Export of internal Abseil changes.

--
70f43a482d7d4ae4a255f17ca02b0106653dd600 by Shaindel Schwartz <shaindel@google.com>:

Internal change

PiperOrigin-RevId: 201571193

--
93e6e9c2e683158be49d9dd1f5cb1a91d0c0f556 by Abseil Team <absl-team@google.com>:

Internal change.

PiperOrigin-RevId: 201567108

--
fbd8ee94fbe9f2448e5adf5e88706f9c8216048f by Juemin Yang <jueminyang@google.com>:

str_format release

PiperOrigin-RevId: 201565129

--
387faa301555a8a888c4429df52734aa806dca46 by Abseil Team <absl-team@google.com>:

Adds a defaulted allocator parameter to the size_type constructor of InlinedVector

PiperOrigin-RevId: 201558711

--
39b15ea2c68d7129d70cbde7e71af900032595ec by Matt Calabrese <calabrese@google.com>:

Update the variant implementation to eliminate unnecessary checking on alternative access when the index is known or required to be correct.

PiperOrigin-RevId: 201529535

--
adab77f1f7bb363aa534297f22aae2b0f08889ea by Abseil Team <absl-team@google.com>:

Import of CCTZ from GitHub.

PiperOrigin-RevId: 201458388

--
a701dc0ba62e3cadf0de14203415b91df4ee8151 by Greg Falcon <gfalcon@google.com>:

Internal cleanup

PiperOrigin-RevId: 201394836

--
8a7191410b8f440fdfa27f722ff05e451502ab61 by Abseil Team <absl-team@google.com>:

Import of CCTZ from GitHub.

PiperOrigin-RevId: 201369269
GitOrigin-RevId: 70f43a482d7d4ae4a255f17ca02b0106653dd600
Change-Id: I8ab073b30b4e27405a3b6da2c826bb4f3f0b9af6
This commit is contained in:
Abseil Team 2018-06-21 12:55:12 -07:00 committed by Shaindel Schwartz
parent d89dba27e3
commit 4491d606df
46 changed files with 6559 additions and 354 deletions

View file

@ -89,7 +89,9 @@ class InlinedVector {
: allocator_and_tag_(alloc) {} : allocator_and_tag_(alloc) {}
// Create a vector with n copies of value_type(). // Create a vector with n copies of value_type().
explicit InlinedVector(size_type n) : allocator_and_tag_(allocator_type()) { explicit InlinedVector(size_type n,
const allocator_type& alloc = allocator_type())
: allocator_and_tag_(alloc) {
InitAssign(n); InitAssign(n);
} }

View file

@ -1763,4 +1763,30 @@ TEST(AllocatorSupportTest, ScopedAllocatorWorks) {
EXPECT_EQ(allocated, 0); EXPECT_EQ(allocated, 0);
} }
TEST(AllocatorSupportTest, SizeAllocConstructor) {
constexpr int inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, inlined_size, Alloc>;
{
auto len = inlined_size / 2;
int64_t allocated = 0;
auto v = AllocVec(len, Alloc(&allocated));
// Inline storage used; allocator should not be invoked
EXPECT_THAT(allocated, 0);
EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));
}
{
auto len = inlined_size * 2;
int64_t allocated = 0;
auto v = AllocVec(len, Alloc(&allocated));
// Out of line storage used; allocation of 8 elements expected
EXPECT_THAT(allocated, len * sizeof(int));
EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));
}
}
} // anonymous namespace } // anonymous namespace

View file

@ -492,3 +492,142 @@ cc_test(
"@com_github_google_benchmark//:benchmark_main", "@com_github_google_benchmark//:benchmark_main",
], ],
) )
cc_library(
name = "str_format",
hdrs = [
"str_format.h",
],
copts = ABSL_DEFAULT_COPTS,
deps = [
":str_format_internal",
],
)
cc_library(
name = "str_format_internal",
srcs = [
"internal/str_format/arg.cc",
"internal/str_format/bind.cc",
"internal/str_format/extension.cc",
"internal/str_format/float_conversion.cc",
"internal/str_format/output.cc",
"internal/str_format/parser.cc",
],
hdrs = [
"internal/str_format/arg.h",
"internal/str_format/bind.h",
"internal/str_format/checker.h",
"internal/str_format/extension.h",
"internal/str_format/float_conversion.h",
"internal/str_format/output.h",
"internal/str_format/parser.h",
],
copts = ABSL_DEFAULT_COPTS,
visibility = ["//visibility:private"],
deps = [
":strings",
"//absl/base:core_headers",
"//absl/container:inlined_vector",
"//absl/meta:type_traits",
"//absl/numeric:int128",
"//absl/types:span",
],
)
cc_test(
name = "str_format_test",
srcs = ["str_format_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format",
":strings",
"//absl/base:core_headers",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_extension_test",
srcs = [
"internal/str_format/extension_test.cc",
],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format",
":str_format_internal",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_arg_test",
srcs = ["internal/str_format/arg_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format",
":str_format_internal",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_bind_test",
srcs = ["internal/str_format/bind_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format_internal",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_checker_test",
srcs = ["internal/str_format/checker_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_convert_test",
size = "small",
srcs = ["internal/str_format/convert_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format_internal",
"//absl/numeric:int128",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_output_test",
srcs = ["internal/str_format/output_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format_internal",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "str_format_parser_test",
srcs = ["internal/str_format/parser_test.cc"],
copts = ABSL_TEST_COPTS,
visibility = ["//visibility:private"],
deps = [
":str_format_internal",
"//absl/base:core_headers",
"@com_google_googletest//:gtest_main",
],
)

View file

@ -81,6 +81,58 @@ absl_library(
strings strings
) )
# add str_format library
absl_library(
TARGET
absl_str_format
SOURCES
"str_format.h"
PUBLIC_LIBRARIES
str_format_internal
EXPORT_NAME
str_format
)
# str_format_internal
absl_library(
TARGET
str_format_internal
SOURCES
"internal/str_format/arg.cc"
"internal/str_format/bind.cc"
"internal/str_format/extension.cc"
"internal/str_format/float_conversion.cc"
"internal/str_format/output.cc"
"internal/str_format/parser.cc"
"internal/str_format/arg.h"
"internal/str_format/bind.h"
"internal/str_format/checker.h"
"internal/str_format/extension.h"
"internal/str_format/float_conversion.h"
"internal/str_format/output.h"
"internal/str_format/parser.h"
PUBLIC_LIBRARIES
str_format_extension_internal
absl::strings
absl::base
absl::numeric
absl::container
absl::span
)
# str_format_extension_internal
absl_library(
TARGET
str_format_extension_internal
SOURCES
"internal/str_format/extension.cc"
"internal/str_format/extension.h"
"internal/str_format/output.cc"
"internal/str_format/output.h"
PUBLIC_LIBRARIES
absl::base
absl::strings
)
# #
## TESTS ## TESTS
@ -347,3 +399,68 @@ absl_test(
PUBLIC_LIBRARIES PUBLIC_LIBRARIES
${CHARCONV_BIGINT_TEST_PUBLIC_LIBRARIES} ${CHARCONV_BIGINT_TEST_PUBLIC_LIBRARIES}
) )
# test str_format_test
absl_test(
TARGET
str_format_test
SOURCES
"str_format_test.cc"
PUBLIC_LIBRARIES
absl::base
absl::str_format
absl::strings
)
# test str_format_bind_test
absl_test(
TARGET
str_format_bind_test
SOURCES
"internal/str_format/bind_test.cc"
PUBLIC_LIBRARIES
str_format_internal
)
# test str_format_checker_test
absl_test(
TARGET
str_format_checker_test
SOURCES
"internal/str_format/checker_test.cc"
PUBLIC_LIBRARIES
absl::str_format
)
# test str_format_convert_test
absl_test(
TARGET
str_format_convert_test
SOURCES
"internal/str_format/convert_test.cc"
PUBLIC_LIBRARIES
str_format_internal
absl::numeric
)
# test str_format_output_test
absl_test(
TARGET
str_format_output_test
SOURCES
"internal/str_format/output_test.cc"
PUBLIC_LIBRARIES
str_format_extension_internal
)
# test str_format_parser_test
absl_test(
TARGET
str_format_parser_test
SOURCES
"internal/str_format/parser_test.cc"
PUBLIC_LIBRARIES
str_format_internal
absl::base
)

View file

@ -0,0 +1,399 @@
//
// POSIX spec:
// http://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html
//
#include "absl/strings/internal/str_format/arg.h"
#include <cassert>
#include <cerrno>
#include <cstdlib>
#include <string>
#include <type_traits>
#include "absl/base/port.h"
#include "absl/strings/internal/str_format/float_conversion.h"
namespace absl {
namespace str_format_internal {
namespace {
const char kDigit[2][32] = { "0123456789abcdef", "0123456789ABCDEF" };
// Reduce *capacity by s.size(), clipped to a 0 minimum.
void ReducePadding(string_view s, size_t *capacity) {
*capacity = Excess(s.size(), *capacity);
}
// Reduce *capacity by n, clipped to a 0 minimum.
void ReducePadding(size_t n, size_t *capacity) {
*capacity = Excess(n, *capacity);
}
template <typename T>
struct MakeUnsigned : std::make_unsigned<T> {};
template <>
struct MakeUnsigned<absl::uint128> {
using type = absl::uint128;
};
template <typename T>
struct IsSigned : std::is_signed<T> {};
template <>
struct IsSigned<absl::uint128> : std::false_type {};
class ConvertedIntInfo {
public:
template <typename T>
ConvertedIntInfo(T v, ConversionChar conv) {
using Unsigned = typename MakeUnsigned<T>::type;
auto u = static_cast<Unsigned>(v);
if (IsNeg(v)) {
is_neg_ = true;
u = Unsigned{} - u;
} else {
is_neg_ = false;
}
UnsignedToStringRight(u, conv);
}
string_view digits() const {
return {end() - size_, static_cast<size_t>(size_)};
}
bool is_neg() const { return is_neg_; }
private:
template <typename T, bool IsSigned>
struct IsNegImpl {
static bool Eval(T v) { return v < 0; }
};
template <typename T>
struct IsNegImpl<T, false> {
static bool Eval(T) {
return false;
}
};
template <typename T>
bool IsNeg(T v) {
return IsNegImpl<T, IsSigned<T>::value>::Eval(v);
}
template <typename T>
void UnsignedToStringRight(T u, ConversionChar conv) {
char *p = end();
switch (conv.radix()) {
default:
case 10:
for (; u; u /= 10)
*--p = static_cast<char>('0' + static_cast<size_t>(u % 10));
break;
case 8:
for (; u; u /= 8)
*--p = static_cast<char>('0' + static_cast<size_t>(u % 8));
break;
case 16: {
const char *digits = kDigit[conv.upper() ? 1 : 0];
for (; u; u /= 16) *--p = digits[static_cast<size_t>(u % 16)];
break;
}
}
size_ = static_cast<int>(end() - p);
}
const char *end() const { return storage_ + sizeof(storage_); }
char *end() { return storage_ + sizeof(storage_); }
bool is_neg_;
int size_;
// Max size: 128 bit value as octal -> 43 digits
char storage_[128 / 3 + 1];
};
// Note: 'o' conversions do not have a base indicator, it's just that
// the '#' flag is specified to modify the precision for 'o' conversions.
string_view BaseIndicator(const ConvertedIntInfo &info,
const ConversionSpec &conv) {
bool alt = conv.flags().alt;
int radix = conv.conv().radix();
if (conv.conv().id() == ConversionChar::p)
alt = true; // always show 0x for %p.
// From the POSIX description of '#' flag:
// "For x or X conversion specifiers, a non-zero result shall have
// 0x (or 0X) prefixed to it."
if (alt && radix == 16 && !info.digits().empty()) {
if (conv.conv().upper()) return "0X";
return "0x";
}
return {};
}
string_view SignColumn(bool neg, const ConversionSpec &conv) {
if (conv.conv().is_signed()) {
if (neg) return "-";
if (conv.flags().show_pos) return "+";
if (conv.flags().sign_col) return " ";
}
return {};
}
bool ConvertCharImpl(unsigned char v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
size_t fill = 0;
if (conv.width() >= 0) fill = conv.width();
ReducePadding(1, &fill);
if (!conv.flags().left) sink->Append(fill, ' ');
sink->Append(1, v);
if (conv.flags().left) sink->Append(fill, ' ');
return true;
}
bool ConvertIntImplInner(const ConvertedIntInfo &info,
const ConversionSpec &conv, FormatSinkImpl *sink) {
// Print as a sequence of Substrings:
// [left_spaces][sign][base_indicator][zeroes][formatted][right_spaces]
size_t fill = 0;
if (conv.width() >= 0) fill = conv.width();
string_view formatted = info.digits();
ReducePadding(formatted, &fill);
string_view sign = SignColumn(info.is_neg(), conv);
ReducePadding(sign, &fill);
string_view base_indicator = BaseIndicator(info, conv);
ReducePadding(base_indicator, &fill);
int precision = conv.precision();
bool precision_specified = precision >= 0;
if (!precision_specified)
precision = 1;
if (conv.flags().alt && conv.conv().id() == ConversionChar::o) {
// From POSIX description of the '#' (alt) flag:
// "For o conversion, it increases the precision (if necessary) to
// force the first digit of the result to be zero."
if (formatted.empty() || *formatted.begin() != '0') {
int needed = static_cast<int>(formatted.size()) + 1;
precision = std::max(precision, needed);
}
}
size_t num_zeroes = Excess(formatted.size(), precision);
ReducePadding(num_zeroes, &fill);
size_t num_left_spaces = !conv.flags().left ? fill : 0;
size_t num_right_spaces = conv.flags().left ? fill : 0;
// From POSIX description of the '0' (zero) flag:
// "For d, i, o, u, x, and X conversion specifiers, if a precision
// is specified, the '0' flag is ignored."
if (!precision_specified && conv.flags().zero) {
num_zeroes += num_left_spaces;
num_left_spaces = 0;
}
sink->Append(num_left_spaces, ' ');
sink->Append(sign);
sink->Append(base_indicator);
sink->Append(num_zeroes, '0');
sink->Append(formatted);
sink->Append(num_right_spaces, ' ');
return true;
}
template <typename T>
bool ConvertIntImplInner(T v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
ConvertedIntInfo info(v, conv.conv());
if (conv.flags().basic && conv.conv().id() != ConversionChar::p) {
if (info.is_neg()) sink->Append(1, '-');
if (info.digits().empty()) {
sink->Append(1, '0');
} else {
sink->Append(info.digits());
}
return true;
}
return ConvertIntImplInner(info, conv, sink);
}
template <typename T>
bool ConvertIntArg(T v, const ConversionSpec &conv, FormatSinkImpl *sink) {
if (conv.conv().is_float()) {
return FormatConvertImpl(static_cast<double>(v), conv, sink).value;
}
if (conv.conv().id() == ConversionChar::c)
return ConvertCharImpl(static_cast<unsigned char>(v), conv, sink);
if (!conv.conv().is_integral())
return false;
if (!conv.conv().is_signed() && IsSigned<T>::value) {
using U = typename MakeUnsigned<T>::type;
return FormatConvertImpl(static_cast<U>(v), conv, sink).value;
}
return ConvertIntImplInner(v, conv, sink);
}
template <typename T>
bool ConvertFloatArg(T v, const ConversionSpec &conv, FormatSinkImpl *sink) {
return conv.conv().is_float() && ConvertFloatImpl(v, conv, sink);
}
inline bool ConvertStringArg(string_view v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
if (conv.conv().id() != ConversionChar::s)
return false;
if (conv.flags().basic) {
sink->Append(v);
return true;
}
return sink->PutPaddedString(v, conv.width(), conv.precision(),
conv.flags().left);
}
} // namespace
// ==================== Strings ====================
ConvertResult<Conv::s> FormatConvertImpl(const std::string &v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertStringArg(v, conv, sink)};
}
ConvertResult<Conv::s> FormatConvertImpl(string_view v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertStringArg(v, conv, sink)};
}
ConvertResult<Conv::s | Conv::p> FormatConvertImpl(const char *v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
if (conv.conv().id() == ConversionChar::p)
return {FormatConvertImpl(VoidPtr(v), conv, sink).value};
size_t len;
if (v == nullptr) {
len = 0;
} else if (conv.precision() < 0) {
len = std::strlen(v);
} else {
// If precision is set, we look for the null terminator on the valid range.
len = std::find(v, v + conv.precision(), '\0') - v;
}
return {ConvertStringArg(string_view(v, len), conv, sink)};
}
// ==================== Raw pointers ====================
ConvertResult<Conv::p> FormatConvertImpl(VoidPtr v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
if (conv.conv().id() != ConversionChar::p)
return {false};
if (!v.value) {
sink->Append("(nil)");
return {true};
}
return {ConvertIntImplInner(v.value, conv, sink)};
}
// ==================== Floats ====================
FloatingConvertResult FormatConvertImpl(float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertFloatArg(v, conv, sink)};
}
FloatingConvertResult FormatConvertImpl(double v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertFloatArg(v, conv, sink)};
}
FloatingConvertResult FormatConvertImpl(long double v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertFloatArg(v, conv, sink)};
}
// ==================== Chars ====================
IntegralConvertResult FormatConvertImpl(char v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(signed char v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned char v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
// ==================== Ints ====================
IntegralConvertResult FormatConvertImpl(short v, // NOLINT
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned short v, // NOLINT
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(int v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(long v, // NOLINT
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned long v, // NOLINT
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(long long v, // NOLINT
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned long long v, // NOLINT
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(absl::uint128 v,
const ConversionSpec &conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
template struct FormatArgImpl::TypedVTable<str_format_internal::VoidPtr>;
template struct FormatArgImpl::TypedVTable<bool>;
template struct FormatArgImpl::TypedVTable<char>;
template struct FormatArgImpl::TypedVTable<signed char>;
template struct FormatArgImpl::TypedVTable<unsigned char>;
template struct FormatArgImpl::TypedVTable<short>; // NOLINT
template struct FormatArgImpl::TypedVTable<unsigned short>; // NOLINT
template struct FormatArgImpl::TypedVTable<int>;
template struct FormatArgImpl::TypedVTable<unsigned>;
template struct FormatArgImpl::TypedVTable<long>; // NOLINT
template struct FormatArgImpl::TypedVTable<unsigned long>; // NOLINT
template struct FormatArgImpl::TypedVTable<long long>; // NOLINT
template struct FormatArgImpl::TypedVTable<unsigned long long>; // NOLINT
template struct FormatArgImpl::TypedVTable<absl::uint128>;
template struct FormatArgImpl::TypedVTable<float>;
template struct FormatArgImpl::TypedVTable<double>;
template struct FormatArgImpl::TypedVTable<long double>;
template struct FormatArgImpl::TypedVTable<const char *>;
template struct FormatArgImpl::TypedVTable<std::string>;
template struct FormatArgImpl::TypedVTable<string_view>;
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,434 @@
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#include <string.h>
#include <wchar.h>
#include <cstdio>
#include <iomanip>
#include <limits>
#include <sstream>
#include <string>
#include <type_traits>
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/string_view.h"
class Cord;
class CordReader;
namespace absl {
class FormatCountCapture;
class FormatSink;
namespace str_format_internal {
template <typename T, typename = void>
struct HasUserDefinedConvert : std::false_type {};
template <typename T>
struct HasUserDefinedConvert<
T, void_t<decltype(AbslFormatConvert(
std::declval<const T&>(), std::declval<const ConversionSpec&>(),
std::declval<FormatSink*>()))>> : std::true_type {};
template <typename T>
class StreamedWrapper;
// If 'v' can be converted (in the printf sense) according to 'conv',
// then convert it, appending to `sink` and return `true`.
// Otherwise fail and return `false`.
// Raw pointers.
struct VoidPtr {
VoidPtr() = default;
template <typename T,
decltype(reinterpret_cast<uintptr_t>(std::declval<T*>())) = 0>
VoidPtr(T* ptr) // NOLINT
: value(ptr ? reinterpret_cast<uintptr_t>(ptr) : 0) {}
uintptr_t value;
};
ConvertResult<Conv::p> FormatConvertImpl(VoidPtr v, const ConversionSpec& conv,
FormatSinkImpl* sink);
// Strings.
ConvertResult<Conv::s> FormatConvertImpl(const std::string& v,
const ConversionSpec& conv,
FormatSinkImpl* sink);
ConvertResult<Conv::s> FormatConvertImpl(string_view v,
const ConversionSpec& conv,
FormatSinkImpl* sink);
ConvertResult<Conv::s | Conv::p> FormatConvertImpl(const char* v,
const ConversionSpec& conv,
FormatSinkImpl* sink);
template <class AbslCord,
typename std::enable_if<
std::is_same<AbslCord, ::Cord>::value>::type* = nullptr,
class AbslCordReader = ::CordReader>
ConvertResult<Conv::s> FormatConvertImpl(const AbslCord& value,
const ConversionSpec& conv,
FormatSinkImpl* sink) {
if (conv.conv().id() != ConversionChar::s) return {false};
bool is_left = conv.flags().left;
size_t space_remaining = 0;
int width = conv.width();
if (width >= 0) space_remaining = width;
size_t to_write = value.size();
int precision = conv.precision();
if (precision >= 0)
to_write = std::min(to_write, static_cast<size_t>(precision));
space_remaining = Excess(to_write, space_remaining);
if (space_remaining > 0 && !is_left) sink->Append(space_remaining, ' ');
string_view piece;
for (AbslCordReader reader(value);
to_write > 0 && reader.ReadFragment(&piece); to_write -= piece.size()) {
if (piece.size() > to_write) piece.remove_suffix(piece.size() - to_write);
sink->Append(piece);
}
if (space_remaining > 0 && is_left) sink->Append(space_remaining, ' ');
return {true};
}
using IntegralConvertResult =
ConvertResult<Conv::c | Conv::numeric | Conv::star>;
using FloatingConvertResult = ConvertResult<Conv::floating>;
// Floats.
FloatingConvertResult FormatConvertImpl(float v, const ConversionSpec& conv,
FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(double v, const ConversionSpec& conv,
FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(long double v,
const ConversionSpec& conv,
FormatSinkImpl* sink);
// Chars.
IntegralConvertResult FormatConvertImpl(char v, const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(signed char v,
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned char v,
const ConversionSpec& conv,
FormatSinkImpl* sink);
// Ints.
IntegralConvertResult FormatConvertImpl(short v, // NOLINT
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned short v, // NOLINT
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int v, const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned v, const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long v, // NOLINT
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long v, // NOLINT
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long long v, // NOLINT
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long long v, // NOLINT
const ConversionSpec& conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(uint128 v, const ConversionSpec& conv,
FormatSinkImpl* sink);
template <typename T, enable_if_t<std::is_same<T, bool>::value, int> = 0>
IntegralConvertResult FormatConvertImpl(T v, const ConversionSpec& conv,
FormatSinkImpl* sink) {
return FormatConvertImpl(static_cast<int>(v), conv, sink);
}
// We provide this function to help the checker, but it is never defined.
// FormatArgImpl will use the underlying Convert functions instead.
template <typename T>
typename std::enable_if<std::is_enum<T>::value &&
!HasUserDefinedConvert<T>::value,
IntegralConvertResult>::type
FormatConvertImpl(T v, const ConversionSpec& conv, FormatSinkImpl* sink);
template <typename T>
ConvertResult<Conv::s> FormatConvertImpl(const StreamedWrapper<T>& v,
const ConversionSpec& conv,
FormatSinkImpl* out) {
std::ostringstream oss;
oss << v.v_;
if (!oss) return {false};
return str_format_internal::FormatConvertImpl(oss.str(), conv, out);
}
// Use templates and dependent types to delay evaluation of the function
// until after FormatCountCapture is fully defined.
struct FormatCountCaptureHelper {
template <class T = int>
static ConvertResult<Conv::n> ConvertHelper(const FormatCountCapture& v,
const ConversionSpec& conv,
FormatSinkImpl* sink) {
const absl::enable_if_t<sizeof(T) != 0, FormatCountCapture>& v2 = v;
if (conv.conv().id() != str_format_internal::ConversionChar::n)
return {false};
*v2.p_ = static_cast<int>(sink->size());
return {true};
}
};
template <class T = int>
ConvertResult<Conv::n> FormatConvertImpl(const FormatCountCapture& v,
const ConversionSpec& conv,
FormatSinkImpl* sink) {
return FormatCountCaptureHelper::ConvertHelper(v, conv, sink);
}
// Helper friend struct to hide implementation details from the public API of
// FormatArgImpl.
struct FormatArgImplFriend {
template <typename Arg>
static bool ToInt(Arg arg, int* out) {
if (!arg.vtbl_->to_int) return false;
*out = arg.vtbl_->to_int(arg.data_);
return true;
}
template <typename Arg>
static bool Convert(Arg arg, const str_format_internal::ConversionSpec& conv,
FormatSinkImpl* out) {
return arg.vtbl_->convert(arg.data_, conv, out);
}
template <typename Arg>
static const void* GetVTablePtrForTest(Arg arg) {
return arg.vtbl_;
}
};
// A type-erased handle to a format argument.
class FormatArgImpl {
private:
enum { kInlinedSpace = 8 };
using VoidPtr = str_format_internal::VoidPtr;
union Data {
const void* ptr;
const volatile void* volatile_ptr;
char buf[kInlinedSpace];
};
struct VTable {
bool (*convert)(Data, const str_format_internal::ConversionSpec& conv,
FormatSinkImpl* out);
int (*to_int)(Data);
};
template <typename T>
struct store_by_value
: std::integral_constant<bool, (sizeof(T) <= kInlinedSpace) &&
(std::is_integral<T>::value ||
std::is_floating_point<T>::value ||
std::is_pointer<T>::value ||
std::is_same<VoidPtr, T>::value)> {};
enum StoragePolicy { ByPointer, ByVolatilePointer, ByValue };
template <typename T>
struct storage_policy
: std::integral_constant<StoragePolicy,
(std::is_volatile<T>::value
? ByVolatilePointer
: (store_by_value<T>::value ? ByValue
: ByPointer))> {
};
// An instance of an FormatArgImpl::VTable suitable for 'T'.
template <typename T>
struct TypedVTable;
// To reduce the number of vtables we will decay values before hand.
// Anything with a user-defined Convert will get its own vtable.
// For everything else:
// - Decay char* and char arrays into `const char*`
// - Decay any other pointer to `const void*`
// - Decay all enums to their underlying type.
// - Decay function pointers to void*.
template <typename T, typename = void>
struct DecayType {
static constexpr bool kHasUserDefined =
str_format_internal::HasUserDefinedConvert<T>::value;
using type = typename std::conditional<
!kHasUserDefined && std::is_convertible<T, const char*>::value,
const char*,
typename std::conditional<!kHasUserDefined &&
std::is_convertible<T, VoidPtr>::value,
VoidPtr, const T&>::type>::type;
};
template <typename T>
struct DecayType<T,
typename std::enable_if<
!str_format_internal::HasUserDefinedConvert<T>::value &&
std::is_enum<T>::value>::type> {
using type = typename std::underlying_type<T>::type;
};
public:
template <typename T>
explicit FormatArgImpl(const T& value) {
using D = typename DecayType<T>::type;
static_assert(
std::is_same<D, const T&>::value || storage_policy<D>::value == ByValue,
"Decayed types must be stored by value");
Init(static_cast<D>(value));
}
private:
friend struct str_format_internal::FormatArgImplFriend;
template <typename T, StoragePolicy = storage_policy<T>::value>
struct Manager;
template <typename T>
struct Manager<T, ByPointer> {
static Data SetValue(const T& value) {
Data data;
data.ptr = &value;
return data;
}
static const T& Value(Data arg) { return *static_cast<const T*>(arg.ptr); }
};
template <typename T>
struct Manager<T, ByVolatilePointer> {
static Data SetValue(const T& value) {
Data data;
data.volatile_ptr = &value;
return data;
}
static const T& Value(Data arg) {
return *static_cast<const T*>(arg.volatile_ptr);
}
};
template <typename T>
struct Manager<T, ByValue> {
static Data SetValue(const T& value) {
Data data;
memcpy(data.buf, &value, sizeof(value));
return data;
}
static T Value(Data arg) {
T value;
memcpy(&value, arg.buf, sizeof(T));
return value;
}
};
template <typename T>
void Init(const T& value);
template <typename T>
static int ToIntVal(const T& val) {
using CommonType = typename std::conditional<std::is_signed<T>::value,
int64_t, uint64_t>::type;
if (static_cast<CommonType>(val) >
static_cast<CommonType>(std::numeric_limits<int>::max())) {
return std::numeric_limits<int>::max();
} else if (std::is_signed<T>::value &&
static_cast<CommonType>(val) <
static_cast<CommonType>(std::numeric_limits<int>::min())) {
return std::numeric_limits<int>::min();
}
return static_cast<int>(val);
}
Data data_;
const VTable* vtbl_;
};
template <typename T>
struct FormatArgImpl::TypedVTable {
private:
static bool ConvertImpl(Data arg,
const str_format_internal::ConversionSpec& conv,
FormatSinkImpl* out) {
return str_format_internal::FormatConvertImpl(Manager<T>::Value(arg), conv,
out)
.value;
}
template <typename U = T, typename = void>
struct ToIntImpl {
static constexpr int (*value)(Data) = nullptr;
};
template <typename U>
struct ToIntImpl<U,
typename std::enable_if<std::is_integral<U>::value>::type> {
static int Invoke(Data arg) { return ToIntVal(Manager<T>::Value(arg)); }
static constexpr int (*value)(Data) = &Invoke;
};
template <typename U>
struct ToIntImpl<U, typename std::enable_if<std::is_enum<U>::value>::type> {
static int Invoke(Data arg) {
return ToIntVal(static_cast<typename std::underlying_type<T>::type>(
Manager<T>::Value(arg)));
}
static constexpr int (*value)(Data) = &Invoke;
};
public:
static constexpr VTable value{&ConvertImpl, ToIntImpl<>::value};
};
template <typename T>
constexpr FormatArgImpl::VTable FormatArgImpl::TypedVTable<T>::value;
template <typename T>
void FormatArgImpl::Init(const T& value) {
data_ = Manager<T>::SetValue(value);
vtbl_ = &TypedVTable<T>::value;
}
extern template struct FormatArgImpl::TypedVTable<str_format_internal::VoidPtr>;
extern template struct FormatArgImpl::TypedVTable<bool>;
extern template struct FormatArgImpl::TypedVTable<char>;
extern template struct FormatArgImpl::TypedVTable<signed char>;
extern template struct FormatArgImpl::TypedVTable<unsigned char>;
extern template struct FormatArgImpl::TypedVTable<short>; // NOLINT
extern template struct FormatArgImpl::TypedVTable<unsigned short>; // NOLINT
extern template struct FormatArgImpl::TypedVTable<int>;
extern template struct FormatArgImpl::TypedVTable<unsigned>;
extern template struct FormatArgImpl::TypedVTable<long>; // NOLINT
extern template struct FormatArgImpl::TypedVTable<unsigned long>; // NOLINT
extern template struct FormatArgImpl::TypedVTable<long long>; // NOLINT
extern template struct FormatArgImpl::TypedVTable<
unsigned long long>; // NOLINT
extern template struct FormatArgImpl::TypedVTable<uint128>;
extern template struct FormatArgImpl::TypedVTable<float>;
extern template struct FormatArgImpl::TypedVTable<double>;
extern template struct FormatArgImpl::TypedVTable<long double>;
extern template struct FormatArgImpl::TypedVTable<const char*>;
extern template struct FormatArgImpl::TypedVTable<std::string>;
extern template struct FormatArgImpl::TypedVTable<string_view>;
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_

