT(insert_result.node.value(), Pointee(7));
|
||||
EXPECT_EQ(**insert_result.position, 7);
|
||||
EXPECT_NE(insert_result.position->get(), insert_result.node.value().get());
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
|
||||
|
||||
node = set1.extract(absl::make_unique<int>(17));
|
||||
EXPECT_TRUE(node);
|
||||
EXPECT_THAT(node.value(), Pointee(17));
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19)));
|
||||
|
||||
node.value() = absl::make_unique<int>(23);
|
||||
|
||||
insert_result = set2.insert(std::move(node));
|
||||
EXPECT_FALSE(node);
|
||||
EXPECT_TRUE(insert_result.inserted);
|
||||
EXPECT_FALSE(insert_result.node);
|
||||
EXPECT_EQ(**insert_result.position, 23);
|
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
Loading…
Add table
Add a link
Reference in a new issue