Solve InterviewCake's balanced-binary-tree problem

Write a predicate for determining if a binary tree is "super balanced", which
means that the depths of all of the tree's leaves are equal or differ by at most
one.
This commit is contained in:
William Carroll 2020-03-14 12:48:37 +00:00
parent 0f82a527de
commit 47a11b76a2
2 changed files with 128 additions and 2 deletions

View file

@ -0,0 +1,126 @@
import unittest
from collections import deque
# is_balanced :: Node(a) -> Bool
def is_balanced(node):
q = deque()
q.append((0, node))
mn, mx = None, None
while q:
depth, node = q.popleft()
# Current node is a leaf node
if not node.left and not node.right:
mx = depth if mx is None else max(mx, depth)
mn = depth if mn is None else min(mn, depth)
if mx - mn > 1:
return False
if node.left:
q.append((depth + 1, node.left))
if node.right:
q.append((depth + 1, node.right))
return mx - mn <= 1
# Tests
class Test(unittest.TestCase):
class BinaryTreeNode(object):
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def insert_left(self, value):
self.left = Test.BinaryTreeNode(value)
return self.left
def insert_right(self, value):
self.right = Test.BinaryTreeNode(value)
return self.right
def test_full_tree(self):
tree = Test.BinaryTreeNode(5)
left = tree.insert_left(8)
right = tree.insert_right(6)
left.insert_left(1)
left.insert_right(2)
right.insert_left(3)
right.insert_right(4)
result = is_balanced(tree)
self.assertTrue(result)
def test_both_leaves_at_the_same_depth(self):
tree = Test.BinaryTreeNode(3)
left = tree.insert_left(4)
right = tree.insert_right(2)
left.insert_left(1)
right.insert_right(9)
result = is_balanced(tree)
self.assertTrue(result)
def test_leaf_heights_differ_by_one(self):
tree = Test.BinaryTreeNode(6)
left = tree.insert_left(1)
right = tree.insert_right(0)
right.insert_right(7)
result = is_balanced(tree)
self.assertTrue(result)
def test_leaf_heights_differ_by_two(self):
tree = Test.BinaryTreeNode(6)
left = tree.insert_left(1)
right = tree.insert_right(0)
right_right = right.insert_right(7)
right_right.insert_right(8)
result = is_balanced(tree)
self.assertFalse(result)
def test_three_leaves_total(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(5)
right = tree.insert_right(9)
right.insert_left(8)
right.insert_right(5)
result = is_balanced(tree)
self.assertTrue(result)
def test_both_subtrees_superbalanced(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(5)
right = tree.insert_right(9)
right_left = right.insert_left(8)
right.insert_right(5)
right_left.insert_left(7)
result = is_balanced(tree)
self.assertFalse(result)
def test_both_subtrees_superbalanced_two(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(2)
right = tree.insert_right(4)
left.insert_left(3)
left_right = left.insert_right(7)
left_right.insert_right(8)
right_right = right.insert_right(5)
right_right_right = right_right.insert_right(6)
right_right_right.insert_right(9)
result = is_balanced(tree)
self.assertFalse(result)
def test_only_one_node(self):
tree = Test.BinaryTreeNode(1)
result = is_balanced(tree)
self.assertTrue(result)
def test_linked_list_tree(self):
tree = Test.BinaryTreeNode(1)
right = tree.insert_right(2)
right_right = right.insert_right(3)
right_right.insert_right(4)
result = is_balanced(tree)
self.assertTrue(result)
unittest.main(verbosity=2)

View file

@ -21,7 +21,7 @@
** DONE Top Scores ** DONE Top Scores
** DONE Merging Meeting Times ** DONE Merging Meeting Times
* Trees and graphs * Trees and graphs
** TODO Balanced Binary Tree ** DONE Balanced Binary Tree
** TODO Binary Search Tree Checker ** TODO Binary Search Tree Checker
** TODO 2nd Largest Item in a Binary Search Tree ** TODO 2nd Largest Item in a Binary Search Tree
** TODO Graph Coloring ** TODO Graph Coloring
@ -32,7 +32,7 @@
** TODO Compute nth Fibonacci Number ** TODO Compute nth Fibonacci Number
** TODO Making Change ** TODO Making Change
** TODO The Cake Thief ** TODO The Cake Thief
** TODO Balanced Binary Tree ** DONE Balanced Binary Tree
** TODO Binary Search Tree Checker ** TODO Binary Search Tree Checker
** TODO 2nd Largest Item in a Binary Search Tree ** TODO 2nd Largest Item in a Binary Search Tree
* Queues and stacks * Queues and stacks