View file

@ -0,0 +1,111 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
#include "absl/strings/internal/str_format/arg.h"
#include <ostream>
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
namespace absl {
namespace str_format_internal {
namespace {
class FormatArgImplTest : public ::testing::Test {
public:
enum Color { kRed, kGreen, kBlue };
static const char *hi() { return "hi"; }
};
TEST_F(FormatArgImplTest, ToInt) {
int out = 0;
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(1), &out));
EXPECT_EQ(1, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(-1), &out));
EXPECT_EQ(-1, out);
EXPECT_TRUE(
FormatArgImplFriend::ToInt(FormatArgImpl(static_cast<char>(64)), &out));
EXPECT_EQ(64, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<unsigned long long>(123456)), &out)); // NOLINT
EXPECT_EQ(123456, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<unsigned long long>( // NOLINT
std::numeric_limits<int>::max()) +
1),
&out));
EXPECT_EQ(std::numeric_limits<int>::max(), out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<long long>( // NOLINT
std::numeric_limits<int>::min()) -
10),
&out));
EXPECT_EQ(std::numeric_limits<int>::min(), out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(false), &out));
EXPECT_EQ(0, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(true), &out));
EXPECT_EQ(1, out);
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(2.2), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(3.2f), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<int *>(nullptr)), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(hi()), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl("hi"), &out));
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(kBlue), &out));
EXPECT_EQ(2, out);
}
extern const char kMyArray[];
TEST_F(FormatArgImplTest, CharArraysDecayToCharPtr) {
const char* a = "";
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("A")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("ABC")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(kMyArray)));
}
TEST_F(FormatArgImplTest, OtherPtrDecayToVoidPtr) {
auto expected = FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<void *>(nullptr)));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<int *>(nullptr))),
expected);
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<volatile int *>(nullptr))),
expected);
auto p = static_cast<void (*)()>([] {});
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(p)),
expected);
}
TEST_F(FormatArgImplTest, WorksWithCharArraysOfUnknownSize) {
std::string s;
FormatSinkImpl sink(&s);
ConversionSpec conv;
conv.set_conv(ConversionChar::FromChar('s'));
conv.set_flags(Flags());
conv.set_width(-1);
conv.set_precision(-1);
EXPECT_TRUE(
FormatArgImplFriend::Convert(FormatArgImpl(kMyArray), conv, &sink));
sink.Flush();
EXPECT_EQ("ABCDE", s);
}
const char kMyArray[] = "ABCDE";
} // namespace
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,232 @@
#include "absl/strings/internal/str_format/bind.h"
#include <cerrno>
#include <limits>
#include <sstream>
#include <string>
namespace absl {
namespace str_format_internal {
namespace {
inline bool BindFromPosition(int position, int* value,
absl::Span<const FormatArgImpl> pack) {
assert(position > 0);
if (static_cast<size_t>(position) > pack.size()) {
return false;
}
// -1 because positions are 1-based
return FormatArgImplFriend::ToInt(pack[position - 1], value);
}
class ArgContext {
public:
explicit ArgContext(absl::Span<const FormatArgImpl> pack) : pack_(pack) {}
// Fill 'bound' with the results of applying the context's argument pack
// to the specified 'props'. We synthesize a BoundConversion by
// lining up a UnboundConversion with a user argument. We also
// resolve any '*' specifiers for width and precision, so after
// this call, 'bound' has all the information it needs to be formatted.
// Returns false on failure.
bool Bind(const UnboundConversion *props, BoundConversion *bound);
private:
absl::Span<const FormatArgImpl> pack_;
};
inline bool ArgContext::Bind(const UnboundConversion* unbound,
BoundConversion* bound) {
const FormatArgImpl* arg = nullptr;
int arg_position = unbound->arg_position;
if (static_cast<size_t>(arg_position - 1) >= pack_.size()) return false;
arg = &pack_[arg_position - 1]; // 1-based
if (!unbound->flags.basic) {
int width = unbound->width.value();
bool force_left = false;
if (unbound->width.is_from_arg()) {
if (!BindFromPosition(unbound->width.get_from_arg(), &width, pack_))
return false;
if (width < 0) {
// "A negative field width is taken as a '-' flag followed by a
// positive field width."
force_left = true;
width = -width;
}
}
int precision = unbound->precision.value();
if (unbound->precision.is_from_arg()) {
if (!BindFromPosition(unbound->precision.get_from_arg(), &precision,
pack_))
return false;
}
bound->set_width(width);
bound->set_precision(precision);
bound->set_flags(unbound->flags);
if (force_left)
bound->set_left(true);
} else {
bound->set_flags(unbound->flags);
bound->set_width(-1);
bound->set_precision(-1);
}
bound->set_length_mod(unbound->length_mod);
bound->set_conv(unbound->conv);
bound->set_arg(arg);
return true;
}
template <typename Converter>
class ConverterConsumer {
public:
ConverterConsumer(Converter converter, absl::Span<const FormatArgImpl> pack)
: converter_(converter), arg_context_(pack) {}
bool Append(string_view s) {
converter_.Append(s);
return true;
}
bool ConvertOne(const UnboundConversion& conv, string_view conv_string) {
BoundConversion bound;
if (!arg_context_.Bind(&conv, &bound)) return false;
return converter_.ConvertOne(bound, conv_string);
}
private:
Converter converter_;
ArgContext arg_context_;
};
template <typename Converter>
bool ConvertAll(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args,
const Converter& converter) {
const ParsedFormatBase* pc = format.parsed_conversion();
if (pc)
return pc->ProcessFormat(ConverterConsumer<Converter>(converter, args));
return ParseFormatString(format.str(),
ConverterConsumer<Converter>(converter, args));
}
class DefaultConverter {
public:
explicit DefaultConverter(FormatSinkImpl* sink) : sink_(sink) {}
void Append(string_view s) const { sink_->Append(s); }
bool ConvertOne(const BoundConversion& bound, string_view /*conv*/) const {
return FormatArgImplFriend::Convert(*bound.arg(), bound, sink_);
}
private:
FormatSinkImpl* sink_;
};
class SummarizingConverter {
public:
explicit SummarizingConverter(FormatSinkImpl* sink) : sink_(sink) {}
void Append(string_view s) const { sink_->Append(s); }
bool ConvertOne(const BoundConversion& bound, string_view /*conv*/) const {
UntypedFormatSpecImpl spec("%d");
std::ostringstream ss;
ss << "{" << Streamable(spec, {*bound.arg()}) << ":" << bound.flags();
if (bound.width() >= 0) ss << bound.width();
if (bound.precision() >= 0) ss << "." << bound.precision();
ss << bound.length_mod() << bound.conv() << "}";
Append(ss.str());
return true;
}
private:
FormatSinkImpl* sink_;
};
} // namespace
bool BindWithPack(const UnboundConversion* props,
absl::Span<const FormatArgImpl> pack,
BoundConversion* bound) {
return ArgContext(pack).Bind(props, bound);
}
std::string Summarize(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args) {
typedef SummarizingConverter Converter;
std::string out;
{
// inner block to destroy sink before returning out. It ensures a last
// flush.
FormatSinkImpl sink(&out);
if (!ConvertAll(format, args, Converter(&sink))) {
sink.Flush();
out.clear();
}
}
return out;
}
bool FormatUntyped(FormatRawSinkImpl raw_sink,
const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args) {
FormatSinkImpl sink(raw_sink);
using Converter = DefaultConverter;
if (!ConvertAll(format, args, Converter(&sink))) {
sink.Flush();
return false;
}
return true;
}
std::ostream& Streamable::Print(std::ostream& os) const {
if (!FormatUntyped(&os, format_, args_)) os.setstate(std::ios::failbit);
return os;
}
std::string& AppendPack(std::string* out, const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args) {
size_t orig = out->size();
if (!FormatUntyped(out, format, args)) out->resize(orig);
return *out;
}
int FprintF(std::FILE* output, const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args) {
FILERawSink sink(output);
if (!FormatUntyped(&sink, format, args)) {
errno = EINVAL;
return -1;
}
if (sink.error()) {
errno = sink.error();
return -1;
}
if (sink.count() > std::numeric_limits<int>::max()) {
errno = EFBIG;
return -1;
}
return static_cast<int>(sink.count());
}
int SnprintF(char* output, size_t size, const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args) {
BufferRawSink sink(output, size ? size - 1 : 0);
if (!FormatUntyped(&sink, format, args)) {
errno = EINVAL;
return -1;
}
size_t total = sink.total_written();
if (size) output[std::min(total, size - 1)] = 0;
return static_cast<int>(total);
}
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,189 @@
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#include <array>
#include <cstdio>
#include <sstream>
#include <string>
#include "absl/base/port.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/checker.h"
#include "absl/strings/internal/str_format/parser.h"
#include "absl/types/span.h"
namespace absl {
class UntypedFormatSpec;
namespace str_format_internal {
class BoundConversion : public ConversionSpec {
public:
const FormatArgImpl* arg() const { return arg_; }
void set_arg(const FormatArgImpl* a) { arg_ = a; }
private:
const FormatArgImpl* arg_;
};
// This is the type-erased class that the implementation uses.
class UntypedFormatSpecImpl {
public:
UntypedFormatSpecImpl() = delete;
explicit UntypedFormatSpecImpl(string_view s) : str_(s), pc_() {}
explicit UntypedFormatSpecImpl(
const str_format_internal::ParsedFormatBase* pc)
: pc_(pc) {}
string_view str() const { return str_; }
const str_format_internal::ParsedFormatBase* parsed_conversion() const {
return pc_;
}
template <typename T>
static const UntypedFormatSpecImpl& Extract(const T& s) {
return s.spec_;
}
private:
string_view str_;
const str_format_internal::ParsedFormatBase* pc_;
};
template <typename T, typename...>
struct MakeDependent {
using type = T;
};
// Implicitly convertible from `const char*`, `string_view`, and the
// `ExtendedParsedFormat` type. This abstraction allows all format functions to
// operate on any without providing too many overloads.
template <typename... Args>
class FormatSpecTemplate
: public MakeDependent<UntypedFormatSpec, Args...>::type {
using Base = typename MakeDependent<UntypedFormatSpec, Args...>::type;
public:
#if ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
// Honeypot overload for when the std::string is not constexpr.
// We use the 'unavailable' attribute to give a better compiler error than
// just 'method is deleted'.
FormatSpecTemplate(...) // NOLINT
__attribute__((unavailable("Format std::string is not constexpr.")));
// Honeypot overload for when the format is constexpr and invalid.
// We use the 'unavailable' attribute to give a better compiler error than
// just 'method is deleted'.
// To avoid checking the format twice, we just check that the format is
// constexpr. If is it valid, then the overload below will kick in.
// We add the template here to make this overload have lower priority.
template <typename = void>
FormatSpecTemplate(const char* s) // NOLINT
__attribute__((
enable_if(str_format_internal::EnsureConstexpr(s), "constexpr trap"),
unavailable(
"Format specified does not match the arguments passed.")));
template <typename T = void>
FormatSpecTemplate(string_view s) // NOLINT
__attribute__((enable_if(str_format_internal::EnsureConstexpr(s),
"constexpr trap"))) {
static_assert(sizeof(T*) == 0,
"Format specified does not match the arguments passed.");
}
// Good format overload.
FormatSpecTemplate(const char* s) // NOLINT
__attribute__((enable_if(ValidFormatImpl<ArgumentToConv<Args>()...>(s),
"bad format trap")))
: Base(s) {}
FormatSpecTemplate(string_view s) // NOLINT
__attribute__((enable_if(ValidFormatImpl<ArgumentToConv<Args>()...>(s),
"bad format trap")))
: Base(s) {}
#else // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
FormatSpecTemplate(const char* s) : Base(s) {} // NOLINT
FormatSpecTemplate(string_view s) : Base(s) {} // NOLINT
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
template <Conv... C, typename = typename std::enable_if<
sizeof...(C) == sizeof...(Args) &&
AllOf(Contains(ArgumentToConv<Args>(),
C)...)>::type>
FormatSpecTemplate(const ExtendedParsedFormat<C...>& pc) // NOLINT
: Base(&pc) {}
};
template <typename... Args>
struct FormatSpecDeductionBarrier {
using type = FormatSpecTemplate<Args...>;
};
class Streamable {
public:
Streamable(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args)
: format_(format), args_(args.begin(), args.end()) {}
std::ostream& Print(std::ostream& os) const;
friend std::ostream& operator<<(std::ostream& os, const Streamable& l) {
return l.Print(os);
}
private:
const UntypedFormatSpecImpl& format_;
absl::InlinedVector<FormatArgImpl, 4> args_;
};
// for testing
std::string Summarize(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args);
bool BindWithPack(const UnboundConversion* props,
absl::Span<const FormatArgImpl> pack, BoundConversion* bound);
bool FormatUntyped(FormatRawSinkImpl raw_sink,
const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args);
std::string& AppendPack(std::string* out, const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args);
inline std::string FormatPack(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args) {
std::string out;
AppendPack(&out, format, args);
return out;
}
int FprintF(std::FILE* output, const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args);
int SnprintF(char* output, size_t size, const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args);
// Returned by Streamed(v). Converts via '%s' to the std::string created
// by std::ostream << v.
template <typename T>
class StreamedWrapper {
public:
explicit StreamedWrapper(const T& v) : v_(v) { }
private:
template <typename S>
friend ConvertResult<Conv::s> FormatConvertImpl(const StreamedWrapper<S>& v,
const ConversionSpec& conv,
FormatSinkImpl* out);
const T& v_;
};
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_

View file

@ -0,0 +1,131 @@
#include "absl/strings/internal/str_format/bind.h"
#include <string.h>
#include "gtest/gtest.h"
namespace absl {
namespace str_format_internal {
namespace {
template <typename T, size_t N>
size_t ArraySize(T (&)[N]) {
return N;
}
class FormatBindTest : public ::testing::Test {
public:
bool Extract(const char *s, UnboundConversion *props, int *next) const {
absl::string_view src = s;
return ConsumeUnboundConversion(&src, props, next) && src.empty();
}
};
TEST_F(FormatBindTest, BindSingle) {
struct Expectation {
int line;
const char *fmt;
int ok_phases;
const FormatArgImpl *arg;
int width;
int precision;
int next_arg;
};
const int no = -1;
const int ia[] = { 10, 20, 30, 40};
const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]),
FormatArgImpl(ia[2]), FormatArgImpl(ia[3])};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
const Expectation kExpect[] = {
{__LINE__, "d", 2, &args[0], no, no, 2},
{__LINE__, "4d", 2, &args[0], 4, no, 2},
{__LINE__, ".5d", 2, &args[0], no, 5, 2},
{__LINE__, "4.5d", 2, &args[0], 4, 5, 2},
{__LINE__, "*d", 2, &args[1], 10, no, 3},
{__LINE__, ".*d", 2, &args[1], no, 10, 3},
{__LINE__, "*.*d", 2, &args[2], 10, 20, 4},
{__LINE__, "1$d", 2, &args[0], no, no, 0},
{__LINE__, "2$d", 2, &args[1], no, no, 0},
{__LINE__, "3$d", 2, &args[2], no, no, 0},
{__LINE__, "4$d", 2, &args[3], no, no, 0},
{__LINE__, "2$*1$d", 2, &args[1], 10, no, 0},
{__LINE__, "2$*2$d", 2, &args[1], 20, no, 0},
{__LINE__, "2$*3$d", 2, &args[1], 30, no, 0},
{__LINE__, "2$.*1$d", 2, &args[1], no, 10, 0},
{__LINE__, "2$.*2$d", 2, &args[1], no, 20, 0},
{__LINE__, "2$.*3$d", 2, &args[1], no, 30, 0},
{__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0},
{__LINE__, "2$*2$.*2$d", 2, &args[1], 20, 20, 0},
{__LINE__, "2$*1$.*3$d", 2, &args[1], 10, 30, 0},
{__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0},
{__LINE__, "1$*d", 0}, // indexed, then positional
{__LINE__, "*2$d", 0}, // positional, then indexed
{__LINE__, "6$d", 1}, // arg position out of bounds
{__LINE__, "1$6$d", 0}, // width position incorrectly specified
{__LINE__, "1$.6$d", 0}, // precision position incorrectly specified
{__LINE__, "1$*6$d", 1}, // width position out of bounds
{__LINE__, "1$.*6$d", 1}, // precision position out of bounds
};
#pragma GCC diagnostic pop
for (const Expectation &e : kExpect) {
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UnboundConversion props;
BoundConversion bound;
int ok_phases = 0;
int next = 0;
if (Extract(e.fmt, &props, &next)) {
++ok_phases;
if (BindWithPack(&props, args, &bound)) {
++ok_phases;
}
}
EXPECT_EQ(e.ok_phases, ok_phases);
if (e.ok_phases < 2) continue;
if (e.arg != nullptr) {
EXPECT_EQ(e.arg, bound.arg());
}
EXPECT_EQ(e.width, bound.width());
EXPECT_EQ(e.precision, bound.precision());
}
}
TEST_F(FormatBindTest, FormatPack) {
struct Expectation {
int line;
const char *fmt;
const char *summary;
};
const int ia[] = { 10, 20, 30, 40, -10 };
const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]),
FormatArgImpl(ia[2]), FormatArgImpl(ia[3]),
FormatArgImpl(ia[4])};
const Expectation kExpect[] = {
{__LINE__, "a%4db%dc", "a{10:4d}b{20:d}c"},
{__LINE__, "a%.4db%dc", "a{10:.4d}b{20:d}c"},
{__LINE__, "a%4.5db%dc", "a{10:4.5d}b{20:d}c"},
{__LINE__, "a%db%4.5dc", "a{10:d}b{20:4.5d}c"},
{__LINE__, "a%db%*.*dc", "a{10:d}b{40:20.30d}c"},
{__LINE__, "a%.*fb", "a{20:.10f}b"},
{__LINE__, "a%1$db%2$*3$.*4$dc", "a{10:d}b{20:30.40d}c"},
{__LINE__, "a%4$db%3$*2$.*1$dc", "a{40:d}b{30:20.10d}c"},
{__LINE__, "a%04ldb", "a{10:04ld}b"},
{__LINE__, "a%-#04lldb", "a{10:-#04lld}b"},
{__LINE__, "a%1$*5$db", "a{10:-10d}b"},
{__LINE__, "a%1$.*5$db", "a{10:d}b"},
};
for (const Expectation &e : kExpect) {
absl::string_view fmt = e.fmt;
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UntypedFormatSpecImpl format(fmt);
EXPECT_EQ(e.summary,
str_format_internal::Summarize(format, absl::MakeSpan(args)))
<< "line:" << e.line;
}
}
} // namespace
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,325 @@
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/extension.h"
// Compile time check support for entry points.
#ifndef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
#if defined(__clang__) && !defined(__native_client__)
#if __has_attribute(enable_if)
#define ABSL_INTERNAL_ENABLE_FORMAT_CHECKER 1
#endif // __has_attribute(enable_if)
#endif // defined(__clang__) && !defined(__native_client__)
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
namespace absl {
namespace str_format_internal {
constexpr bool AllOf() { return true; }
template <typename... T>
constexpr bool AllOf(bool b, T... t) {
return b && AllOf(t...);
}
template <typename Arg>
constexpr Conv ArgumentToConv() {
return decltype(str_format_internal::FormatConvertImpl(
std::declval<const Arg&>(), std::declval<const ConversionSpec&>(),
std::declval<FormatSinkImpl*>()))::kConv;
}
#if ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
constexpr bool ContainsChar(const char* chars, char c) {
return *chars == c || (*chars && ContainsChar(chars + 1, c));
}
// A constexpr compatible list of Convs.
struct ConvList {
const Conv* array;
int count;
// We do the bound check here to avoid having to do it on the callers.
// Returning an empty Conv has the same effect as short circuiting because it
// will never match any conversion.
constexpr Conv operator[](int i) const {
return i < count ? array[i] : Conv{};
}
constexpr ConvList without_front() const {
return count != 0 ? ConvList{array + 1, count - 1} : *this;
}
};
template <size_t count>
struct ConvListT {
// Make sure the array has size > 0.
Conv list[count ? count : 1];
};
constexpr char GetChar(string_view str, size_t index) {
return index < str.size() ? str[index] : char{};
}
constexpr string_view ConsumeFront(string_view str, size_t len = 1) {
return len <= str.size() ? string_view(str.data() + len, str.size() - len)
: string_view();
}
constexpr string_view ConsumeAnyOf(string_view format, const char* chars) {
return ContainsChar(chars, GetChar(format, 0))
? ConsumeAnyOf(ConsumeFront(format), chars)
: format;
}
constexpr bool IsDigit(char c) { return c >= '0' && c <= '9'; }
// Helper class for the ParseDigits function.
// It encapsulates the two return values we need there.
struct Integer {
string_view format;
int value;
// If the next character is a '$', consume it.
// Otherwise, make `this` an invalid positional argument.
constexpr Integer ConsumePositionalDollar() const {
return GetChar(format, 0) == '$' ? Integer{ConsumeFront(format), value}
: Integer{format, 0};
}
};
constexpr Integer ParseDigits(string_view format, int value = 0) {
return IsDigit(GetChar(format, 0))
? ParseDigits(ConsumeFront(format),
10 * value + GetChar(format, 0) - '0')
: Integer{format, value};
}
// Parse digits for a positional argument.
// The parsing also consumes the '$'.
constexpr Integer ParsePositional(string_view format) {
return ParseDigits(format).ConsumePositionalDollar();
}
// Parses a single conversion specifier.
// See ConvParser::Run() for post conditions.
class ConvParser {
constexpr ConvParser SetFormat(string_view format) const {
return ConvParser(format, args_, error_, arg_position_, is_positional_);
}
constexpr ConvParser SetArgs(ConvList args) const {
return ConvParser(format_, args, error_, arg_position_, is_positional_);
}
constexpr ConvParser SetError(bool error) const {
return ConvParser(format_, args_, error_ || error, arg_position_,
is_positional_);
}
constexpr ConvParser SetArgPosition(int arg_position) const {
return ConvParser(format_, args_, error_, arg_position, is_positional_);
}
// Consumes the next arg and verifies that it matches `conv`.
// `error_` is set if there is no next arg or if it doesn't match `conv`.
constexpr ConvParser ConsumeNextArg(char conv) const {
return SetArgs(args_.without_front()).SetError(!Contains(args_[0], conv));
}
// Verify that positional argument `i.value` matches `conv`.
// `error_` is set if `i.value` is not a valid argument or if it doesn't
// match.
constexpr ConvParser VerifyPositional(Integer i, char conv) const {
return SetFormat(i.format).SetError(!Contains(args_[i.value - 1], conv));
}
// Parse the position of the arg and store it in `arg_position_`.
constexpr ConvParser ParseArgPosition(Integer arg) const {
return SetFormat(arg.format).SetArgPosition(arg.value);
}
// Consume the flags.
constexpr ConvParser ParseFlags() const {
return SetFormat(ConsumeAnyOf(format_, "-+ #0"));
}
// Consume the width.
// If it is '*', we verify that it matches `args_`. `error_` is set if it
// doesn't match.
constexpr ConvParser ParseWidth() const {
return IsDigit(GetChar(format_, 0))
? SetFormat(ParseDigits(format_).format)
: GetChar(format_, 0) == '*'
? is_positional_
? VerifyPositional(
ParsePositional(ConsumeFront(format_)), '*')
: SetFormat(ConsumeFront(format_))
.ConsumeNextArg('*')
: *this;
}
// Consume the precision.
// If it is '*', we verify that it matches `args_`. `error_` is set if it
// doesn't match.
constexpr ConvParser ParsePrecision() const {
return GetChar(format_, 0) != '.'
? *this
: GetChar(format_, 1) == '*'
? is_positional_
? VerifyPositional(
ParsePositional(ConsumeFront(format_, 2)), '*')
: SetFormat(ConsumeFront(format_, 2))
.ConsumeNextArg('*')
: SetFormat(ParseDigits(ConsumeFront(format_)).format);
}
// Consume the length characters.
constexpr ConvParser ParseLength() const {
return SetFormat(ConsumeAnyOf(format_, "lLhjztq"));
}
// Consume the conversion character and verify that it matches `args_`.
// `error_` is set if it doesn't match.
constexpr ConvParser ParseConversion() const {
return is_positional_
? VerifyPositional({ConsumeFront(format_), arg_position_},
GetChar(format_, 0))
: ConsumeNextArg(GetChar(format_, 0))
.SetFormat(ConsumeFront(format_));
}
constexpr ConvParser(string_view format, ConvList args, bool error,
int arg_position, bool is_positional)
: format_(format),
args_(args),
error_(error),
arg_position_(arg_position),
is_positional_(is_positional) {}
public:
constexpr ConvParser(string_view format, ConvList args, bool is_positional)
: format_(format),
args_(args),
error_(false),
arg_position_(0),
is_positional_(is_positional) {}
// Consume the whole conversion specifier.
// `format()` will be set to the character after the conversion character.
// `error()` will be set if any of the arguments do not match.
constexpr ConvParser Run() const {
return (is_positional_ ? ParseArgPosition(ParsePositional(format_)) : *this)
.ParseFlags()
.ParseWidth()
.ParsePrecision()
.ParseLength()
.ParseConversion();
}
constexpr string_view format() const { return format_; }
constexpr ConvList args() const { return args_; }
constexpr bool error() const { return error_; }
constexpr bool is_positional() const { return is_positional_; }
private:
string_view format_;
// Current list of arguments. If we are not in positional mode we will consume
// from the front.
ConvList args_;
bool error_;
// Holds the argument position of the conversion character, if we are in
// positional mode. Otherwise, it is unspecified.
int arg_position_;
// Whether we are in positional mode.
// It changes the behavior of '*' and where to find the converted argument.
bool is_positional_;
};
// Parses a whole format expression.
// See FormatParser::Run().
class FormatParser {
static constexpr bool FoundPercent(string_view format) {
return format.empty() ||
(GetChar(format, 0) == '%' && GetChar(format, 1) != '%');
}
// We use an inner function to increase the recursion limit.
// The inner function consumes up to `limit` characters on every run.
// This increases the limit from 512 to ~512*limit.
static constexpr string_view ConsumeNonPercentInner(string_view format,
int limit = 20) {
return FoundPercent(format) || !limit
? format
: ConsumeNonPercentInner(
ConsumeFront(format, GetChar(format, 0) == '%' &&
GetChar(format, 1) == '%'
? 2
: 1),
limit - 1);
}
// Consume characters until the next conversion spec %.
// It skips %%.
static constexpr string_view ConsumeNonPercent(string_view format) {
return FoundPercent(format)
? format
: ConsumeNonPercent(ConsumeNonPercentInner(format));
}
static constexpr bool IsPositional(string_view format) {
return IsDigit(GetChar(format, 0)) ? IsPositional(ConsumeFront(format))
: GetChar(format, 0) == '$';
}
constexpr bool RunImpl(bool is_positional) const {
// In non-positional mode we require all arguments to be consumed.
// In positional mode just reaching the end of the format without errors is
// enough.
return (format_.empty() && (is_positional || args_.count == 0)) ||
(!format_.empty() &&
ValidateArg(
ConvParser(ConsumeFront(format_), args_, is_positional).Run()));
}
constexpr bool ValidateArg(ConvParser conv) const {
return !conv.error() && FormatParser(conv.format(), conv.args())
.RunImpl(conv.is_positional());
}
public:
constexpr FormatParser(string_view format, ConvList args)
: format_(ConsumeNonPercent(format)), args_(args) {}
// Runs the parser for `format` and `args`.
// It verifies that the format is valid and that all conversion specifiers
// match the arguments passed.
// In non-positional mode it also verfies that all arguments are consumed.
constexpr bool Run() const {
return RunImpl(!format_.empty() && IsPositional(ConsumeFront(format_)));
}
private:
string_view format_;
// Current list of arguments.
// If we are not in positional mode we will consume from the front and will
// have to be empty in the end.
ConvList args_;
};
template <Conv... C>
constexpr bool ValidFormatImpl(string_view format) {
return FormatParser(format,
{ConvListT<sizeof...(C)>{{C...}}.list, sizeof...(C)})
.Run();
}
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_

View file

@ -0,0 +1,150 @@
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
namespace absl {
namespace str_format_internal {
namespace {
std::string ConvToString(Conv conv) {
std::string out;
#define CONV_SET_CASE(c) \
if (Contains(conv, Conv::c)) out += #c;
ABSL_CONVERSION_CHARS_EXPAND_(CONV_SET_CASE, )
#undef CONV_SET_CASE
if (Contains(conv, Conv::star)) out += "*";
return out;
}
TEST(StrFormatChecker, ArgumentToConv) {
Conv conv = ArgumentToConv<std::string>();
EXPECT_EQ(ConvToString(conv), "s");
conv = ArgumentToConv<const char*>();
EXPECT_EQ(ConvToString(conv), "sp");
conv = ArgumentToConv<double>();
EXPECT_EQ(ConvToString(conv), "fFeEgGaA");
conv = ArgumentToConv<int>();
EXPECT_EQ(ConvToString(conv), "cdiouxXfFeEgGaA*");
conv = ArgumentToConv<std::string*>();
EXPECT_EQ(ConvToString(conv), "p");
}
#if ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
struct Case {
bool result;
const char* format;
};
template <typename... Args>
constexpr Case ValidFormat(const char* format) {
return {ValidFormatImpl<ArgumentToConv<Args>()...>(format), format};
}
TEST(StrFormatChecker, ValidFormat) {
// We want to make sure these expressions are constexpr and they have the
// expected value.
// If they are not constexpr the attribute will just ignore them and not give
// a compile time error.
enum e {};
enum class e2 {};
constexpr Case trues[] = {
ValidFormat<>("abc"), //
ValidFormat<e>("%d"), //
ValidFormat<e2>("%d"), //
ValidFormat<int>("%% %d"), //
ValidFormat<int>("%ld"), //
ValidFormat<int>("%lld"), //
ValidFormat<std::string>("%s"), //
ValidFormat<std::string>("%10s"), //
ValidFormat<int>("%.10x"), //
ValidFormat<int, int>("%*.3x"), //
ValidFormat<int>("%1.d"), //
ValidFormat<int>("%.d"), //
ValidFormat<int, double>("%d %g"), //
ValidFormat<int, std::string>("%*s"), //
ValidFormat<int, double>("%.*f"), //
ValidFormat<void (*)(), volatile int*>("%p %p"), //
ValidFormat<string_view, const char*, double, void*>(
"string_view=%s const char*=%s double=%f void*=%p)"),
ValidFormat<int>("%% %1$d"), //
ValidFormat<int>("%1$ld"), //
ValidFormat<int>("%1$lld"), //
ValidFormat<std::string>("%1$s"), //
ValidFormat<std::string>("%1$10s"), //
ValidFormat<int>("%1$.10x"), //
ValidFormat<int>("%1$*1$.*1$d"), //
ValidFormat<int, int>("%1$*2$.3x"), //
ValidFormat<int>("%1$1.d"), //
ValidFormat<int>("%1$.d"), //
ValidFormat<double, int>("%2$d %1$g"), //
ValidFormat<int, std::string>("%2$*1$s"), //
ValidFormat<int, double>("%2$.*1$f"), //
ValidFormat<void*, string_view, const char*, double>(
"string_view=%2$s const char*=%3$s double=%4$f void*=%1$p "
"repeat=%3$s)")};
for (Case c : trues) {
EXPECT_TRUE(c.result) << c.format;
}
constexpr Case falses[] = {
ValidFormat<int>(""), //
ValidFormat<e>("%s"), //
ValidFormat<e2>("%s"), //
ValidFormat<>("%s"), //
ValidFormat<>("%r"), //
ValidFormat<int>("%s"), //
ValidFormat<int>("%.1.d"), //
ValidFormat<int>("%*1d"), //
ValidFormat<int>("%1-d"), //
ValidFormat<std::string, int>("%*s"), //
ValidFormat<int>("%*d"), //
ValidFormat<std::string>("%p"), //
ValidFormat<int (*)(int)>("%d"), //
ValidFormat<>("%3$d"), //
ValidFormat<>("%1$r"), //
ValidFormat<int>("%1$s"), //
ValidFormat<int>("%1$.1.d"), //
ValidFormat<int>("%1$*2$1d"), //
ValidFormat<int>("%1$1-d"), //
ValidFormat<std::string, int>("%2$*1$s"), //
ValidFormat<std::string>("%1$p"),
ValidFormat<int, int>("%d %2$d"), //
};
for (Case c : falses) {
EXPECT_FALSE(c.result) << c.format;
}
}
TEST(StrFormatChecker, LongFormat) {
#define CHARS_X_40 "1234567890123456789012345678901234567890"
#define CHARS_X_400 \
CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 \
CHARS_X_40 CHARS_X_40 CHARS_X_40
#define CHARS_X_4000 \
CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400 \
CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400
constexpr char long_format[] =
CHARS_X_4000 "%d" CHARS_X_4000 "%s" CHARS_X_4000;
constexpr bool is_valid = ValidFormat<int, std::string>(long_format).result;
EXPECT_TRUE(is_valid);
}
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
} // namespace
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,575 @@
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <cmath>
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/internal/str_format/bind.h"
namespace absl {
namespace str_format_internal {
namespace {
template <typename T, size_t N>
size_t ArraySize(T (&)[N]) {
return N;
}
std::string LengthModFor(float) { return ""; }
std::string LengthModFor(double) { return ""; }
std::string LengthModFor(long double) { return "L"; }
std::string LengthModFor(char) { return "hh"; }
std::string LengthModFor(signed char) { return "hh"; }
std::string LengthModFor(unsigned char) { return "hh"; }
std::string LengthModFor(short) { return "h"; } // NOLINT
std::string LengthModFor(unsigned short) { return "h"; } // NOLINT
std::string LengthModFor(int) { return ""; }
std::string LengthModFor(unsigned) { return ""; }
std::string LengthModFor(long) { return "l"; } // NOLINT
std::string LengthModFor(unsigned long) { return "l"; } // NOLINT
std::string LengthModFor(long long) { return "ll"; } // NOLINT
std::string LengthModFor(unsigned long long) { return "ll"; } // NOLINT
std::string EscCharImpl(int v) {
if (isprint(v)) return std::string(1, static_cast<char>(v));
char buf[64];
int n = snprintf(buf, sizeof(buf), "\\%#.2x",
static_cast<unsigned>(v & 0xff));
assert(n > 0 && n < sizeof(buf));
return std::string(buf, n);
}
std::string Esc(char v) { return EscCharImpl(v); }
std::string Esc(signed char v) { return EscCharImpl(v); }
std::string Esc(unsigned char v) { return EscCharImpl(v); }
template <typename T>
std::string Esc(const T &v) {
std::ostringstream oss;
oss << v;
return oss.str();
}
void StrAppend(std::string *dst, const char *format, va_list ap) {
// First try with a small fixed size buffer
static const int kSpaceLength = 1024;
char space[kSpaceLength];
// It's possible for methods that use a va_list to invalidate
// the data in it upon use. The fix is to make a copy
// of the structure before using it and use that copy instead.
va_list backup_ap;
va_copy(backup_ap, ap);
int result = vsnprintf(space, kSpaceLength, format, backup_ap);
va_end(backup_ap);
if (result < kSpaceLength) {
if (result >= 0) {
// Normal case -- everything fit.
dst->append(space, result);
return;
}
if (result < 0) {
// Just an error.
return;
}
}
// Increase the buffer size to the size requested by vsnprintf,
// plus one for the closing \0.
int length = result + 1;
char *buf = new char[length];
// Restore the va_list before we use it again
va_copy(backup_ap, ap);
result = vsnprintf(buf, length, format, backup_ap);
va_end(backup_ap);
if (result >= 0 && result < length) {
// It fit
dst->append(buf, result);
}
delete[] buf;
}
std::string StrPrint(const char *format, ...) {
va_list ap;
va_start(ap, format);
std::string result;
StrAppend(&result, format, ap);
va_end(ap);
return result;
}
class FormatConvertTest : public ::testing::Test { };
template <typename T>
void TestStringConvert(const T& str) {
const FormatArgImpl args[] = {FormatArgImpl(str)};
struct Expectation {
const char *out;
const char *fmt;
};
const Expectation kExpect[] = {
{"hello", "%1$s" },
{"", "%1$.s" },
{"", "%1$.0s" },
{"h", "%1$.1s" },
{"he", "%1$.2s" },
{"hello", "%1$.10s" },
{" hello", "%1$6s" },
{" he", "%1$5.2s" },
{"he ", "%1$-5.2s" },
{"hello ", "%1$-6.10s" },
};
for (const Expectation &e : kExpect) {
UntypedFormatSpecImpl format(e.fmt);
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
}
}
TEST_F(FormatConvertTest, BasicString) {
TestStringConvert("hello"); // As char array.
TestStringConvert(static_cast<const char*>("hello"));
TestStringConvert(std::string("hello"));
TestStringConvert(string_view("hello"));
}
TEST_F(FormatConvertTest, NullString) {
const char* p = nullptr;
UntypedFormatSpecImpl format("%s");
EXPECT_EQ("", FormatPack(format, {FormatArgImpl(p)}));
}
TEST_F(FormatConvertTest, StringPrecision) {
// We cap at the precision.
char c = 'a';
const char* p = &c;
UntypedFormatSpecImpl format("%.1s");
EXPECT_EQ("a", FormatPack(format, {FormatArgImpl(p)}));
// We cap at the nul terminator.
p = "ABC";
UntypedFormatSpecImpl format2("%.10s");
EXPECT_EQ("ABC", FormatPack(format2, {FormatArgImpl(p)}));
}
TEST_F(FormatConvertTest, Pointer) {
#if _MSC_VER
// MSVC's printf implementation prints pointers differently. We can't easily
// compare our implementation to theirs.
return;
#endif
static int x = 0;
const int *xp = &x;
char c = 'h';
char *mcp = &c;
const char *cp = "hi";
const char *cnil = nullptr;
const int *inil = nullptr;
using VoidF = void (*)();
VoidF fp = [] {}, fnil = nullptr;
volatile char vc;
volatile char* vcp = &vc;
volatile char* vcnil = nullptr;
const FormatArgImpl args[] = {
FormatArgImpl(xp), FormatArgImpl(cp), FormatArgImpl(inil),
FormatArgImpl(cnil), FormatArgImpl(mcp), FormatArgImpl(fp),
FormatArgImpl(fnil), FormatArgImpl(vcp), FormatArgImpl(vcnil),
};
struct Expectation {
std::string out;
const char *fmt;
};
const Expectation kExpect[] = {
{StrPrint("%p", &x), "%p"},
{StrPrint("%20p", &x), "%20p"},
{StrPrint("%.1p", &x), "%.1p"},
{StrPrint("%.20p", &x), "%.20p"},
{StrPrint("%30.20p", &x), "%30.20p"},
{StrPrint("%-p", &x), "%-p"},
{StrPrint("%-20p", &x), "%-20p"},
{StrPrint("%-.1p", &x), "%-.1p"},
{StrPrint("%.20p", &x), "%.20p"},
{StrPrint("%-30.20p", &x), "%-30.20p"},
{StrPrint("%p", cp), "%2$p"}, // const char*
{"(nil)", "%3$p"}, // null const char *
{"(nil)", "%4$p"}, // null const int *
{StrPrint("%p", mcp), "%5$p"}, // nonconst char*
{StrPrint("%p", fp), "%6$p"}, // function pointer
{StrPrint("%p", vcp), "%8$p"}, // function pointer
#ifndef __APPLE__
// Apple's printf differs here (0x0 vs. nil)
{StrPrint("%p", fnil), "%7$p"}, // null function pointer
{StrPrint("%p", vcnil), "%9$p"}, // null function pointer
#endif
};
for (const Expectation &e : kExpect) {
UntypedFormatSpecImpl format(e.fmt);
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args))) << e.fmt;
}
}
struct Cardinal {
enum Pos { k1 = 1, k2 = 2, k3 = 3 };
enum Neg { kM1 = -1, kM2 = -2, kM3 = -3 };
};
TEST_F(FormatConvertTest, Enum) {
const Cardinal::Pos k3 = Cardinal::k3;
const Cardinal::Neg km3 = Cardinal::kM3;
const FormatArgImpl args[] = {FormatArgImpl(k3), FormatArgImpl(km3)};
UntypedFormatSpecImpl format("%1$d");
UntypedFormatSpecImpl format2("%2$d");
EXPECT_EQ("3", FormatPack(format, absl::MakeSpan(args)));
EXPECT_EQ("-3", FormatPack(format2, absl::MakeSpan(args)));
}
template <typename T>
class TypedFormatConvertTest : public FormatConvertTest { };
TYPED_TEST_CASE_P(TypedFormatConvertTest);
std::vector<std::string> AllFlagCombinations() {
const char kFlags[] = {'-', '#', '0', '+', ' '};
std::vector<std::string> result;
for (size_t fsi = 0; fsi < (1ull << ArraySize(kFlags)); ++fsi) {
std::string flag_set;
for (size_t fi = 0; fi < ArraySize(kFlags); ++fi)
if (fsi & (1ull << fi))
flag_set += kFlags[fi];
result.push_back(flag_set);
}
return result;
}
TYPED_TEST_P(TypedFormatConvertTest, AllIntsWithFlags) {
typedef TypeParam T;
typedef typename std::make_unsigned<T>::type UnsignedT;
using remove_volatile_t = typename std::remove_volatile<T>::type;
const T kMin = std::numeric_limits<remove_volatile_t>::min();
const T kMax = std::numeric_limits<remove_volatile_t>::max();
const T kVals[] = {
remove_volatile_t(1),
remove_volatile_t(2),
remove_volatile_t(3),
remove_volatile_t(123),
remove_volatile_t(-1),
remove_volatile_t(-2),
remove_volatile_t(-3),
remove_volatile_t(-123),
remove_volatile_t(0),
kMax - remove_volatile_t(1),
kMax,
kMin + remove_volatile_t(1),
kMin,
};
const char kConvChars[] = {'d', 'i', 'u', 'o', 'x', 'X'};
const std::string kWid[] = {"", "4", "10"};
const std::string kPrec[] = {"", ".", ".0", ".4", ".10"};
const std::vector<std::string> flag_sets = AllFlagCombinations();
for (size_t vi = 0; vi < ArraySize(kVals); ++vi) {
const T val = kVals[vi];
SCOPED_TRACE(Esc(val));
const FormatArgImpl args[] = {FormatArgImpl(val)};
for (size_t ci = 0; ci < ArraySize(kConvChars); ++ci) {
const char conv_char = kConvChars[ci];
for (size_t fsi = 0; fsi < flag_sets.size(); ++fsi) {
const std::string &flag_set = flag_sets[fsi];
for (size_t wi = 0; wi < ArraySize(kWid); ++wi) {
const std::string &wid = kWid[wi];
for (size_t pi = 0; pi < ArraySize(kPrec); ++pi) {
const std::string &prec = kPrec[pi];
const bool is_signed_conv = (conv_char == 'd' || conv_char == 'i');
const bool is_unsigned_to_signed =
!std::is_signed<T>::value && is_signed_conv;
// Don't consider sign-related flags '+' and ' ' when doing
// unsigned to signed conversions.
if (is_unsigned_to_signed &&
flag_set.find_first_of("+ ") != std::string::npos) {
continue;
}
std::string new_fmt("%");
new_fmt += flag_set;
new_fmt += wid;
new_fmt += prec;
// old and new always agree up to here.
std::string old_fmt = new_fmt;
new_fmt += conv_char;
std::string old_result;
if (is_unsigned_to_signed) {
// don't expect agreement on unsigned formatted as signed,
// as printf can't do that conversion properly. For those
// cases, we do expect agreement with printf with a "%u"
// and the unsigned equivalent of 'val'.
UnsignedT uval = val;
old_fmt += LengthModFor(uval);
old_fmt += "u";
old_result = StrPrint(old_fmt.c_str(), uval);
} else {
old_fmt += LengthModFor(val);
old_fmt += conv_char;
old_result = StrPrint(old_fmt.c_str(), val);
}
SCOPED_TRACE(std::string() + " old_fmt: \"" + old_fmt +
"\"'"
" new_fmt: \"" +
new_fmt + "\"");
UntypedFormatSpecImpl format(new_fmt);
EXPECT_EQ(old_result, FormatPack(format, absl::MakeSpan(args)));
}
}
}
}
}
}
TYPED_TEST_P(TypedFormatConvertTest, Char) {
typedef TypeParam T;
using remove_volatile_t = typename std::remove_volatile<T>::type;
static const T kMin = std::numeric_limits<remove_volatile_t>::min();
static const T kMax = std::numeric_limits<remove_volatile_t>::max();
T kVals[] = {
remove_volatile_t(1), remove_volatile_t(2), remove_volatile_t(10),
remove_volatile_t(-1), remove_volatile_t(-2), remove_volatile_t(-10),
remove_volatile_t(0),
kMin + remove_volatile_t(1), kMin,
kMax - remove_volatile_t(1), kMax
};
for (const T &c : kVals) {
const FormatArgImpl args[] = {FormatArgImpl(c)};
UntypedFormatSpecImpl format("%c");
EXPECT_EQ(StrPrint("%c", c), FormatPack(format, absl::MakeSpan(args)));
}
}
REGISTER_TYPED_TEST_CASE_P(TypedFormatConvertTest, AllIntsWithFlags, Char);
typedef ::testing::Types<
int, unsigned, volatile int,
short, unsigned short,
long, unsigned long,
long long, unsigned long long,
signed char, unsigned char, char>
AllIntTypes;
INSTANTIATE_TYPED_TEST_CASE_P(TypedFormatConvertTestWithAllIntTypes,
TypedFormatConvertTest, AllIntTypes);
TEST_F(FormatConvertTest, Uint128) {
absl::uint128 v = static_cast<absl::uint128>(0x1234567890abcdef) * 1979;
absl::uint128 max = absl::Uint128Max();
const FormatArgImpl args[] = {FormatArgImpl(v), FormatArgImpl(max)};
struct Case {
const char* format;
const char* expected;
} cases[] = {
{"%1$d", "2595989796776606496405"},
{"%1$30d", " 2595989796776606496405"},
{"%1$-30d", "2595989796776606496405 "},
{"%1$u", "2595989796776606496405"},
{"%1$x", "8cba9876066020f695"},
{"%2$d", "340282366920938463463374607431768211455"},
{"%2$u", "340282366920938463463374607431768211455"},
{"%2$x", "ffffffffffffffffffffffffffffffff"},
};
for (auto c : cases) {
UntypedFormatSpecImpl format(c.format);
EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
}
}
TEST_F(FormatConvertTest, Float) {
#if _MSC_VER
// MSVC has a different rounding policy than us so we can't test our
// implementation against the native one there.
return;
#endif // _MSC_VER
const char *const kFormats[] = {
"%", "%.3", "%8.5", "%9", "%.60", "%.30", "%03", "%+",
"% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
std::vector<double> doubles = {0.0,
-0.0,
.99999999999999,
99999999999999.,
std::numeric_limits<double>::max(),
-std::numeric_limits<double>::max(),
std::numeric_limits<double>::min(),
-std::numeric_limits<double>::min(),
std::numeric_limits<double>::lowest(),
-std::numeric_limits<double>::lowest(),
std::numeric_limits<double>::epsilon(),
std::numeric_limits<double>::epsilon() + 1,
std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity()};
#ifndef __APPLE__
// Apple formats NaN differently (+nan) vs. (nan)
doubles.push_back(std::nan(""));
#endif
// Some regression tests.
doubles.push_back(0.99999999999999989);
if (std::numeric_limits<double>::has_denorm != std::denorm_absent) {
doubles.push_back(std::numeric_limits<double>::denorm_min());
doubles.push_back(-std::numeric_limits<double>::denorm_min());
}
for (double base :
{1., 12., 123., 1234., 12345., 123456., 1234567., 12345678., 123456789.,
1234567890., 12345678901., 123456789012., 1234567890123.}) {
for (int exp = -123; exp <= 123; ++exp) {
for (int sign : {1, -1}) {
doubles.push_back(sign * std::ldexp(base, exp));
}
}
}
for (const char *fmt : kFormats) {
for (char f : {'f', 'F', //
'g', 'G', //
'a', 'A', //
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + f;
for (double d : doubles) {
int i = -10;
FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)};
UntypedFormatSpecImpl format(fmt_str);
// We use ASSERT_EQ here because failures are usually correlated and a
// bug would print way too many failed expectations causing the test to
// time out.
ASSERT_EQ(StrPrint(fmt_str.c_str(), d, i),
FormatPack(format, absl::MakeSpan(args)))
<< fmt_str << " " << StrPrint("%.18g", d) << " "
<< StrPrint("%.999f", d);
}
}
}
}
TEST_F(FormatConvertTest, LongDouble) {
const char *const kFormats[] = {"%", "%.3", "%8.5", "%9",
"%.60", "%+", "% ", "%-10"};
// This value is not representable in double, but it is in long double that
// uses the extended format.
// This is to verify that we are not truncating the value mistakenly through a
// double.
long double very_precise = 10000000000000000.25L;
std::vector<long double> doubles = {
0.0,
-0.0,
very_precise,
1 / very_precise,
std::numeric_limits<long double>::max(),
-std::numeric_limits<long double>::max(),
std::numeric_limits<long double>::min(),
-std::numeric_limits<long double>::min(),
std::numeric_limits<long double>::infinity(),
-std::numeric_limits<long double>::infinity()};
for (const char *fmt : kFormats) {
for (char f : {'f', 'F', //
'g', 'G', //
'a', 'A', //
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + 'L' + f;
for (auto d : doubles) {
FormatArgImpl arg(d);
UntypedFormatSpecImpl format(fmt_str);
// We use ASSERT_EQ here because failures are usually correlated and a
// bug would print way too many failed expectations causing the test to
// time out.
ASSERT_EQ(StrPrint(fmt_str.c_str(), d),
FormatPack(format, {&arg, 1}))
<< fmt_str << " " << StrPrint("%.18Lg", d) << " "
<< StrPrint("%.999Lf", d);
}
}
}
}
TEST_F(FormatConvertTest, IntAsFloat) {
const int kMin = std::numeric_limits<int>::min();
const int kMax = std::numeric_limits<int>::max();
const int ia[] = {
1, 2, 3, 123,
-1, -2, -3, -123,
0, kMax - 1, kMax, kMin + 1, kMin };
for (const int fx : ia) {
SCOPED_TRACE(fx);
const FormatArgImpl args[] = {FormatArgImpl(fx)};
struct Expectation {
int line;
std::string out;
const char *fmt;
};
const double dx = static_cast<double>(fx);
const Expectation kExpect[] = {
{ __LINE__, StrPrint("%f", dx), "%f" },
{ __LINE__, StrPrint("%12f", dx), "%12f" },
{ __LINE__, StrPrint("%.12f", dx), "%.12f" },
{ __LINE__, StrPrint("%12a", dx), "%12a" },
{ __LINE__, StrPrint("%.12a", dx), "%.12a" },
};
for (const Expectation &e : kExpect) {
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UntypedFormatSpecImpl format(e.fmt);
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
}
}
}
template <typename T>
bool FormatFails(const char* test_format, T value) {
std::string format_string = std::string("<<") + test_format + ">>";
UntypedFormatSpecImpl format(format_string);
int one = 1;
const FormatArgImpl args[] = {FormatArgImpl(value), FormatArgImpl(one)};
EXPECT_EQ(FormatPack(format, absl::MakeSpan(args)), "")
<< "format=" << test_format << " value=" << value;
return FormatPack(format, absl::MakeSpan(args)).empty();
}
TEST_F(FormatConvertTest, ExpectedFailures) {
// Int input
EXPECT_TRUE(FormatFails("%p", 1));
EXPECT_TRUE(FormatFails("%s", 1));
EXPECT_TRUE(FormatFails("%n", 1));
// Double input
EXPECT_TRUE(FormatFails("%p", 1.));
EXPECT_TRUE(FormatFails("%s", 1.));
EXPECT_TRUE(FormatFails("%n", 1.));
EXPECT_TRUE(FormatFails("%c", 1.));
EXPECT_TRUE(FormatFails("%d", 1.));
EXPECT_TRUE(FormatFails("%x", 1.));
EXPECT_TRUE(FormatFails("%*d", 1.));
// String input
EXPECT_TRUE(FormatFails("%n", ""));
EXPECT_TRUE(FormatFails("%c", ""));
EXPECT_TRUE(FormatFails("%d", ""));
EXPECT_TRUE(FormatFails("%x", ""));
EXPECT_TRUE(FormatFails("%f", ""));
EXPECT_TRUE(FormatFails("%*d", ""));
}
} // namespace
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,84 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/extension.h"
#include <errno.h>
#include <algorithm>
#include <string>
namespace absl {
namespace str_format_internal {
namespace {
// clang-format off
#define ABSL_LENGTH_MODS_EXPAND_ \
X_VAL(h) X_SEP \
X_VAL(hh) X_SEP \
X_VAL(l) X_SEP \
X_VAL(ll) X_SEP \
X_VAL(L) X_SEP \
X_VAL(j) X_SEP \
X_VAL(z) X_SEP \
X_VAL(t) X_SEP \
X_VAL(q)
// clang-format on
} // namespace
const LengthMod::Spec LengthMod::kSpecs[] = {
#define X_VAL(id) { LengthMod::id, #id, strlen(#id) }
#define X_SEP ,
ABSL_LENGTH_MODS_EXPAND_, {LengthMod::none, "", 0}
#undef X_VAL
#undef X_SEP
};
const ConversionChar::Spec ConversionChar::kSpecs[] = {
#define X_VAL(id) { ConversionChar::id, #id[0] }
#define X_SEP ,
ABSL_CONVERSION_CHARS_EXPAND_(X_VAL, X_SEP),
{ConversionChar::none, '\0'},
#undef X_VAL
#undef X_SEP
};
std::string Flags::ToString() const {
std::string s;
s.append(left ? "-" : "");
s.append(show_pos ? "+" : "");
s.append(sign_col ? " " : "");
s.append(alt ? "#" : "");
s.append(zero ? "0" : "");
return s;
}
const size_t LengthMod::kNumValues;
const size_t ConversionChar::kNumValues;
bool FormatSinkImpl::PutPaddedString(string_view v, int w, int p, bool l) {
size_t space_remaining = 0;
if (w >= 0) space_remaining = w;
size_t n = v.size();
if (p >= 0) n = std::min(n, static_cast<size_t>(p));
string_view shown(v.data(), n);
space_remaining = Excess(shown.size(), space_remaining);
if (!l) Append(space_remaining, ' ');
Append(shown);
if (l) Append(space_remaining, ' ');
return true;
}
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,406 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_
#include <limits.h>
#include <cstring>
#include <ostream>
#include "absl/base/port.h"
#include "absl/strings/internal/str_format/output.h"
#include "absl/strings/string_view.h"
class Cord;
namespace absl {
namespace str_format_internal {
class FormatRawSinkImpl {
public:
// Implicitly convert from any type that provides the hook function as
// described above.
template <typename T, decltype(str_format_internal::InvokeFlush(
std::declval<T*>(), string_view()))* = nullptr>
FormatRawSinkImpl(T* raw) // NOLINT
: sink_(raw), write_(&FormatRawSinkImpl::Flush<T>) {}
void Write(string_view s) { write_(sink_, s); }
template <typename T>
static FormatRawSinkImpl Extract(T s) {
return s.sink_;
}
private:
template <typename T>
static void Flush(void* r, string_view s) {
str_format_internal::InvokeFlush(static_cast<T*>(r), s);
}
void* sink_;
void (*write_)(void*, string_view);
};
// An abstraction to which conversions write their std::string data.
class FormatSinkImpl {
public:
explicit FormatSinkImpl(FormatRawSinkImpl raw) : raw_(raw) {}
~FormatSinkImpl() { Flush(); }
void Flush() {
raw_.Write(string_view(buf_, pos_ - buf_));
pos_ = buf_;
}
void Append(size_t n, char c) {
if (n == 0) return;
size_ += n;
auto raw_append = [&](size_t count) {
memset(pos_, c, count);
pos_ += count;
};
while (n > Avail()) {
n -= Avail();
if (Avail() > 0) {
raw_append(Avail());
}
Flush();
}
raw_append(n);
}
void Append(string_view v) {
size_t n = v.size();
if (n == 0) return;
size_ += n;
if (n >= Avail()) {
Flush();
raw_.Write(v);
return;
}
memcpy(pos_, v.data(), n);
pos_ += n;
}
size_t size() const { return size_; }
// Put 'v' to 'sink' with specified width, precision, and left flag.
bool PutPaddedString(string_view v, int w, int p, bool l);
template <typename T>
T Wrap() {
return T(this);
}
template <typename T>
static FormatSinkImpl* Extract(T* s) {
return s->sink_;
}
private:
size_t Avail() const { return buf_ + sizeof(buf_) - pos_; }
FormatRawSinkImpl raw_;
size_t size_ = 0;
char* pos_ = buf_;
char buf_[1024];
};
struct Flags {
bool basic : 1; // fastest conversion: no flags, width, or precision
bool left : 1; // "-"
bool show_pos : 1; // "+"
bool sign_col : 1; // " "
bool alt : 1; // "#"
bool zero : 1; // "0"
std::string ToString() const;
friend std::ostream& operator<<(std::ostream& os, const Flags& v) {
return os << v.ToString();
}
};
struct LengthMod {
public:
enum Id : uint8_t {
h, hh, l, ll, L, j, z, t, q, none
};
static const size_t kNumValues = none + 1;
LengthMod() : id_(none) {}
// Index into the opaque array of LengthMod enums.
// Requires: i < kNumValues
static LengthMod FromIndex(size_t i) {
return LengthMod(kSpecs[i].value);
}
static LengthMod FromId(Id id) { return LengthMod(id); }
// The length modifier std::string associated with a specified LengthMod.
string_view name() const {
const Spec& spec = kSpecs[id_];
return {spec.name, spec.name_length};
}
Id id() const { return id_; }
friend bool operator==(const LengthMod& a, const LengthMod& b) {
return a.id() == b.id();
}
friend bool operator!=(const LengthMod& a, const LengthMod& b) {
return !(a == b);
}
friend std::ostream& operator<<(std::ostream& os, const LengthMod& v) {
return os << v.name();
}
private:
struct Spec {
Id value;
const char *name;
size_t name_length;
};
static const Spec kSpecs[];
explicit LengthMod(Id id) : id_(id) {}
Id id_;
};
// clang-format off
#define ABSL_CONVERSION_CHARS_EXPAND_(X_VAL, X_SEP) \
/* text */ \
X_VAL(c) X_SEP X_VAL(C) X_SEP X_VAL(s) X_SEP X_VAL(S) X_SEP \
/* ints */ \
X_VAL(d) X_SEP X_VAL(i) X_SEP X_VAL(o) X_SEP \
X_VAL(u) X_SEP X_VAL(x) X_SEP X_VAL(X) X_SEP \
/* floats */ \
X_VAL(f) X_SEP X_VAL(F) X_SEP X_VAL(e) X_SEP X_VAL(E) X_SEP \
X_VAL(g) X_SEP X_VAL(G) X_SEP X_VAL(a) X_SEP X_VAL(A) X_SEP \
/* misc */ \
X_VAL(n) X_SEP X_VAL(p)
// clang-format on
struct ConversionChar {
public:
enum Id : uint8_t {
c, C, s, S, // text
d, i, o, u, x, X, // int
f, F, e, E, g, G, a, A, // float
n, p, // misc
none
};
static const size_t kNumValues = none + 1;
ConversionChar() : id_(none) {}
public:
// Index into the opaque array of ConversionChar enums.
// Requires: i < kNumValues
static ConversionChar FromIndex(size_t i) {
return ConversionChar(kSpecs[i].value);
}
static ConversionChar FromChar(char c) {
ConversionChar::Id out_id = ConversionChar::none;
switch (c) {
#define X_VAL(id) \
case #id[0]: \
out_id = ConversionChar::id; \
break;
ABSL_CONVERSION_CHARS_EXPAND_(X_VAL, )
#undef X_VAL
default:
break;
}
return ConversionChar(out_id);
}
static ConversionChar FromId(Id id) { return ConversionChar(id); }
Id id() const { return id_; }
int radix() const {
switch (id()) {
case x: case X: case a: case A: case p: return 16;
case o: return 8;
default: return 10;
}
}
bool upper() const {
switch (id()) {
case X: case F: case E: case G: case A: return true;
default: return false;
}
}
bool is_signed() const {
switch (id()) {
case d: case i: return true;
default: return false;
}
}
bool is_integral() const {
switch (id()) {
case d: case i: case u: case o: case x: case X:
return true;
default: return false;
}
}
bool is_float() const {
switch (id()) {
case a: case e: case f: case g: case A: case E: case F: case G:
return true;
default: return false;
}
}
bool IsValid() const { return id() != none; }
// The associated char.
char Char() const { return kSpecs[id_].name; }
friend bool operator==(const ConversionChar& a, const ConversionChar& b) {
return a.id() == b.id();
}
friend bool operator!=(const ConversionChar& a, const ConversionChar& b) {
return !(a == b);
}
friend std::ostream& operator<<(std::ostream& os, const ConversionChar& v) {
char c = v.Char();
if (!c) c = '?';
return os << c;
}
private:
struct Spec {
Id value;
char name;
};
static const Spec kSpecs[];
explicit ConversionChar(Id id) : id_(id) {}
Id id_;
};
class ConversionSpec {
public:
Flags flags() const { return flags_; }
LengthMod length_mod() const { return length_mod_; }
ConversionChar conv() const { return conv_; }
// Returns the specified width. If width is unspecfied, it returns a negative
// value.
int width() const { return width_; }
// Returns the specified precision. If precision is unspecfied, it returns a
// negative value.
int precision() const { return precision_; }
void set_flags(Flags f) { flags_ = f; }
void set_length_mod(LengthMod lm) { length_mod_ = lm; }
void set_conv(ConversionChar c) { conv_ = c; }
void set_width(int w) { width_ = w; }
void set_precision(int p) { precision_ = p; }
void set_left(bool b) { flags_.left = b; }
private:
Flags flags_;
LengthMod length_mod_;
ConversionChar conv_;
int width_;
int precision_;
};
constexpr uint64_t ConversionCharToConvValue(char conv) {
return
#define CONV_SET_CASE(c) \
conv == #c[0] ? (uint64_t{1} << (1 + ConversionChar::Id::c)):
ABSL_CONVERSION_CHARS_EXPAND_(CONV_SET_CASE, )
#undef CONV_SET_CASE
conv == '*'
? 1
: 0;
}
enum class Conv : uint64_t {
#define CONV_SET_CASE(c) c = ConversionCharToConvValue(#c[0]),
ABSL_CONVERSION_CHARS_EXPAND_(CONV_SET_CASE, )
#undef CONV_SET_CASE
// Used for width/precision '*' specification.
star = ConversionCharToConvValue('*'),
// Some predefined values:
integral = d | i | u | o | x | X,
floating = a | e | f | g | A | E | F | G,
numeric = integral | floating,
string = s, // absl:ignore(std::string)
pointer = p
};
// Type safe OR operator.
// We need this for two reasons:
// 1. operator| on enums makes them decay to integers and the result is an
// integer. We need the result to stay as an enum.
// 2. We use "enum class" which would not work even if we accepted the decay.
constexpr Conv operator|(Conv a, Conv b) {
return Conv(static_cast<uint64_t>(a) | static_cast<uint64_t>(b));
}
// Get a conversion with a single character in it.
constexpr Conv ConversionCharToConv(char c) {
return Conv(ConversionCharToConvValue(c));
}
// Checks whether `c` exists in `set`.
constexpr bool Contains(Conv set, char c) {
return (static_cast<uint64_t>(set) & ConversionCharToConvValue(c)) != 0;
}
// Checks whether all the characters in `c` are contained in `set`
constexpr bool Contains(Conv set, Conv c) {
return (static_cast<uint64_t>(set) & static_cast<uint64_t>(c)) ==
static_cast<uint64_t>(c);
}
// Return type of the AbslFormatConvert() functions.
// The Conv template parameter is used to inform the framework of what
// conversion characters are supported by that AbslFormatConvert routine.
template <Conv C>
struct ConvertResult {
static constexpr Conv kConv = C;
bool value;
};
template <Conv C>
constexpr Conv ConvertResult<C>::kConv;
// Return capacity - used, clipped to a minimum of 0.
inline size_t Excess(size_t used, size_t capacity) {
return used < capacity ? capacity - used : 0;
}
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_STR_FORMAT_EXTENSION_H_

View file

@ -0,0 +1,65 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "absl/strings/internal/str_format/extension.h"
#include <random>
#include <string>
#include "absl/strings/str_format.h"
#include "gtest/gtest.h"
namespace {
std::string MakeRandomString(size_t len) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis('a', 'z');
std::string s(len, '0');
for (char& c : s) {
c = dis(gen);
}
return s;
}
TEST(FormatExtensionTest, SinkAppendSubstring) {
for (size_t chunk_size : {1, 10, 100, 1000, 10000}) {
std::string expected, actual;
absl::str_format_internal::FormatSinkImpl sink(&actual);
for (size_t chunks = 0; chunks < 10; ++chunks) {
std::string rand = MakeRandomString(chunk_size);
expected += rand;
sink.Append(rand);
}
sink.Flush();
EXPECT_EQ(actual, expected);
}
}
TEST(FormatExtensionTest, SinkAppendChars) {
for (size_t chunk_size : {1, 10, 100, 1000, 10000}) {
std::string expected, actual;
absl::str_format_internal::FormatSinkImpl sink(&actual);
for (size_t chunks = 0; chunks < 10; ++chunks) {
std::string rand = MakeRandomString(1);
expected.append(chunk_size, rand[0]);
sink.Append(chunk_size, rand[0]);
}
sink.Flush();
EXPECT_EQ(actual, expected);
}
}
} // namespace

View file

@ -0,0 +1,476 @@
#include "absl/strings/internal/str_format/float_conversion.h"
#include <string.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <string>
namespace absl {
namespace str_format_internal {
namespace {
char *CopyStringTo(string_view v, char *out) {
std::memcpy(out, v.data(), v.size());
return out + v.size();
}
template <typename Float>
bool FallbackToSnprintf(const Float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
int w = conv.width() >= 0 ? conv.width() : 0;
int p = conv.precision() >= 0 ? conv.precision() : -1;
char fmt[32];
{
char *fp = fmt;
*fp++ = '%';
fp = CopyStringTo(conv.flags().ToString(), fp);
fp = CopyStringTo("*.*", fp);
if (std::is_same<long double, Float>()) {
*fp++ = 'L';
}
*fp++ = conv.conv().Char();
*fp = 0;
assert(fp < fmt + sizeof(fmt));
}
std::string space(512, '\0');
string_view result;
while (true) {
int n = snprintf(&space[0], space.size(), fmt, w, p, v);
if (n < 0) return false;
if (static_cast<size_t>(n) < space.size()) {
result = string_view(space.data(), n);
break;
}
space.resize(n + 1);
}
sink->Append(result);
return true;
}
// 128-bits in decimal: ceil(128*log(2)/log(10))
// or std::numeric_limits<__uint128_t>::digits10
constexpr int kMaxFixedPrecision = 39;
constexpr int kBufferLength = /*sign*/ 1 +
/*integer*/ kMaxFixedPrecision +
/*point*/ 1 +
/*fraction*/ kMaxFixedPrecision +
/*exponent e+123*/ 5;
struct Buffer {
void push_front(char c) {
assert(begin > data);
*--begin = c;
}
void push_back(char c) {
assert(end < data + sizeof(data));
*end++ = c;
}
void pop_back() {
assert(begin < end);
--end;
}
char &back() {
assert(begin < end);
return end[-1];
}
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
int size() const { return static_cast<int>(end - begin); }
char data[kBufferLength];
char *begin;
char *end;
};
enum class FormatStyle { Fixed, Precision };
// If the value is Inf or Nan, print it and return true.
// Otherwise, return false.
template <typename Float>
bool ConvertNonNumericFloats(char sign_char, Float v,
const ConversionSpec &conv, FormatSinkImpl *sink) {
char text[4], *ptr = text;
if (sign_char) *ptr++ = sign_char;
if (std::isnan(v)) {
ptr = std::copy_n(conv.conv().upper() ? "NAN" : "nan", 3, ptr);
} else if (std::isinf(v)) {
ptr = std::copy_n(conv.conv().upper() ? "INF" : "inf", 3, ptr);
} else {
return false;
}
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
conv.flags().left);
}
// Round up the last digit of the value.
// It will carry over and potentially overflow. 'exp' will be adjusted in that
// case.
template <FormatStyle mode>
void RoundUp(Buffer *buffer, int *exp) {
char *p = &buffer->back();
while (p >= buffer->begin && (*p == '9' || *p == '.')) {
if (*p == '9') *p = '0';
--p;
}
if (p < buffer->begin) {
*p = '1';
buffer->begin = p;
if (mode == FormatStyle::Precision) {
std::swap(p[1], p[2]); // move the .
++*exp;
buffer->pop_back();
}
} else {
++*p;
}
}
void PrintExponent(int exp, char e, Buffer *out) {
out->push_back(e);
if (exp < 0) {
out->push_back('-');
exp = -exp;
} else {
out->push_back('+');
}
// Exponent digits.
if (exp > 99) {
out->push_back(exp / 100 + '0');
out->push_back(exp / 10 % 10 + '0');
out->push_back(exp % 10 + '0');
} else {
out->push_back(exp / 10 + '0');
out->push_back(exp % 10 + '0');
}
}
template <typename Float, typename Int>
constexpr bool CanFitMantissa() {
return std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
}
template <typename Float>
struct Decomposed {
Float mantissa;
int exponent;
};
// Decompose the double into an integer mantissa and an exponent.
template <typename Float>
Decomposed<Float> Decompose(Float v) {
int exp;
Float m = std::frexp(v, &exp);
m = std::ldexp(m, std::numeric_limits<Float>::digits);
exp -= std::numeric_limits<Float>::digits;
return {m, exp};
}
// Print 'digits' as decimal.
// In Fixed mode, we add a '.' at the end.
// In Precision mode, we add a '.' after the first digit.
template <FormatStyle mode, typename Int>
int PrintIntegralDigits(Int digits, Buffer *out) {
int printed = 0;
if (digits) {
for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
printed = out->size();
if (mode == FormatStyle::Precision) {
out->push_front(*out->begin);
out->begin[1] = '.';
} else {
out->push_back('.');
}
} else if (mode == FormatStyle::Fixed) {
out->push_front('0');
out->push_back('.');
printed = 1;
}
return printed;
}
// Back out 'extra_digits' digits and round up if necessary.
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
Buffer *out, int *exp_out) {
if (extra_digits <= 0) return false;
// Back out the extra digits
out->end -= extra_digits;
bool needs_to_round_up = [&] {
// We look at the digit just past the end.
// There must be 'extra_digits' extra valid digits after end.
if (*out->end > '5') return true;
if (*out->end < '5') return false;
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
[](char c) { return c != '0'; }))
return true;
// Ends in ...50*, round to even.
return out->last_digit() % 2 == 1;
}();
if (needs_to_round_up) {
RoundUp<FormatStyle::Precision>(out, exp_out);
}
return true;
}
// Print the value into the buffer.
// This will not include the exponent, which will be returned in 'exp_out' for
// Precision mode.
template <typename Int, typename Float, FormatStyle mode>
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
int *exp_out) {
assert((CanFitMantissa<Float, Int>()));
const int int_bits = std::numeric_limits<Int>::digits;
// In precision mode, we start printing one char to the right because it will
// also include the '.'
// In fixed mode we put the dot afterwards on the right.
out->begin = out->end =
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
if (exp >= 0) {
if (std::numeric_limits<Float>::digits + exp > int_bits) {
// The value will overflow the Int
return false;
}
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
int digits_to_zero_pad = precision;
if (mode == FormatStyle::Precision) {
*exp_out = digits_printed - 1;
digits_to_zero_pad -= digits_printed - 1;
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
return true;
}
}
for (; digits_to_zero_pad-- > 0;) out->push_back('0');
return true;
}
exp = -exp;
// We need at least 4 empty bits for the next decimal digit.
// We will multiply by 10.
if (exp > int_bits - 4) return false;
const Int mask = (Int{1} << exp) - 1;
// Print the integral part first.
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
int_mantissa &= mask;
int fractional_count = precision;
if (mode == FormatStyle::Precision) {
if (digits_printed == 0) {
// Find the first non-zero digit, when in Precision mode.
*exp_out = 0;
if (int_mantissa) {
while (int_mantissa <= mask) {
int_mantissa *= 10;
--*exp_out;
}
}
out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
out->push_back('.');
int_mantissa &= mask;
} else {
// We already have a digit, and a '.'
*exp_out = digits_printed - 1;
fractional_count -= *exp_out;
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
exp_out)) {
// If we had enough digits, return right away.
// The code below will try to round again otherwise.
return true;
}
}
}
auto get_next_digit = [&] {
int_mantissa *= 10;
int digit = static_cast<int>(int_mantissa >> exp);
int_mantissa &= mask;
return digit;
};
// Print fractional_count more digits, if available.
for (; fractional_count > 0; --fractional_count) {
out->push_back(get_next_digit() + '0');
}
int next_digit = get_next_digit();
if (next_digit > 5 ||
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
RoundUp<mode>(out, exp_out);
}
return true;
}
template <FormatStyle mode, typename Float>
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
int *exp) {
if (precision > kMaxFixedPrecision) return false;
// Try with uint64_t.
if (CanFitMantissa<Float, std::uint64_t>() &&
FloatToBufferImpl<std::uint64_t, Float, mode>(
static_cast<std::uint64_t>(decomposed.mantissa),
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
return true;
#if defined(__SIZEOF_INT128__)
// If that is not enough, try with __uint128_t.
return CanFitMantissa<Float, __uint128_t>() &&
FloatToBufferImpl<__uint128_t, Float, mode>(
static_cast<__uint128_t>(decomposed.mantissa),
static_cast<__uint128_t>(decomposed.exponent), precision, out,
exp);
#endif
return false;
}
void WriteBufferToSink(char sign_char, string_view str,
const ConversionSpec &conv, FormatSinkImpl *sink) {
int left_spaces = 0, zeros = 0, right_spaces = 0;
int missing_chars =
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
static_cast<int>(sign_char != 0),
0)
: 0;
if (conv.flags().left) {
right_spaces = missing_chars;
} else if (conv.flags().zero) {
zeros = missing_chars;
} else {
left_spaces = missing_chars;
}
sink->Append(left_spaces, ' ');
if (sign_char) sink->Append(1, sign_char);
sink->Append(zeros, '0');
sink->Append(str);
sink->Append(right_spaces, ' ');
}
template <typename Float>
bool FloatToSink(const Float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
// Print the sign or the sign column.
Float abs_v = v;
char sign_char = 0;
if (std::signbit(abs_v)) {
sign_char = '-';
abs_v = -abs_v;
} else if (conv.flags().show_pos) {
sign_char = '+';
} else if (conv.flags().sign_col) {
sign_char = ' ';
}
// Print nan/inf.
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
return true;
}
int precision = conv.precision() < 0 ? 6 : conv.precision();
int exp = 0;
auto decomposed = Decompose(abs_v);
Buffer buffer;
switch (conv.conv().id()) {
case ConversionChar::f:
case ConversionChar::F:
if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer,
nullptr)) {
return FallbackToSnprintf(v, conv, sink);
}
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
break;
case ConversionChar::e:
case ConversionChar::E:
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
&exp)) {
return FallbackToSnprintf(v, conv, sink);
}
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer);
break;
case ConversionChar::g:
case ConversionChar::G:
precision = std::max(0, precision - 1);
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
&exp)) {
return FallbackToSnprintf(v, conv, sink);
}
if (precision + 1 > exp && exp >= -4) {
if (exp < 0) {
// Have 1.23456, needs 0.00123456
// Move the first digit
buffer.begin[1] = *buffer.begin;
// Add some zeros
for (; exp < -1; ++exp) *buffer.begin-- = '0';
*buffer.begin-- = '.';
*buffer.begin = '0';
} else if (exp > 0) {
// Have 1.23456, needs 1234.56
// Move the '.' exp positions to the right.
std::rotate(buffer.begin + 1, buffer.begin + 2,
buffer.begin + exp + 2);
}
exp = 0;
}
if (!conv.flags().alt) {
while (buffer.back() == '0') buffer.pop_back();
if (buffer.back() == '.') buffer.pop_back();
}
if (exp) PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer);
break;
case ConversionChar::a:
case ConversionChar::A:
return FallbackToSnprintf(v, conv, sink);
default:
return false;
}
WriteBufferToSink(sign_char,
string_view(buffer.begin, buffer.end - buffer.begin), conv,
sink);
return true;
}
} // namespace
bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return FloatToSink(v, conv, sink);
}
bool ConvertFloatImpl(float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return FloatToSink(v, conv, sink);
}
bool ConvertFloatImpl(double v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return FloatToSink(v, conv, sink);
}
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,21 @@
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_
#include "absl/strings/internal/str_format/extension.h"
namespace absl {
namespace str_format_internal {
bool ConvertFloatImpl(float v, const ConversionSpec &conv,
FormatSinkImpl *sink);
bool ConvertFloatImpl(double v, const ConversionSpec &conv,
FormatSinkImpl *sink);
bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
FormatSinkImpl *sink);
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_

View file

@ -0,0 +1,47 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/output.h"
#include <errno.h>
#include <cstring>
namespace absl {
namespace str_format_internal {
void BufferRawSink::Write(string_view v) {
size_t to_write = std::min(v.size(), size_);
std::memcpy(buffer_, v.data(), to_write);
buffer_ += to_write;
size_ -= to_write;
total_written_ += v.size();
}
void FILERawSink::Write(string_view v) {
while (!v.empty() && !error_) {
if (size_t result = std::fwrite(v.data(), 1, v.size(), output_)) {
// Some progress was made.
count_ += result;
v.remove_prefix(result);
} else {
// Some error occurred.
if (errno != EINTR) {
error_ = errno;
}
}
}
}
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,101 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Output extension hooks for the Format library.
// `internal::InvokeFlush` calls the appropriate flush function for the
// specified output argument.
// `BufferRawSink` is a simple output sink for a char buffer. Used by SnprintF.
// `FILERawSink` is a std::FILE* based sink. Used by PrintF and FprintF.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_
#include <cstdio>
#include <ostream>
#include <string>
#include "absl/base/port.h"
#include "absl/strings/string_view.h"
class Cord;
namespace absl {
namespace str_format_internal {
// RawSink implementation that writes into a char* buffer.
// It will not overflow the buffer, but will keep the total count of chars
// that would have been written.
class BufferRawSink {
public:
BufferRawSink(char* buffer, size_t size) : buffer_(buffer), size_(size) {}
size_t total_written() const { return total_written_; }
void Write(string_view v);
private:
char* buffer_;
size_t size_;
size_t total_written_ = 0;
};
// RawSink implementation that writes into a FILE*.
// It keeps track of the total number of bytes written and any error encountered
// during the writes.
class FILERawSink {
public:
explicit FILERawSink(std::FILE* output) : output_(output) {}
void Write(string_view v);
size_t count() const { return count_; }
int error() const { return error_; }
private:
std::FILE* output_;
int error_ = 0;
size_t count_ = 0;
};
// Provide RawSink integration with common types from the STL.
inline void AbslFormatFlush(std::string* out, string_view s) {
out->append(s.begin(), s.size());
}
inline void AbslFormatFlush(std::ostream* out, string_view s) {
out->write(s.begin(), s.size());
}
template <class AbslCord, typename = typename std::enable_if<
std::is_same<AbslCord, ::Cord>::value>::type>
inline void AbslFormatFlush(AbslCord* out, string_view s) {
out->Append(s);
}
inline void AbslFormatFlush(FILERawSink* sink, string_view v) {
sink->Write(v);
}
inline void AbslFormatFlush(BufferRawSink* sink, string_view v) {
sink->Write(v);
}
template <typename T>
auto InvokeFlush(T* out, string_view s)
-> decltype(str_format_internal::AbslFormatFlush(out, s)) {
str_format_internal::AbslFormatFlush(out, s);
}
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_

View file

@ -0,0 +1,78 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/output.h"
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace absl {
namespace {
TEST(InvokeFlush, String) {
std::string str = "ABC";
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str, "ABCDEF");
#if UTIL_FORMAT_HAS_GLOBAL_STRING
std::string str2 = "ABC";
str_format_internal::InvokeFlush(&str2, "DEF");
EXPECT_EQ(str2, "ABCDEF");
#endif // UTIL_FORMAT_HAS_GLOBAL_STRING
}
TEST(InvokeFlush, Stream) {
std::stringstream str;
str << "ABC";
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str.str(), "ABCDEF");
}
TEST(BufferRawSink, Limits) {
char buf[16];
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World237xx");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World237237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World2372x");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World");
str_format_internal::InvokeFlush(&bufsink, "237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World237xx");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World");
str_format_internal::InvokeFlush(&bufsink, "237237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World2372x");
}
}
} // namespace
} // namespace absl

View file

@ -0,0 +1,294 @@
#include "absl/strings/internal/str_format/parser.h"
#include <assert.h>
#include <string.h>
#include <wchar.h>
#include <cctype>
#include <cstdint>
#include <algorithm>
#include <initializer_list>
#include <limits>
#include <ostream>
#include <string>
#include <unordered_set>
namespace absl {
namespace str_format_internal {
namespace {
bool CheckFastPathSetting(const UnboundConversion& conv) {
bool should_be_basic = !conv.flags.left && //
!conv.flags.show_pos && //
!conv.flags.sign_col && //
!conv.flags.alt && //
!conv.flags.zero && //
(conv.width.value() == -1) &&
(conv.precision.value() == -1);
if (should_be_basic != conv.flags.basic) {
fprintf(stderr,
"basic=%d left=%d show_pos=%d sign_col=%d alt=%d zero=%d "
"width=%d precision=%d\n",
conv.flags.basic, conv.flags.left, conv.flags.show_pos,
conv.flags.sign_col, conv.flags.alt, conv.flags.zero,
conv.width.value(), conv.precision.value());
}
return should_be_basic == conv.flags.basic;
}
// Keep a single table for all the conversion chars and length modifiers.
// We invert the length modifiers to make them negative so that we can easily
// test for them.
// Everything else is `none`, which is a negative constant.
using CC = ConversionChar::Id;
using LM = LengthMod::Id;
static constexpr std::int8_t none = -128;
static constexpr std::int8_t kIds[] = {
none, none, none, none, none, none, none, none, // 00-07
none, none, none, none, none, none, none, none, // 08-0f
none, none, none, none, none, none, none, none, // 10-17
none, none, none, none, none, none, none, none, // 18-1f
none, none, none, none, none, none, none, none, // 20-27
none, none, none, none, none, none, none, none, // 28-2f
none, none, none, none, none, none, none, none, // 30-37
none, none, none, none, none, none, none, none, // 38-3f
none, CC::A, none, CC::C, none, CC::E, CC::F, CC::G, // @ABCDEFG
none, none, none, none, ~LM::L, none, none, none, // HIJKLMNO
none, none, none, CC::S, none, none, none, none, // PQRSTUVW
CC::X, none, none, none, none, none, none, none, // XYZ[\]^_
none, CC::a, none, CC::c, CC::d, CC::e, CC::f, CC::g, // `abcdefg
~LM::h, CC::i, ~LM::j, none, ~LM::l, none, CC::n, CC::o, // hijklmno
CC::p, ~LM::q, none, CC::s, ~LM::t, CC::u, none, none, // pqrstuvw
CC::x, none, ~LM::z, none, none, none, none, none, // xyz{|}~!
none, none, none, none, none, none, none, none, // 80-87
none, none, none, none, none, none, none, none, // 88-8f
none, none, none, none, none, none, none, none, // 90-97
none, none, none, none, none, none, none, none, // 98-9f
none, none, none, none, none, none, none, none, // a0-a7
none, none, none, none, none, none, none, none, // a8-af
none, none, none, none, none, none, none, none, // b0-b7
none, none, none, none, none, none, none, none, // b8-bf
none, none, none, none, none, none, none, none, // c0-c7
none, none, none, none, none, none, none, none, // c8-cf
none, none, none, none, none, none, none, none, // d0-d7
none, none, none, none, none, none, none, none, // d8-df
none, none, none, none, none, none, none, none, // e0-e7
none, none, none, none, none, none, none, none, // e8-ef
none, none, none, none, none, none, none, none, // f0-f7
none, none, none, none, none, none, none, none, // f8-ff
};
template <bool is_positional>
bool ConsumeConversion(string_view *src, UnboundConversion *conv,
int *next_arg) {
const char *pos = src->begin();
const char *const end = src->end();
char c;
// Read the next char into `c` and update `pos`. Reads '\0' if at end.
const auto get_char = [&] { c = pos == end ? '\0' : *pos++; };
const auto parse_digits = [&] {
int digits = c - '0';
// We do not want to overflow `digits` so we consume at most digits10-1
// digits. If there are more digits the parsing will fail later on when the
// digit doesn't match the expected characters.
int num_digits = std::numeric_limits<int>::digits10 - 2;
for (get_char(); num_digits && std::isdigit(c); get_char()) {
--num_digits;
digits = 10 * digits + c - '0';
}
return digits;
};
if (is_positional) {
get_char();
if (c < '1' || c > '9') return false;
conv->arg_position = parse_digits();
assert(conv->arg_position > 0);
if (c != '$') return false;
}
get_char();
// We should start with the basic flag on.
assert(conv->flags.basic);
// Any non alpha character makes this conversion not basic.
// This includes flags (-+ #0), width (1-9, *) or precision (.).
// All conversion characters and length modifiers are alpha characters.
if (c < 'A') {
conv->flags.basic = false;
for (; c <= '0'; get_char()) {
switch (c) {
case '-':
conv->flags.left = true;
continue;
case '+':
conv->flags.show_pos = true;
continue;
case ' ':
conv->flags.sign_col = true;
continue;
case '#':
conv->flags.alt = true;
continue;
case '0':
conv->flags.zero = true;
continue;
}
break;
}
if (c <= '9') {
if (c >= '0') {
int maybe_width = parse_digits();
if (!is_positional && c == '$') {
if (*next_arg != 0) return false;
// Positional conversion.
*next_arg = -1;
conv->flags = Flags();
conv->flags.basic = true;
return ConsumeConversion<true>(src, conv, next_arg);
}
conv->width.set_value(maybe_width);
} else if (c == '*') {
get_char();
if (is_positional) {
if (c < '1' || c > '9') return false;
conv->width.set_from_arg(parse_digits());
if (c != '$') return false;
get_char();
} else {
conv->width.set_from_arg(++*next_arg);
}
}
}
if (c == '.') {
get_char();
if (std::isdigit(c)) {
conv->precision.set_value(parse_digits());
} else if (c == '*') {
get_char();
if (is_positional) {
if (c < '1' || c > '9') return false;
conv->precision.set_from_arg(parse_digits());
if (c != '$') return false;
get_char();
} else {
conv->precision.set_from_arg(++*next_arg);
}
} else {
conv->precision.set_value(0);
}
}
}
std::int8_t id = kIds[static_cast<unsigned char>(c)];
if (id < 0) {
if (id == none) return false;
// It is a length modifier.
using str_format_internal::LengthMod;
LengthMod length_mod = LengthMod::FromId(static_cast<LM>(~id));
get_char();
if (c == 'h' && length_mod.id() == LengthMod::h) {
conv->length_mod = LengthMod::FromId(LengthMod::hh);
get_char();
} else if (c == 'l' && length_mod.id() == LengthMod::l) {
conv->length_mod = LengthMod::FromId(LengthMod::ll);
get_char();
} else {
conv->length_mod = length_mod;
}
id = kIds[static_cast<unsigned char>(c)];
if (id < 0) return false;
}
assert(CheckFastPathSetting(*conv));
(void)(&CheckFastPathSetting);
conv->conv = ConversionChar::FromId(static_cast<CC>(id));
if (!is_positional) conv->arg_position = ++*next_arg;
*src = string_view(pos, end - pos);
return true;
}
} // namespace
bool ConsumeUnboundConversion(string_view *src, UnboundConversion *conv,
int *next_arg) {
if (*next_arg < 0) return ConsumeConversion<true>(src, conv, next_arg);
return ConsumeConversion<false>(src, conv, next_arg);
}
struct ParsedFormatBase::ParsedFormatConsumer {
explicit ParsedFormatConsumer(ParsedFormatBase *parsedformat)
: parsed(parsedformat), data_pos(parsedformat->data_.get()) {}
bool Append(string_view s) {
if (s.empty()) return true;
size_t text_end = AppendText(s);
if (!parsed->items_.empty() && !parsed->items_.back().is_conversion) {
// Let's extend the existing text run.
parsed->items_.back().text_end = text_end;
} else {
// Let's make a new text run.
parsed->items_.push_back({false, text_end, {}});
}
return true;
}
bool ConvertOne(const UnboundConversion &conv, string_view s) {
size_t text_end = AppendText(s);
parsed->items_.push_back({true, text_end, conv});
return true;
}
size_t AppendText(string_view s) {
memcpy(data_pos, s.data(), s.size());
data_pos += s.size();
return static_cast<size_t>(data_pos - parsed->data_.get());
}
ParsedFormatBase *parsed;
char* data_pos;
};
ParsedFormatBase::ParsedFormatBase(string_view format, bool allow_ignored,
std::initializer_list<Conv> convs)
: data_(format.empty() ? nullptr : new char[format.size()]) {
has_error_ = !ParseFormatString(format, ParsedFormatConsumer(this)) ||
!MatchesConversions(allow_ignored, convs);
}
bool ParsedFormatBase::MatchesConversions(
bool allow_ignored, std::initializer_list<Conv> convs) const {
std::unordered_set<int> used;
auto add_if_valid_conv = [&](int pos, char c) {
if (static_cast<size_t>(pos) > convs.size() ||
!Contains(convs.begin()[pos - 1], c))
return false;
used.insert(pos);
return true;
};
for (const ConversionItem &item : items_) {
if (!item.is_conversion) continue;
auto &conv = item.conv;
if (conv.precision.is_from_arg() &&
!add_if_valid_conv(conv.precision.get_from_arg(), '*'))
return false;
if (conv.width.is_from_arg() &&
!add_if_valid_conv(conv.width.get_from_arg(), '*'))
return false;
if (!add_if_valid_conv(conv.arg_position, conv.conv.Char())) return false;
}
return used.size() == convs.size() || allow_ignored;
}
} // namespace str_format_internal
} // namespace absl

View file

@ -0,0 +1,291 @@
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <cassert>
#include <initializer_list>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <vector>
#include "absl/strings/internal/str_format/checker.h"
#include "absl/strings/internal/str_format/extension.h"
namespace absl {
namespace str_format_internal {
// The analyzed properties of a single specified conversion.
struct UnboundConversion {
UnboundConversion()
: flags() /* This is required to zero all the fields of flags. */ {
flags.basic = true;
}
class InputValue {
public:
void set_value(int value) {
assert(value >= 0);
value_ = value;
}
int value() const { return value_; }
// Marks the value as "from arg". aka the '*' format.
// Requires `value >= 1`.
// When set, is_from_arg() return true and get_from_arg() returns the
// original value.
// `value()`'s return value is unspecfied in this state.
void set_from_arg(int value) {
assert(value > 0);
value_ = -value - 1;
}
bool is_from_arg() const { return value_ < -1; }
int get_from_arg() const {
assert(is_from_arg());
return -value_ - 1;
}
private:
int value_ = -1;
};
// No need to initialize. It will always be set in the parser.
int arg_position;
InputValue width;
InputValue precision;
Flags flags;
LengthMod length_mod;
ConversionChar conv;
};
// Consume conversion spec prefix (not including '%') of '*src' if valid.
// Examples of valid specs would be e.g.: "s", "d", "-12.6f".
// If valid, the front of src is advanced such that src becomes the
// part following the conversion spec, and the spec part is broken down and
// returned in 'conv'.
// If invalid, returns false and leaves 'src' unmodified.
// For example:
// Given "d9", returns "d", and leaves src="9",
// Given "!", returns "" and leaves src="!".
bool ConsumeUnboundConversion(string_view* src, UnboundConversion* conv,
int* next_arg);
// Parse the format std::string provided in 'src' and pass the identified items into
// 'consumer'.
// Text runs will be passed by calling
// Consumer::Append(string_view);
// ConversionItems will be passed by calling
// Consumer::ConvertOne(UnboundConversion, string_view);
// In the case of ConvertOne, the string_view that is passed is the
// portion of the format std::string corresponding to the conversion, not including
// the leading %. On success, it returns true. On failure, it stops and returns
// false.
template <typename Consumer>
bool ParseFormatString(string_view src, Consumer consumer) {
int next_arg = 0;
while (!src.empty()) {
const char* percent =
static_cast<const char*>(memchr(src.begin(), '%', src.size()));
if (!percent) {
// We found the last substring.
return consumer.Append(src);
}
// We found a percent, so push the text run then process the percent.
size_t percent_loc = percent - src.data();
if (!consumer.Append(string_view(src.data(), percent_loc))) return false;
if (percent + 1 >= src.end()) return false;
UnboundConversion conv;
switch (percent[1]) {
case '%':
if (!consumer.Append("%")) return false;
src.remove_prefix(percent_loc + 2);
continue;
#define PARSER_CASE(ch) \
case #ch[0]: \
src.remove_prefix(percent_loc + 2); \
conv.conv = ConversionChar::FromId(ConversionChar::ch); \
conv.arg_position = ++next_arg; \
break;
ABSL_CONVERSION_CHARS_EXPAND_(PARSER_CASE, );
#undef PARSER_CASE
default:
src.remove_prefix(percent_loc + 1);
if (!ConsumeUnboundConversion(&src, &conv, &next_arg)) return false;
break;
}
if (next_arg == 0) {
// This indicates an error in the format std::string.
// The only way to get next_arg == 0 is to have a positional argument
// first which sets next_arg to -1 and then a non-positional argument
// which does ++next_arg.
// Checking here seems to be the cheapeast place to do it.
return false;
}
if (!consumer.ConvertOne(
conv, string_view(percent + 1, src.data() - (percent + 1)))) {
return false;
}
}
return true;
}
// Always returns true, or fails to compile in a constexpr context if s does not
// point to a constexpr char array.
constexpr bool EnsureConstexpr(string_view s) {
return s.empty() || s[0] == s[0];
}
class ParsedFormatBase {
public:
explicit ParsedFormatBase(string_view format, bool allow_ignored,
std::initializer_list<Conv> convs);
ParsedFormatBase(const ParsedFormatBase& other) { *this = other; }
ParsedFormatBase(ParsedFormatBase&& other) { *this = std::move(other); }
ParsedFormatBase& operator=(const ParsedFormatBase& other) {
if (this == &other) return *this;
has_error_ = other.has_error_;
items_ = other.items_;
size_t text_size = items_.empty() ? 0 : items_.back().text_end;
data_.reset(new char[text_size]);
memcpy(data_.get(), other.data_.get(), text_size);
return *this;
}
ParsedFormatBase& operator=(ParsedFormatBase&& other) {
if (this == &other) return *this;
has_error_ = other.has_error_;
data_ = std::move(other.data_);
items_ = std::move(other.items_);
// Reset the vector to make sure the invariants hold.
other.items_.clear();
return *this;
}
template <typename Consumer>
bool ProcessFormat(Consumer consumer) const {
const char* const base = data_.get();
string_view text(base, 0);
for (const auto& item : items_) {
text = string_view(text.end(), (base + item.text_end) - text.end());
if (item.is_conversion) {
if (!consumer.ConvertOne(item.conv, text)) return false;
} else {
if (!consumer.Append(text)) return false;
}
}
return !has_error_;
}
bool has_error() const { return has_error_; }
private:
// Returns whether the conversions match and if !allow_ignored it verifies
// that all conversions are used by the format.
bool MatchesConversions(bool allow_ignored,
std::initializer_list<Conv> convs) const;
struct ParsedFormatConsumer;
struct ConversionItem {
bool is_conversion;
// Points to the past-the-end location of this element in the data_ array.
size_t text_end;
UnboundConversion conv;
};
bool has_error_;
std::unique_ptr<char[]> data_;
std::vector<ConversionItem> items_;
};
// A value type representing a preparsed format. These can be created, copied
// around, and reused to speed up formatting loops.
// The user must specify through the template arguments the conversion
// characters used in the format. This will be checked at compile time.
//
// This class uses Conv enum values to specify each argument.
// This allows for more flexibility as you can specify multiple possible
// conversion characters for each argument.
// ParsedFormat<char...> is a simplified alias for when the user only
// needs to specify a single conversion character for each argument.
//
// Example:
// // Extended format supports multiple characters per argument:
// using MyFormat = ExtendedParsedFormat<Conv::d | Conv::x>;
// MyFormat GetFormat(bool use_hex) {
// if (use_hex) return MyFormat("foo %x bar");
// return MyFormat("foo %d bar");
// }
// // 'format' can be used with any value that supports 'd' and 'x',
// // like `int`.
// auto format = GetFormat(use_hex);
// value = StringF(format, i);
//
// This class also supports runtime format checking with the ::New() and
// ::NewAllowIgnored() factory functions.
// This is the only API that allows the user to pass a runtime specified format
// std::string. These factory functions will return NULL if the format does not match
// the conversions requested by the user.
template <str_format_internal::Conv... C>
class ExtendedParsedFormat : public str_format_internal::ParsedFormatBase {
public:
explicit ExtendedParsedFormat(string_view format)
#if ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
__attribute__((
enable_if(str_format_internal::EnsureConstexpr(format),
"Format std::string is not constexpr."),
enable_if(str_format_internal::ValidFormatImpl<C...>(format),
"Format specified does not match the template arguments.")))
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
: ExtendedParsedFormat(format, false) {
}
// ExtendedParsedFormat factory function.
// The user still has to specify the conversion characters, but they will not
// be checked at compile time. Instead, it will be checked at runtime.
// This delays the checking to runtime, but allows the user to pass
// dynamically sourced formats.
// It returns NULL if the format does not match the conversion characters.
// The user is responsible for checking the return value before using it.
//
// The 'New' variant will check that all the specified arguments are being
// consumed by the format and return NULL if any argument is being ignored.
// The 'NewAllowIgnored' variant will not verify this and will allow formats
// that ignore arguments.
static std::unique_ptr<ExtendedParsedFormat> New(string_view format) {
return New(format, false);
}
static std::unique_ptr<ExtendedParsedFormat> NewAllowIgnored(
string_view format) {
return New(format, true);
}
private:
static std::unique_ptr<ExtendedParsedFormat> New(string_view format,
bool allow_ignored) {
std::unique_ptr<ExtendedParsedFormat> conv(
new ExtendedParsedFormat(format, allow_ignored));
if (conv->has_error()) return nullptr;
return conv;
}
ExtendedParsedFormat(string_view s, bool allow_ignored)
: ParsedFormatBase(s, allow_ignored, {C...}) {}
};
} // namespace str_format_internal
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_

View file

@ -0,0 +1,379 @@
#include "absl/strings/internal/str_format/parser.h"
#include <string.h>
#include "gtest/gtest.h"
#include "absl/base/macros.h"
namespace absl {
namespace str_format_internal {
namespace {
TEST(LengthModTest, Names) {
struct Expectation {
int line;
LengthMod::Id id;
const char *name;
};
const Expectation kExpect[] = {
{__LINE__, LengthMod::none, "" },
{__LINE__, LengthMod::h, "h" },
{__LINE__, LengthMod::hh, "hh"},
{__LINE__, LengthMod::l, "l" },
{__LINE__, LengthMod::ll, "ll"},
{__LINE__, LengthMod::L, "L" },
{__LINE__, LengthMod::j, "j" },
{__LINE__, LengthMod::z, "z" },
{__LINE__, LengthMod::t, "t" },
{__LINE__, LengthMod::q, "q" },
};
EXPECT_EQ(ABSL_ARRAYSIZE(kExpect), LengthMod::kNumValues);
for (auto e : kExpect) {
SCOPED_TRACE(e.line);
LengthMod mod = LengthMod::FromId(e.id);
EXPECT_EQ(e.id, mod.id());
EXPECT_EQ(e.name, mod.name());
}
}
TEST(ConversionCharTest, Names) {
struct Expectation {
ConversionChar::Id id;
char name;
};
// clang-format off
const Expectation kExpect[] = {
#define X(c) {ConversionChar::c, #c[0]}
X(c), X(C), X(s), X(S), // text
X(d), X(i), X(o), X(u), X(x), X(X), // int
X(f), X(F), X(e), X(E), X(g), X(G), X(a), X(A), // float
X(n), X(p), // misc
#undef X
{ConversionChar::none, '\0'},
};
// clang-format on
EXPECT_EQ(ABSL_ARRAYSIZE(kExpect), ConversionChar::kNumValues);
for (auto e : kExpect) {
SCOPED_TRACE(e.name);
ConversionChar v = ConversionChar::FromId(e.id);
EXPECT_EQ(e.id, v.id());
EXPECT_EQ(e.name, v.Char());
}
}
class ConsumeUnboundConversionTest : public ::testing::Test {
public:
typedef UnboundConversion Props;
string_view Consume(string_view* src) {
int next = 0;
const char* prev_begin = src->begin();
o = UnboundConversion(); // refresh
ConsumeUnboundConversion(src, &o, &next);
return {prev_begin, static_cast<size_t>(src->begin() - prev_begin)};
}
bool Run(const char *fmt, bool force_positional = false) {
string_view src = fmt;
int next = force_positional ? -1 : 0;
o = UnboundConversion(); // refresh
return ConsumeUnboundConversion(&src, &o, &next) && src.empty();
}
UnboundConversion o;
};
TEST_F(ConsumeUnboundConversionTest, ConsumeSpecification) {
struct Expectation {
int line;
const char *src;
const char *out;
const char *src_post;
};
const Expectation kExpect[] = {
{__LINE__, "", "", "" },
{__LINE__, "b", "", "b" }, // 'b' is invalid
{__LINE__, "ba", "", "ba"}, // 'b' is invalid
{__LINE__, "l", "", "l" }, // just length mod isn't okay
{__LINE__, "d", "d", "" }, // basic
{__LINE__, "d ", "d", " " }, // leave suffix
{__LINE__, "dd", "d", "d" }, // don't be greedy
{__LINE__, "d9", "d", "9" }, // leave non-space suffix
{__LINE__, "dzz", "d", "zz"}, // length mod as suffix
{__LINE__, "1$*2$d", "1$*2$d", "" }, // arg indexing and * allowed.
{__LINE__, "0-14.3hhd", "0-14.3hhd", ""}, // precision, width
{__LINE__, " 0-+#14.3hhd", " 0-+#14.3hhd", ""}, // flags
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.line);
string_view src = e.src;
EXPECT_EQ(e.src, src);
string_view out = Consume(&src);
EXPECT_EQ(e.out, out);
EXPECT_EQ(e.src_post, src);
}
}
TEST_F(ConsumeUnboundConversionTest, BasicConversion) {
EXPECT_FALSE(Run(""));
EXPECT_FALSE(Run("z"));
EXPECT_FALSE(Run("dd")); // no excess allowed
EXPECT_TRUE(Run("d"));
EXPECT_EQ('d', o.conv.Char());
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_EQ(1, o.arg_position);
EXPECT_EQ(LengthMod::none, o.length_mod.id());
}
TEST_F(ConsumeUnboundConversionTest, ArgPosition) {
EXPECT_TRUE(Run("d"));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("3$d"));
EXPECT_EQ(3, o.arg_position);
EXPECT_TRUE(Run("1$d"));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("1$d", true));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("123$d"));
EXPECT_EQ(123, o.arg_position);
EXPECT_TRUE(Run("123$d", true));
EXPECT_EQ(123, o.arg_position);
EXPECT_TRUE(Run("10$d"));
EXPECT_EQ(10, o.arg_position);
EXPECT_TRUE(Run("10$d", true));
EXPECT_EQ(10, o.arg_position);
// Position can't be zero.
EXPECT_FALSE(Run("0$d"));
EXPECT_FALSE(Run("0$d", true));
EXPECT_FALSE(Run("1$*0$d"));
EXPECT_FALSE(Run("1$.*0$d"));
// Position can't start with a zero digit at all. That is not a 'decimal'.
EXPECT_FALSE(Run("01$p"));
EXPECT_FALSE(Run("01$p", true));
EXPECT_FALSE(Run("1$*01$p"));
EXPECT_FALSE(Run("1$.*01$p"));
}
TEST_F(ConsumeUnboundConversionTest, WidthAndPrecision) {
EXPECT_TRUE(Run("14d"));
EXPECT_EQ('d', o.conv.Char());
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_TRUE(Run("14.d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run(".d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run(".5d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(5, o.precision.value());
EXPECT_TRUE(Run(".0d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run("14.5d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_EQ(5, o.precision.value());
EXPECT_TRUE(Run("*.*d"));
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(1, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(2, o.precision.get_from_arg());
EXPECT_EQ(3, o.arg_position);
EXPECT_TRUE(Run("*d"));
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(1, o.width.get_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_EQ(2, o.arg_position);
EXPECT_TRUE(Run(".*d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(1, o.precision.get_from_arg());
EXPECT_EQ(2, o.arg_position);
// mixed implicit and explicit: didn't specify arg position.
EXPECT_FALSE(Run("*23$.*34$d"));
EXPECT_TRUE(Run("12$*23$.*34$d"));
EXPECT_EQ(12, o.arg_position);
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(23, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(34, o.precision.get_from_arg());
EXPECT_TRUE(Run("2$*5$.*9$d"));
EXPECT_EQ(2, o.arg_position);
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(5, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(9, o.precision.get_from_arg());
EXPECT_FALSE(Run(".*0$d")) << "no arg 0";
}
TEST_F(ConsumeUnboundConversionTest, Flags) {
static const char kAllFlags[] = "-+ #0";
static const int kNumFlags = ABSL_ARRAYSIZE(kAllFlags) - 1;
for (int rev = 0; rev < 2; ++rev) {
for (int i = 0; i < 1 << kNumFlags; ++i) {
std::string fmt;
for (int k = 0; k < kNumFlags; ++k)
if ((i >> k) & 1) fmt += kAllFlags[k];
// flag order shouldn't matter
if (rev == 1) { std::reverse(fmt.begin(), fmt.end()); }
fmt += 'd';
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt.c_str()));
EXPECT_EQ(fmt.find('-') == std::string::npos, !o.flags.left);
EXPECT_EQ(fmt.find('+') == std::string::npos, !o.flags.show_pos);
EXPECT_EQ(fmt.find(' ') == std::string::npos, !o.flags.sign_col);
EXPECT_EQ(fmt.find('#') == std::string::npos, !o.flags.alt);
EXPECT_EQ(fmt.find('0') == std::string::npos, !o.flags.zero);
}
}
}
TEST_F(ConsumeUnboundConversionTest, BasicFlag) {
// Flag is on
for (const char* fmt : {"d", "llx", "G", "1$X"}) {
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt));
EXPECT_TRUE(o.flags.basic);
}
// Flag is off
for (const char* fmt : {"3d", ".llx", "-G", "1$#X"}) {
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt));
EXPECT_FALSE(o.flags.basic);
}
}
struct SummarizeConsumer {
std::string* out;
explicit SummarizeConsumer(std::string* out) : out(out) {}
bool Append(string_view s) {
*out += "[" + std::string(s) + "]";
return true;
}
bool ConvertOne(const UnboundConversion& conv, string_view s) {
*out += "{";
*out += std::string(s);
*out += ":";
*out += std::to_string(conv.arg_position) + "$";
if (conv.width.is_from_arg()) {
*out += std::to_string(conv.width.get_from_arg()) + "$*";
}
if (conv.precision.is_from_arg()) {
*out += "." + std::to_string(conv.precision.get_from_arg()) + "$*";
}
*out += conv.conv.Char();
*out += "}";
return true;
}
};
std::string SummarizeParsedFormat(const ParsedFormatBase& pc) {
std::string out;
if (!pc.ProcessFormat(SummarizeConsumer(&out))) out += "!";
return out;
}
class ParsedFormatTest : public testing::Test {};
TEST_F(ParsedFormatTest, ValueSemantics) {
ParsedFormatBase p1({}, true, {}); // empty format
EXPECT_EQ("", SummarizeParsedFormat(p1));
ParsedFormatBase p2 = p1; // copy construct (empty)
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p2));
p1 = ParsedFormatBase("hello%s", true, {Conv::s}); // move assign
EXPECT_EQ("[hello]{s:1$s}", SummarizeParsedFormat(p1));
ParsedFormatBase p3 = p1; // copy construct (nonempty)
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p3));
using std::swap;
swap(p1, p2);
EXPECT_EQ("", SummarizeParsedFormat(p1));
EXPECT_EQ("[hello]{s:1$s}", SummarizeParsedFormat(p2));
swap(p1, p2); // undo
p2 = p1; // copy assign
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p2));
}
struct ExpectParse {
const char* in;
std::initializer_list<Conv> conv_set;
const char* out;
};
TEST_F(ParsedFormatTest, Parsing) {
// Parse should be equivalent to that obtained by ConversionParseIterator.
// No need to retest the parsing edge cases here.
const ExpectParse kExpect[] = {
{"", {}, ""},
{"ab", {}, "[ab]"},
{"a%d", {Conv::d}, "[a]{d:1$d}"},
{"a%+d", {Conv::d}, "[a]{+d:1$d}"},
{"a% d", {Conv::d}, "[a]{ d:1$d}"},
{"a%b %d", {}, "[a]!"}, // stop after error
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.in);
EXPECT_EQ(e.out,
SummarizeParsedFormat(ParsedFormatBase(e.in, false, e.conv_set)));
}
}
TEST_F(ParsedFormatTest, ParsingFlagOrder) {
const ExpectParse kExpect[] = {
{"a%+ 0d", {Conv::d}, "[a]{+ 0d:1$d}"},
{"a%+0 d", {Conv::d}, "[a]{+0 d:1$d}"},
{"a%0+ d", {Conv::d}, "[a]{0+ d:1$d}"},
{"a% +0d", {Conv::d}, "[a]{ +0d:1$d}"},
{"a%0 +d", {Conv::d}, "[a]{0 +d:1$d}"},
{"a% 0+d", {Conv::d}, "[a]{ 0+d:1$d}"},
{"a%+ 0+d", {Conv::d}, "[a]{+ 0+d:1$d}"},
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.in);
EXPECT_EQ(e.out,
SummarizeParsedFormat(ParsedFormatBase(e.in, false, e.conv_set)));
}
}
} // namespace
} // namespace str_format_internal
} // namespace absl

512
absl/strings/str_format.h Normal file
View file

@ -0,0 +1,512 @@
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: str_format.h
// -----------------------------------------------------------------------------
//
// The `str_format` library is a typesafe replacement for the family of
// `printf()` std::string formatting routines within the `<cstdio>` standard library
// header. Like the `printf` family, the `str_format` uses a "format string" to
// perform argument substitutions based on types.
//
// Example:
//
// std::string s = absl::StrFormat("%s %s You have $%d!", "Hello", name, dollars);
//
// The library consists of the following basic utilities:
//
// * `absl::StrFormat()`, a type-safe replacement for `std::sprintf()`, to
// write a format std::string to a `string` value.
// * `absl::StrAppendFormat()` to append a format std::string to a `string`
// * `absl::StreamFormat()` to more efficiently write a format std::string to a
// stream, such as`std::cout`.
// * `absl::PrintF()`, `absl::FPrintF()` and `absl::SNPrintF()` as
// replacements for `std::printf()`, `std::fprintf()` and `std::snprintf()`.
//
// Note: a version of `std::sprintf()` is not supported as it is
// generally unsafe due to buffer overflows.
//
// Additionally, you can provide a format std::string (and its associated arguments)
// using one of the following abstractions:
//
// * A `FormatSpec` class template fully encapsulates a format std::string and its
// type arguments and is usually provided to `str_format` functions as a
// variadic argument of type `FormatSpec<Arg...>`. The `FormatSpec<Args...>`
// template is evaluated at compile-time, providing type safety.
// * A `ParsedFormat` instance, which encapsulates a specific, pre-compiled
// format std::string for a specific set of type(s), and which can be passed
// between API boundaries. (The `FormatSpec` type should not be used
// directly.)
//
// The `str_format` library provides the ability to output its format strings to
// arbitrary sink types:
//
// * A generic `Format()` function to write outputs to arbitrary sink types,
// which must implement a `RawSinkFormat` interface. (See
// `str_format_sink.h` for more information.)
//
// * A `FormatUntyped()` function that is similar to `Format()` except it is
// loosely typed. `FormatUntyped()` is not a template and does not perform
// any compile-time checking of the format std::string; instead, it returns a
// boolean from a runtime check.
//
// In addition, the `str_format` library provides extension points for
// augmenting formatting to new types. These extensions are fully documented
// within the `str_format_extension.h` header file.
#ifndef ABSL_STRINGS_STR_FORMAT_H_
#define ABSL_STRINGS_STR_FORMAT_H_
#include <cstdio>
#include <string>
#include "absl/strings/internal/str_format/arg.h" // IWYU pragma: export
#include "absl/strings/internal/str_format/bind.h" // IWYU pragma: export
#include "absl/strings/internal/str_format/checker.h" // IWYU pragma: export
#include "absl/strings/internal/str_format/extension.h" // IWYU pragma: export
#include "absl/strings/internal/str_format/parser.h" // IWYU pragma: export
namespace absl {
// UntypedFormatSpec
//
// A type-erased class that can be used directly within untyped API entry
// points. An `UntypedFormatSpec` is specifically used as an argument to
// `FormatUntyped()`.
//
// Example:
//
// absl::UntypedFormatSpec format("%d");
// std::string out;
// CHECK(absl::FormatUntyped(&out, format, {absl::FormatArg(1)}));
class UntypedFormatSpec {
public:
UntypedFormatSpec() = delete;
UntypedFormatSpec(const UntypedFormatSpec&) = delete;
UntypedFormatSpec& operator=(const UntypedFormatSpec&) = delete;
explicit UntypedFormatSpec(string_view s) : spec_(s) {}
protected:
explicit UntypedFormatSpec(const str_format_internal::ParsedFormatBase* pc)
: spec_(pc) {}
private:
friend str_format_internal::UntypedFormatSpecImpl;
str_format_internal::UntypedFormatSpecImpl spec_;
};
// FormatStreamed()
//
// Takes a streamable argument and returns an object that can print it
// with '%s'. Allows printing of types that have an `operator<<` but no
// intrinsic type support within `StrFormat()` itself.
//
// Example:
//
// absl::StrFormat("%s", absl::FormatStreamed(obj));
template <typename T>
str_format_internal::StreamedWrapper<T> FormatStreamed(const T& v) {
return str_format_internal::StreamedWrapper<T>(v);
}
// FormatCountCapture
//
// This class provides a way to safely wrap `StrFormat()` captures of `%n`
// conversions, which denote the number of characters written by a formatting
// operation to this point, into an integer value.
//
// This wrapper is designed to allow safe usage of `%n` within `StrFormat(); in
// the `printf()` family of functions, `%n` is not safe to use, as the `int *`
// buffer can be used to capture arbitrary data.
//
// Example:
//
// int n = 0;
// std::string s = absl::StrFormat("%s%d%n", "hello", 123,
// absl::FormatCountCapture(&n));
// EXPECT_EQ(8, n);
class FormatCountCapture {
public:
explicit FormatCountCapture(int* p) : p_(p) {}
private:
// FormatCountCaptureHelper is used to define FormatConvertImpl() for this
// class.
friend struct str_format_internal::FormatCountCaptureHelper;
// Unused() is here because of the false positive from -Wunused-private-field
// p_ is used in the templated function of the friend FormatCountCaptureHelper
// class.
int* Unused() { return p_; }
int* p_;
};
// FormatSpec
//
// The `FormatSpec` type defines the makeup of a format std::string within the
// `str_format` library. You should not need to use or manipulate this type
// directly. A `FormatSpec` is a variadic class template that is evaluated at
// compile-time, according to the format std::string and arguments that are passed
// to it.
//
// For a `FormatSpec` to be valid at compile-time, it must be provided as
// either:
//
// * A `constexpr` literal or `absl::string_view`, which is how it most often
// used.
// * A `ParsedFormat` instantiation, which ensures the format std::string is
// valid before use. (See below.)
//
// Example:
//
// // Provided as a std::string literal.
// absl::StrFormat("Welcome to %s, Number %d!", "The Village", 6);
//
// // Provided as a constexpr absl::string_view.
// constexpr absl::string_view formatString = "Welcome to %s, Number %d!";
// absl::StrFormat(formatString, "The Village", 6);
//
// // Provided as a pre-compiled ParsedFormat object.
// // Note that this example is useful only for illustration purposes.
// absl::ParsedFormat<'s', 'd'> formatString("Welcome to %s, Number %d!");
// absl::StrFormat(formatString, "TheVillage", 6);
//
// A format std::string generally follows the POSIX syntax as used within the POSIX
// `printf` specification.
//
// (See http://pubs.opengroup.org/onlinepubs/9699919799/utilities/printf.html.)
//
// In specific, the `FormatSpec` supports the following type specifiers:
// * `c` for characters
// * `s` for strings
// * `d` or `i` for integers
// * `o` for unsigned integer conversions into octal
// * `x` or `X` for unsigned integer conversions into hex
// * `u` for unsigned integers
// * `f` or `F` for floating point values into decimal notation
// * `e` or `E` for floating point values into exponential notation
// * `a` or `A` for floating point values into hex exponential notation
// * `g` or `G` for floating point values into decimal or exponential
// notation based on their precision
// * `p` for pointer address values
// * `n` for the special case of writing out the number of characters
// written to this point. The resulting value must be captured within an
// `absl::FormatCountCapture` type.
//
// NOTE: `o`, `x\X` and `u` will convert signed values to their unsigned
// counterpart before formatting.
//
// Examples:
// "%c", 'a' -> "a"
// "%c", 32 -> " "
// "%s", "C" -> "C"
// "%s", std::string("C++") -> "C++"
// "%d", -10 -> "-10"
// "%o", 10 -> "12"
// "%x", 16 -> "10"
// "%f", 123456789 -> "123456789.000000"
// "%e", .01 -> "1.00000e-2"
// "%a", -3.0 -> "-0x1.8p+1"
// "%g", .01 -> "1e-2"
// "%p", *int -> "0x7ffdeb6ad2a4"
//
// int n = 0;
// std::string s = absl::StrFormat(
// "%s%d%n", "hello", 123, absl::FormatCountCapture(&n));
// EXPECT_EQ(8, n);
//
// The `FormatSpec` intrinsically supports all of these fundamental C++ types:
//
// * Characters: `char`, `signed char`, `unsigned char`
// * Integers: `int`, `short`, `unsigned short`, `unsigned`, `long`,
// `unsigned long`, `long long`, `unsigned long long`
// * Floating-point: `float`, `double`, `long double`
//
// However, in the `str_format` library, a format conversion specifies a broader
// C++ conceptual category instead of an exact type. For example, `%s` binds to
// any std::string-like argument, so `std::string`, `absl::string_view`, and
// `const char*` are all accepted. Likewise, `%d` accepts any integer-like
// argument, etc.
template <typename... Args>
using FormatSpec =
typename str_format_internal::FormatSpecDeductionBarrier<Args...>::type;
using absl::str_format_internal::ExtendedParsedFormat;
// ParsedFormat
//
// A `ParsedFormat` is a class template representing a preparsed `FormatSpec`,
// with template arguments specifying the conversion characters used within the
// format std::string. Such characters must be valid format type specifiers, and
// these type specifiers are checked at compile-time.
//
// Instances of `ParsedFormat` can be created, copied, and reused to speed up
// formatting loops. A `ParsedFormat` may either be constructed statically, or
// dynamically through its `New()` factory function, which only constructs a
// runtime object if the format is valid at that time.
//
// Example:
//
// // Verified at compile time.
// absl::ParsedFormat<'s', 'd'> formatString("Welcome to %s, Number %d!");
// absl::StrFormat(formatString, "TheVillage", 6);
//
// // Verified at runtime.
// auto format_runtime = absl::ParsedFormat<'d'>::New(format_string);
// if (format_runtime) {
// value = absl::StrFormat(*format_runtime, i);
// } else {
// ... error case ...
// }
template <char... Conv>
using ParsedFormat = str_format_internal::ExtendedParsedFormat<
str_format_internal::ConversionCharToConv(Conv)...>;
// StrFormat()
//
// Returns a `string` given a `printf()`-style format std::string and zero or more
// additional arguments. Use it as you would `sprintf()`. `StrFormat()` is the
// primary formatting function within the `str_format` library, and should be
// used in most cases where you need type-safe conversion of types into
// formatted strings.
//
// The format std::string generally consists of ordinary character data along with
// one or more format conversion specifiers (denoted by the `%` character).
// Ordinary character data is returned unchanged into the result std::string, while
// each conversion specification performs a type substitution from
// `StrFormat()`'s other arguments. See the comments for `FormatSpec` for full
// information on the makeup of this format std::string.
//
// Example:
//
// std::string s = absl::StrFormat(
// "Welcome to %s, Number %d!", "The Village", 6);
// EXPECT_EQ("Welcome to The Village, Number 6!", s);
//
// Returns an empty std::string in case of error.
template <typename... Args>
ABSL_MUST_USE_RESULT std::string StrFormat(const FormatSpec<Args...>& format,
const Args&... args) {
return str_format_internal::FormatPack(
str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// StrAppendFormat()
//
// Appends to a `dst` std::string given a format std::string, and zero or more additional
// arguments, returning `*dst` as a convenience for chaining purposes. Appends
// nothing in case of error (but possibly alters its capacity).
//
// Example:
//
// std::string orig("For example PI is approximately ");
// std::cout << StrAppendFormat(&orig, "%12.6f", 3.14);
template <typename... Args>
std::string& StrAppendFormat(std::string* dst, const FormatSpec<Args...>& format,
const Args&... args) {
return str_format_internal::AppendPack(
dst, str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// StreamFormat()
//
// Writes to an output stream given a format std::string and zero or more arguments,
// generally in a manner that is more efficient than streaming the result of
// `absl:: StrFormat()`. The returned object must be streamed before the full
// expression ends.
//
// Example:
//
// std::cout << StreamFormat("%12.6f", 3.14);
template <typename... Args>
ABSL_MUST_USE_RESULT str_format_internal::Streamable StreamFormat(
const FormatSpec<Args...>& format, const Args&... args) {
return str_format_internal::Streamable(
str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// PrintF()
//
// Writes to stdout given a format std::string and zero or more arguments. This
// function is functionally equivalent to `std::print()` (and type-safe); prefer
// `absl::PrintF()` over `std::printf()`.
//
// Example:
//
// std::string_view s = "Ulaanbaatar";
// absl::PrintF("The capital of Mongolia is: %s \n", s);
//
// Outputs: "The capital of Mongolia is Ulaanbaatar"
//
template <typename... Args>
int PrintF(const FormatSpec<Args...>& format, const Args&... args) {
return str_format_internal::FprintF(
stdout, str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// FPrintF()
//
// Writes to a file given a format std::string and zero or more arguments. This
// function is functionally equivalent to `std::fprint()` (and type-safe);
// prefer `absl::FPrintF()` over `std::fprintf()`.
//
// Example:
//
// std::string_view s = "Ulaanbaatar";
// absl::FPrintF("The capital of Mongolia is: %s \n", s);
//
// Outputs: "The capital of Mongolia is Ulaanbaatar"
//
template <typename... Args>
int FPrintF(std::FILE* output, const FormatSpec<Args...>& format,
const Args&... args) {
return str_format_internal::FprintF(
output, str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// SNPrintF()
//
// Writes to a sized buffer given a format std::string and zero or more arguments.
// This function is functionally equivalent to `std::snprint()` (and type-safe);
// prefer `absl::SNPrintF()` over `std::snprintf()`.
//
// Example:
//
// std::string_view s = "Ulaanbaatar";
// absl::FPrintF("The capital of Mongolia is: %s \n", s);
//
// Outputs: "The capital of Mongolia is Ulaanbaatar"
//
template <typename... Args>
int SNPrintF(char* output, std::size_t size, const FormatSpec<Args...>& format,
const Args&... args) {
return str_format_internal::SnprintF(
output, size, str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// -----------------------------------------------------------------------------
// Custom Output Formatting Functions
// -----------------------------------------------------------------------------
// FormatRawSink
//
// FormatRawSink is a type erased wrapper around arbitrary sink objects
// specifically used as an argument to `Format()`.
// FormatRawSink does not own the passed sink object. The passed object must
// outlive the FormatRawSink.
class FormatRawSink {
public:
// Implicitly convert from any type that provides the hook function as
// described above.
template <typename T,
typename = typename std::enable_if<std::is_constructible<
str_format_internal::FormatRawSinkImpl, T*>::value>::type>
FormatRawSink(T* raw) // NOLINT
: sink_(raw) {}
private:
friend str_format_internal::FormatRawSinkImpl;
str_format_internal::FormatRawSinkImpl sink_;
};
// Format()
//
// Writes a formatted std::string to an arbitrary sink object (implementing the
// `absl::FormatRawSink` interface), using a format std::string and zero or more
// additional arguments.
//
// By default, `string` and `std::ostream` are supported as destination objects.
//
// `absl::Format()` is a generic version of `absl::StrFormat(), for custom
// sinks. The format std::string, like format strings for `StrFormat()`, is checked
// at compile-time.
//
// On failure, this function returns `false` and the state of the sink is
// unspecified.
template <typename... Args>
bool Format(FormatRawSink raw_sink, const FormatSpec<Args...>& format,
const Args&... args) {
return str_format_internal::FormatUntyped(
str_format_internal::FormatRawSinkImpl::Extract(raw_sink),
str_format_internal::UntypedFormatSpecImpl::Extract(format),
{str_format_internal::FormatArgImpl(args)...});
}
// FormatArg
//
// A type-erased handle to a format argument specifically used as an argument to
// `FormatUntyped()`. You may construct `FormatArg` by passing
// reference-to-const of any printable type. `FormatArg` is both copyable and
// assignable. The source data must outlive the `FormatArg` instance. See
// example below.
//
using FormatArg = str_format_internal::FormatArgImpl;
// FormatUntyped()
//
// Writes a formatted std::string to an arbitrary sink object (implementing the
// `absl::FormatRawSink` interface), using an `UntypedFormatSpec` and zero or
// more additional arguments.
//
// This function acts as the most generic formatting function in the
// `str_format` library. The caller provides a raw sink, an unchecked format
// std::string, and (usually) a runtime specified list of arguments; no compile-time
// checking of formatting is performed within this function. As a result, a
// caller should check the return value to verify that no error occurred.
// On failure, this function returns `false` and the state of the sink is
// unspecified.
//
// The arguments are provided in an `absl::Span<const absl::FormatArg>`.
// Each `absl::FormatArg` object binds to a single argument and keeps a
// reference to it. The values used to create the `FormatArg` objects must
// outlive this function call. (See `str_format_arg.h` for information on
// the `FormatArg` class.)_
//
// Example:
//
// std::optional<std::string> FormatDynamic(const std::string& in_format,
// const vector<std::string>& in_args) {
// std::string out;
// std::vector<absl::FormatArg> args;
// for (const auto& v : in_args) {
// // It is important that 'v' is a reference to the objects in in_args.
// // The values we pass to FormatArg must outlive the call to
// // FormatUntyped.
// args.emplace_back(v);
// }
// absl::UntypedFormatSpec format(in_format);
// if (!absl::FormatUntyped(&out, format, args)) {
// return std::nullopt;
// }
// return std::move(out);
// }
//
ABSL_MUST_USE_RESULT inline bool FormatUntyped(
FormatRawSink raw_sink, const UntypedFormatSpec& format,
absl::Span<const FormatArg> args) {
return str_format_internal::FormatUntyped(
str_format_internal::FormatRawSinkImpl::Extract(raw_sink),
str_format_internal::UntypedFormatSpecImpl::Extract(format), args);
}
} // namespace absl
#endif // ABSL_STRINGS_STR_FORMAT_H_

View file

@ -0,0 +1,603 @@
#include <cstdarg>
#include <cstdint>
#include <cstdio>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace {
using str_format_internal::FormatArgImpl;
class FormatEntryPointTest : public ::testing::Test { };
TEST_F(FormatEntryPointTest, Format) {
std::string sink;
EXPECT_TRUE(Format(&sink, "A format %d", 123));
EXPECT_EQ("A format 123", sink);
sink.clear();
ParsedFormat<'d'> pc("A format %d");
EXPECT_TRUE(Format(&sink, pc, 123));
EXPECT_EQ("A format 123", sink);
}
TEST_F(FormatEntryPointTest, UntypedFormat) {
constexpr const char* formats[] = {
"",
"a",
"%80d",
#if !defined(_MSC_VER) && !defined(__ANDROID__)
// MSVC and Android don't support positional syntax.
"complicated multipart %% %1$d format %1$0999d",
#endif // _MSC_VER
};
for (const char* fmt : formats) {
std::string actual;
int i = 123;
FormatArgImpl arg_123(i);
absl::Span<const FormatArgImpl> args(&arg_123, 1);
UntypedFormatSpec format(fmt);
EXPECT_TRUE(FormatUntyped(&actual, format, args));
char buf[4096]{};
snprintf(buf, sizeof(buf), fmt, 123);
EXPECT_EQ(
str_format_internal::FormatPack(
str_format_internal::UntypedFormatSpecImpl::Extract(format), args),
buf);
EXPECT_EQ(actual, buf);
}
// The internal version works with a preparsed format.
ParsedFormat<'d'> pc("A format %d");
int i = 345;
FormatArg arg(i);
std::string out;
EXPECT_TRUE(str_format_internal::FormatUntyped(
&out, str_format_internal::UntypedFormatSpecImpl(&pc), {&arg, 1}));
EXPECT_EQ("A format 345", out);
}
TEST_F(FormatEntryPointTest, StringFormat) {
EXPECT_EQ("123", StrFormat("%d", 123));
constexpr absl::string_view view("=%d=", 4);
EXPECT_EQ("=123=", StrFormat(view, 123));
}
TEST_F(FormatEntryPointTest, AppendFormat) {
std::string s;
std::string& r = StrAppendFormat(&s, "%d", 123);
EXPECT_EQ(&s, &r); // should be same object
EXPECT_EQ("123", r);
}
TEST_F(FormatEntryPointTest, AppendFormatFail) {
std::string s = "orig";
UntypedFormatSpec format(" more %d");
FormatArgImpl arg("not an int");
EXPECT_EQ("orig",
str_format_internal::AppendPack(
&s, str_format_internal::UntypedFormatSpecImpl::Extract(format),
{&arg, 1}));
}
TEST_F(FormatEntryPointTest, ManyArgs) {
EXPECT_EQ("24", StrFormat("%24$d", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24));
EXPECT_EQ("60", StrFormat("%60$d", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60));
}
TEST_F(FormatEntryPointTest, Preparsed) {
ParsedFormat<'d'> pc("%d");
EXPECT_EQ("123", StrFormat(pc, 123));
// rvalue ok?
EXPECT_EQ("123", StrFormat(ParsedFormat<'d'>("%d"), 123));
constexpr absl::string_view view("=%d=", 4);
EXPECT_EQ("=123=", StrFormat(ParsedFormat<'d'>(view), 123));
}
TEST_F(FormatEntryPointTest, FormatCountCapture) {
int n = 0;
EXPECT_EQ("", StrFormat("%n", FormatCountCapture(&n)));
EXPECT_EQ(0, n);
EXPECT_EQ("123", StrFormat("%d%n", 123, FormatCountCapture(&n)));
EXPECT_EQ(3, n);
}
TEST_F(FormatEntryPointTest, FormatCountCaptureWrongType) {
// Should reject int*.
int n = 0;
UntypedFormatSpec format("%d%n");
int i = 123, *ip = &n;
FormatArgImpl args[2] = {FormatArgImpl(i), FormatArgImpl(ip)};
EXPECT_EQ("", str_format_internal::FormatPack(
str_format_internal::UntypedFormatSpecImpl::Extract(format),
absl::MakeSpan(args)));
}
TEST_F(FormatEntryPointTest, FormatCountCaptureMultiple) {
int n1 = 0;
int n2 = 0;
EXPECT_EQ(" 1 2",
StrFormat("%5d%n%10d%n", 1, FormatCountCapture(&n1), 2,
FormatCountCapture(&n2)));
EXPECT_EQ(5, n1);
EXPECT_EQ(15, n2);
}
TEST_F(FormatEntryPointTest, FormatCountCaptureExample) {
int n;
std::string s;
StrAppendFormat(&s, "%s: %n%s\n", "(1,1)", FormatCountCapture(&n), "(1,2)");
StrAppendFormat(&s, "%*s%s\n", n, "", "(2,2)");
EXPECT_EQ(7, n);
EXPECT_EQ(
"(1,1): (1,2)\n"
" (2,2)\n",
s);
}
TEST_F(FormatEntryPointTest, Stream) {
const std::string formats[] = {
"",
"a",
"%80d",
#if !defined(_MSC_VER) && !defined(__ANDROID__)
// MSVC doesn't support positional syntax.
"complicated multipart %% %1$d format %1$080d",
#endif // _MSC_VER
};
std::string buf(4096, '\0');
for (const auto& fmt : formats) {
const auto parsed = ParsedFormat<'d'>::NewAllowIgnored(fmt);
std::ostringstream oss;
oss << StreamFormat(*parsed, 123);
int fmt_result = snprintf(&*buf.begin(), buf.size(), fmt.c_str(), 123);
ASSERT_TRUE(oss) << fmt;
ASSERT_TRUE(fmt_result >= 0 && static_cast<size_t>(fmt_result) < buf.size())
<< fmt_result;
EXPECT_EQ(buf.c_str(), oss.str());
}
}
TEST_F(FormatEntryPointTest, StreamOk) {
std::ostringstream oss;
oss << StreamFormat("hello %d", 123);
EXPECT_EQ("hello 123", oss.str());
EXPECT_TRUE(oss.good());
}
TEST_F(FormatEntryPointTest, StreamFail) {
std::ostringstream oss;
UntypedFormatSpec format("hello %d");
FormatArgImpl arg("non-numeric");
oss << str_format_internal::Streamable(
str_format_internal::UntypedFormatSpecImpl::Extract(format), {&arg, 1});
EXPECT_EQ("hello ", oss.str()); // partial write
EXPECT_TRUE(oss.fail());
}
std::string WithSnprintf(const char* fmt, ...) {
std::string buf;
buf.resize(128);
va_list va;
va_start(va, fmt);
int r = vsnprintf(&*buf.begin(), buf.size(), fmt, va);
va_end(va);
EXPECT_GE(r, 0);
EXPECT_LT(r, buf.size());
buf.resize(r);
return buf;
}
TEST_F(FormatEntryPointTest, FloatPrecisionArg) {
// Test that positional parameters for width and precision
// are indexed to precede the value.
// Also sanity check the same formats against snprintf.
EXPECT_EQ("0.1", StrFormat("%.1f", 0.1));
EXPECT_EQ("0.1", WithSnprintf("%.1f", 0.1));
EXPECT_EQ(" 0.1", StrFormat("%*.1f", 5, 0.1));
EXPECT_EQ(" 0.1", WithSnprintf("%*.1f", 5, 0.1));
EXPECT_EQ("0.1", StrFormat("%.*f", 1, 0.1));
EXPECT_EQ("0.1", WithSnprintf("%.*f", 1, 0.1));
EXPECT_EQ(" 0.1", StrFormat("%*.*f", 5, 1, 0.1));
EXPECT_EQ(" 0.1", WithSnprintf("%*.*f", 5, 1, 0.1));
}
namespace streamed_test {
struct X {};
std::ostream& operator<<(std::ostream& os, const X&) {
return os << "X";
}
} // streamed_test
TEST_F(FormatEntryPointTest, FormatStreamed) {
EXPECT_EQ("123", StrFormat("%s", FormatStreamed(123)));
EXPECT_EQ(" 123", StrFormat("%5s", FormatStreamed(123)));
EXPECT_EQ("123 ", StrFormat("%-5s", FormatStreamed(123)));
EXPECT_EQ("X", StrFormat("%s", FormatStreamed(streamed_test::X())));
EXPECT_EQ("123", StrFormat("%s", FormatStreamed(StreamFormat("%d", 123))));
}
// Helper class that creates a temporary file and exposes a FILE* to it.
// It will close the file on destruction.
class TempFile {
public:
TempFile() : file_(std::tmpfile()) {}
~TempFile() { std::fclose(file_); }
std::FILE* file() const { return file_; }
// Read the file into a std::string.
std::string ReadFile() {
std::fseek(file_, 0, SEEK_END);
int size = std::ftell(file_);
std::rewind(file_);
std::string str(2 * size, ' ');
int read_bytes = std::fread(&str[0], 1, str.size(), file_);
EXPECT_EQ(read_bytes, size);
str.resize(read_bytes);
EXPECT_TRUE(std::feof(file_));
return str;
}
private:
std::FILE* file_;
};
TEST_F(FormatEntryPointTest, FPrintF) {
TempFile tmp;
int result =
FPrintF(tmp.file(), "STRING: %s NUMBER: %010d", std::string("ABC"), -19);
EXPECT_EQ(result, 30);
EXPECT_EQ(tmp.ReadFile(), "STRING: ABC NUMBER: -000000019");
}
TEST_F(FormatEntryPointTest, FPrintFError) {
errno = 0;
int result = FPrintF(stdin, "ABC");
EXPECT_LT(result, 0);
EXPECT_EQ(errno, EBADF);
}
#if __GNUC__
TEST_F(FormatEntryPointTest, FprintfTooLarge) {
std::FILE* f = std::fopen("/dev/null", "w");
int width = 2000000000;
errno = 0;
int result = FPrintF(f, "%*d %*d", width, 0, width, 0);
EXPECT_LT(result, 0);
EXPECT_EQ(errno, EFBIG);
std::fclose(f);
}
TEST_F(FormatEntryPointTest, PrintF) {
int stdout_tmp = dup(STDOUT_FILENO);
TempFile tmp;
std::fflush(stdout);
dup2(fileno(tmp.file()), STDOUT_FILENO);
int result = PrintF("STRING: %s NUMBER: %010d", std::string("ABC"), -19);
std::fflush(stdout);
dup2(stdout_tmp, STDOUT_FILENO);
close(stdout_tmp);
EXPECT_EQ(result, 30);
EXPECT_EQ(tmp.ReadFile(), "STRING: ABC NUMBER: -000000019");
}
#endif // __GNUC__
TEST_F(FormatEntryPointTest, SNPrintF) {
char buffer[16];
int result =
SNPrintF(buffer, sizeof(buffer), "STRING: %s", std::string("ABC"));
EXPECT_EQ(result, 11);
EXPECT_EQ(std::string(buffer), "STRING: ABC");
result = SNPrintF(buffer, sizeof(buffer), "NUMBER: %d", 123456);
EXPECT_EQ(result, 14);
EXPECT_EQ(std::string(buffer), "NUMBER: 123456");
result = SNPrintF(buffer, sizeof(buffer), "NUMBER: %d", 1234567);
EXPECT_EQ(result, 15);
EXPECT_EQ(std::string(buffer), "NUMBER: 1234567");
result = SNPrintF(buffer, sizeof(buffer), "NUMBER: %d", 12345678);
EXPECT_EQ(result, 16);
EXPECT_EQ(std::string(buffer), "NUMBER: 1234567");
result = SNPrintF(buffer, sizeof(buffer), "NUMBER: %d", 123456789);
EXPECT_EQ(result, 17);
EXPECT_EQ(std::string(buffer), "NUMBER: 1234567");
result = SNPrintF(nullptr, 0, "Just checking the %s of the output.", "size");
EXPECT_EQ(result, 37);
}
TEST(StrFormat, BehavesAsDocumented) {
std::string s = absl::StrFormat("%s, %d!", "Hello", 123);
EXPECT_EQ("Hello, 123!", s);
// The format of a replacement is
// '%'[position][flags][width['.'precision]][length_modifier][format]
EXPECT_EQ(absl::StrFormat("%1$+3.2Lf", 1.1), "+1.10");
// Text conversion:
// "c" - Character. Eg: 'a' -> "A", 20 -> " "
EXPECT_EQ(StrFormat("%c", 'a'), "a");
EXPECT_EQ(StrFormat("%c", 0x20), " ");
// Formats char and integral types: int, long, uint64_t, etc.
EXPECT_EQ(StrFormat("%c", int{'a'}), "a");
EXPECT_EQ(StrFormat("%c", long{'a'}), "a"); // NOLINT
EXPECT_EQ(StrFormat("%c", uint64_t{'a'}), "a");
// "s" - std::string Eg: "C" -> "C", std::string("C++") -> "C++"
// Formats std::string, char*, string_view, and Cord.
EXPECT_EQ(StrFormat("%s", "C"), "C");
EXPECT_EQ(StrFormat("%s", std::string("C++")), "C++");
EXPECT_EQ(StrFormat("%s", string_view("view")), "view");
// Integral Conversion
// These format integral types: char, int, long, uint64_t, etc.
EXPECT_EQ(StrFormat("%d", char{10}), "10");
EXPECT_EQ(StrFormat("%d", int{10}), "10");
EXPECT_EQ(StrFormat("%d", long{10}), "10"); // NOLINT
EXPECT_EQ(StrFormat("%d", uint64_t{10}), "10");
// d,i - signed decimal Eg: -10 -> "-10"
EXPECT_EQ(StrFormat("%d", -10), "-10");
EXPECT_EQ(StrFormat("%i", -10), "-10");
// o - octal Eg: 10 -> "12"
EXPECT_EQ(StrFormat("%o", 10), "12");
// u - unsigned decimal Eg: 10 -> "10"
EXPECT_EQ(StrFormat("%u", 10), "10");
// x/X - lower,upper case hex Eg: 10 -> "a"/"A"
EXPECT_EQ(StrFormat("%x", 10), "a");
EXPECT_EQ(StrFormat("%X", 10), "A");
// Floating-point, with upper/lower-case output.
// These format floating points types: float, double, long double, etc.
EXPECT_EQ(StrFormat("%.1f", float{1}), "1.0");
EXPECT_EQ(StrFormat("%.1f", double{1}), "1.0");
const long double long_double = 1.0;
EXPECT_EQ(StrFormat("%.1f", long_double), "1.0");
// These also format integral types: char, int, long, uint64_t, etc.:
EXPECT_EQ(StrFormat("%.1f", char{1}), "1.0");
EXPECT_EQ(StrFormat("%.1f", int{1}), "1.0");
EXPECT_EQ(StrFormat("%.1f", long{1}), "1.0"); // NOLINT
EXPECT_EQ(StrFormat("%.1f", uint64_t{1}), "1.0");
// f/F - decimal. Eg: 123456789 -> "123456789.000000"
EXPECT_EQ(StrFormat("%f", 123456789), "123456789.000000");
EXPECT_EQ(StrFormat("%F", 123456789), "123456789.000000");
// e/E - exponentiated Eg: .01 -> "1.00000e-2"/"1.00000E-2"
EXPECT_EQ(StrFormat("%e", .01), "1.000000e-02");
EXPECT_EQ(StrFormat("%E", .01), "1.000000E-02");
// g/G - exponentiate to fit Eg: .01 -> "0.01", 1e10 ->"1e+10"/"1E+10"
EXPECT_EQ(StrFormat("%g", .01), "0.01");
EXPECT_EQ(StrFormat("%g", 1e10), "1e+10");
EXPECT_EQ(StrFormat("%G", 1e10), "1E+10");
// a/A - lower,upper case hex Eg: -3.0 -> "-0x1.8p+1"/"-0X1.8P+1"
// On NDK r16, there is a regression in hexfloat formatting.
#if !defined(__NDK_MAJOR__) || __NDK_MAJOR__ != 16
EXPECT_EQ(StrFormat("%.1a", -3.0), "-0x1.8p+1"); // .1 to fix MSVC output
EXPECT_EQ(StrFormat("%.1A", -3.0), "-0X1.8P+1"); // .1 to fix MSVC output
#endif
// Other conversion
int64_t value = 0x7ffdeb6;
auto ptr_value = static_cast<uintptr_t>(value);
const int& something = *reinterpret_cast<const int*>(ptr_value);
EXPECT_EQ(StrFormat("%p", &something), StrFormat("0x%x", ptr_value));
// Output widths are supported, with optional flags.
EXPECT_EQ(StrFormat("%3d", 1), " 1");
EXPECT_EQ(StrFormat("%3d", 123456), "123456");
EXPECT_EQ(StrFormat("%06.2f", 1.234), "001.23");
EXPECT_EQ(StrFormat("%+d", 1), "+1");
EXPECT_EQ(StrFormat("% d", 1), " 1");
EXPECT_EQ(StrFormat("%-4d", -1), "-1 ");
EXPECT_EQ(StrFormat("%#o", 10), "012");
EXPECT_EQ(StrFormat("%#x", 15), "0xf");
EXPECT_EQ(StrFormat("%04d", 8), "0008");
// Posix positional substitution.
EXPECT_EQ(absl::StrFormat("%2$s, %3$s, %1$s!", "vici", "veni", "vidi"),
"veni, vidi, vici!");
// Length modifiers are ignored.
EXPECT_EQ(StrFormat("%hhd", int{1}), "1");
EXPECT_EQ(StrFormat("%hd", int{1}), "1");
EXPECT_EQ(StrFormat("%ld", int{1}), "1");
EXPECT_EQ(StrFormat("%lld", int{1}), "1");
EXPECT_EQ(StrFormat("%Ld", int{1}), "1");
EXPECT_EQ(StrFormat("%jd", int{1}), "1");
EXPECT_EQ(StrFormat("%zd", int{1}), "1");
EXPECT_EQ(StrFormat("%td", int{1}), "1");
EXPECT_EQ(StrFormat("%qd", int{1}), "1");
}
using str_format_internal::ExtendedParsedFormat;
using str_format_internal::ParsedFormatBase;
struct SummarizeConsumer {
std::string* out;
explicit SummarizeConsumer(std::string* out) : out(out) {}
bool Append(string_view s) {
*out += "[" + std::string(s) + "]";
return true;
}
bool ConvertOne(const str_format_internal::UnboundConversion& conv,
string_view s) {
*out += "{";
*out += std::string(s);
*out += ":";
*out += std::to_string(conv.arg_position) + "$";
if (conv.width.is_from_arg()) {
*out += std::to_string(conv.width.get_from_arg()) + "$*";
}
if (conv.precision.is_from_arg()) {
*out += "." + std::to_string(conv.precision.get_from_arg()) + "$*";
}
*out += conv.conv.Char();
*out += "}";
return true;
}
};
std::string SummarizeParsedFormat(const ParsedFormatBase& pc) {
std::string out;
if (!pc.ProcessFormat(SummarizeConsumer(&out))) out += "!";
return out;
}
class ParsedFormatTest : public testing::Test {};
TEST_F(ParsedFormatTest, SimpleChecked) {
EXPECT_EQ("[ABC]{d:1$d}[DEF]",
SummarizeParsedFormat(ParsedFormat<'d'>("ABC%dDEF")));
EXPECT_EQ("{s:1$s}[FFF]{d:2$d}[ZZZ]{f:3$f}",
SummarizeParsedFormat(ParsedFormat<'s', 'd', 'f'>("%sFFF%dZZZ%f")));
EXPECT_EQ("{s:1$s}[ ]{.*d:3$.2$*d}",
SummarizeParsedFormat(ParsedFormat<'s', '*', 'd'>("%s %.*d")));
}
TEST_F(ParsedFormatTest, SimpleUncheckedCorrect) {
auto f = ParsedFormat<'d'>::New("ABC%dDEF");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]{d:1$d}[DEF]", SummarizeParsedFormat(*f));
std::string format = "%sFFF%dZZZ%f";
auto f2 = ParsedFormat<'s', 'd', 'f'>::New(format);
ASSERT_TRUE(f2);
EXPECT_EQ("{s:1$s}[FFF]{d:2$d}[ZZZ]{f:3$f}", SummarizeParsedFormat(*f2));
f2 = ParsedFormat<'s', 'd', 'f'>::New("%s %d %f");
ASSERT_TRUE(f2);
EXPECT_EQ("{s:1$s}[ ]{d:2$d}[ ]{f:3$f}", SummarizeParsedFormat(*f2));
auto star = ParsedFormat<'*', 'd'>::New("%*d");
ASSERT_TRUE(star);
EXPECT_EQ("{*d:2$1$*d}", SummarizeParsedFormat(*star));
auto dollar = ParsedFormat<'d', 's'>::New("%2$s %1$d");
ASSERT_TRUE(dollar);
EXPECT_EQ("{2$s:2$s}[ ]{1$d:1$d}", SummarizeParsedFormat(*dollar));
// with reuse
dollar = ParsedFormat<'d', 's'>::New("%2$s %1$d %1$d");
ASSERT_TRUE(dollar);
EXPECT_EQ("{2$s:2$s}[ ]{1$d:1$d}[ ]{1$d:1$d}",
SummarizeParsedFormat(*dollar));
}
TEST_F(ParsedFormatTest, SimpleUncheckedIgnoredArgs) {
EXPECT_FALSE((ParsedFormat<'d', 's'>::New("ABC")));
EXPECT_FALSE((ParsedFormat<'d', 's'>::New("%dABC")));
EXPECT_FALSE((ParsedFormat<'d', 's'>::New("ABC%2$s")));
auto f = ParsedFormat<'d', 's'>::NewAllowIgnored("ABC");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]", SummarizeParsedFormat(*f));
f = ParsedFormat<'d', 's'>::NewAllowIgnored("%dABC");
ASSERT_TRUE(f);
EXPECT_EQ("{d:1$d}[ABC]", SummarizeParsedFormat(*f));
f = ParsedFormat<'d', 's'>::NewAllowIgnored("ABC%2$s");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]{2$s:2$s}", SummarizeParsedFormat(*f));
}
TEST_F(ParsedFormatTest, SimpleUncheckedUnsupported) {
EXPECT_FALSE(ParsedFormat<'d'>::New("%1$d %1$x"));
EXPECT_FALSE(ParsedFormat<'x'>::New("%1$d %1$x"));
}
TEST_F(ParsedFormatTest, SimpleUncheckedIncorrect) {
EXPECT_FALSE(ParsedFormat<'d'>::New(""));
EXPECT_FALSE(ParsedFormat<'d'>::New("ABC%dDEF%d"));
std::string format = "%sFFF%dZZZ%f";
EXPECT_FALSE((ParsedFormat<'s', 'd', 'g'>::New(format)));
}
using str_format_internal::Conv;
TEST_F(ParsedFormatTest, UncheckedCorrect) {
auto f = ExtendedParsedFormat<Conv::d>::New("ABC%dDEF");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]{d:1$d}[DEF]", SummarizeParsedFormat(*f));
std::string format = "%sFFF%dZZZ%f";
auto f2 =
ExtendedParsedFormat<Conv::string, Conv::d, Conv::floating>::New(format);
ASSERT_TRUE(f2);
EXPECT_EQ("{s:1$s}[FFF]{d:2$d}[ZZZ]{f:3$f}", SummarizeParsedFormat(*f2));
f2 = ExtendedParsedFormat<Conv::string, Conv::d, Conv::floating>::New(
"%s %d %f");
ASSERT_TRUE(f2);
EXPECT_EQ("{s:1$s}[ ]{d:2$d}[ ]{f:3$f}", SummarizeParsedFormat(*f2));
auto star = ExtendedParsedFormat<Conv::star, Conv::d>::New("%*d");
ASSERT_TRUE(star);
EXPECT_EQ("{*d:2$1$*d}", SummarizeParsedFormat(*star));
auto dollar = ExtendedParsedFormat<Conv::d, Conv::s>::New("%2$s %1$d");
ASSERT_TRUE(dollar);
EXPECT_EQ("{2$s:2$s}[ ]{1$d:1$d}", SummarizeParsedFormat(*dollar));
// with reuse
dollar = ExtendedParsedFormat<Conv::d, Conv::s>::New("%2$s %1$d %1$d");
ASSERT_TRUE(dollar);
EXPECT_EQ("{2$s:2$s}[ ]{1$d:1$d}[ ]{1$d:1$d}",
SummarizeParsedFormat(*dollar));
}
TEST_F(ParsedFormatTest, UncheckedIgnoredArgs) {
EXPECT_FALSE((ExtendedParsedFormat<Conv::d, Conv::s>::New("ABC")));
EXPECT_FALSE((ExtendedParsedFormat<Conv::d, Conv::s>::New("%dABC")));
EXPECT_FALSE((ExtendedParsedFormat<Conv::d, Conv::s>::New("ABC%2$s")));
auto f = ExtendedParsedFormat<Conv::d, Conv::s>::NewAllowIgnored("ABC");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]", SummarizeParsedFormat(*f));
f = ExtendedParsedFormat<Conv::d, Conv::s>::NewAllowIgnored("%dABC");
ASSERT_TRUE(f);
EXPECT_EQ("{d:1$d}[ABC]", SummarizeParsedFormat(*f));
f = ExtendedParsedFormat<Conv::d, Conv::s>::NewAllowIgnored("ABC%2$s");
ASSERT_TRUE(f);
EXPECT_EQ("[ABC]{2$s:2$s}", SummarizeParsedFormat(*f));
}
TEST_F(ParsedFormatTest, UncheckedMultipleTypes) {
auto dx = ExtendedParsedFormat<Conv::d | Conv::x>::New("%1$d %1$x");
EXPECT_TRUE(dx);
EXPECT_EQ("{1$d:1$d}[ ]{1$x:1$x}", SummarizeParsedFormat(*dx));
dx = ExtendedParsedFormat<Conv::d | Conv::x>::New("%1$d");
EXPECT_TRUE(dx);
EXPECT_EQ("{1$d:1$d}", SummarizeParsedFormat(*dx));
}
TEST_F(ParsedFormatTest, UncheckedIncorrect) {
EXPECT_FALSE(ExtendedParsedFormat<Conv::d>::New(""));
EXPECT_FALSE(ExtendedParsedFormat<Conv::d>::New("ABC%dDEF%d"));
std::string format = "%sFFF%dZZZ%f";
EXPECT_FALSE((ExtendedParsedFormat<Conv::s, Conv::d, Conv::g>::New(format)));
}
TEST_F(ParsedFormatTest, RegressionMixPositional) {
EXPECT_FALSE((ExtendedParsedFormat<Conv::d, Conv::o>::New("%1$d %o")));
}
} // namespace
} // namespace absl

View file

@ -34,15 +34,13 @@ namespace {
const char kInfiniteFutureStr[] = "infinite-future"; const char kInfiniteFutureStr[] = "infinite-future";
const char kInfinitePastStr[] = "infinite-past"; const char kInfinitePastStr[] = "infinite-past";
using cctz_sec = cctz::time_point<cctz::sys_seconds>;
using cctz_fem = cctz::detail::femtoseconds;
struct cctz_parts { struct cctz_parts {
cctz_sec sec; cctz::time_point<cctz::seconds> sec;
cctz_fem fem; cctz::detail::femtoseconds fem;
}; };
inline cctz_sec unix_epoch() { inline cctz::time_point<cctz::seconds> unix_epoch() {
return std::chrono::time_point_cast<cctz::sys_seconds>( return std::chrono::time_point_cast<cctz::seconds>(
std::chrono::system_clock::from_time_t(0)); std::chrono::system_clock::from_time_t(0));
} }
@ -53,8 +51,8 @@ cctz_parts Split(absl::Time t) {
const auto d = time_internal::ToUnixDuration(t); const auto d = time_internal::ToUnixDuration(t);
const int64_t rep_hi = time_internal::GetRepHi(d); const int64_t rep_hi = time_internal::GetRepHi(d);
const int64_t rep_lo = time_internal::GetRepLo(d); const int64_t rep_lo = time_internal::GetRepLo(d);
const auto sec = unix_epoch() + cctz::sys_seconds(rep_hi); const auto sec = unix_epoch() + cctz::seconds(rep_hi);
const auto fem = cctz_fem(rep_lo * (1000 * 1000 / 4)); const auto fem = cctz::detail::femtoseconds(rep_lo * (1000 * 1000 / 4));
return {sec, fem}; return {sec, fem};
} }

View file

@ -34,23 +34,24 @@ namespace cctz {
// Convenience aliases. Not intended as public API points. // Convenience aliases. Not intended as public API points.
template <typename D> template <typename D>
using time_point = std::chrono::time_point<std::chrono::system_clock, D>; using time_point = std::chrono::time_point<std::chrono::system_clock, D>;
using sys_seconds = std::chrono::duration<std::int_fast64_t>; using seconds = std::chrono::duration<std::int_fast64_t>;
using sys_seconds = seconds; // Deprecated. Use cctz::seconds instead.
namespace detail { namespace detail {
template <typename D> template <typename D>
inline std::pair<time_point<sys_seconds>, D> inline std::pair<time_point<seconds>, D>
split_seconds(const time_point<D>& tp) { split_seconds(const time_point<D>& tp) {
auto sec = std::chrono::time_point_cast<sys_seconds>(tp); auto sec = std::chrono::time_point_cast<seconds>(tp);
auto sub = tp - sec; auto sub = tp - sec;
if (sub.count() < 0) { if (sub.count() < 0) {
sec -= sys_seconds(1); sec -= seconds(1);
sub += sys_seconds(1); sub += seconds(1);
} }
return {sec, std::chrono::duration_cast<D>(sub)}; return {sec, std::chrono::duration_cast<D>(sub)};
} }
inline std::pair<time_point<sys_seconds>, sys_seconds> inline std::pair<time_point<seconds>, seconds>
split_seconds(const time_point<sys_seconds>& tp) { split_seconds(const time_point<seconds>& tp) {
return {tp, sys_seconds(0)}; return {tp, seconds::zero()};
} }
} // namespace detail } // namespace detail
@ -99,7 +100,7 @@ class time_zone {
bool is_dst; // is offset non-standard? bool is_dst; // is offset non-standard?
const char* abbr; // time-zone abbreviation (e.g., "PST") const char* abbr; // time-zone abbreviation (e.g., "PST")
}; };
absolute_lookup lookup(const time_point<sys_seconds>& tp) const; absolute_lookup lookup(const time_point<seconds>& tp) const;
template <typename D> template <typename D>
absolute_lookup lookup(const time_point<D>& tp) const { absolute_lookup lookup(const time_point<D>& tp) const {
return lookup(detail::split_seconds(tp).first); return lookup(detail::split_seconds(tp).first);
@ -120,7 +121,7 @@ class time_zone {
// offset, the transition point itself, and the post-transition offset, // offset, the transition point itself, and the post-transition offset,
// respectively (all three times are equal if kind == UNIQUE). If any // respectively (all three times are equal if kind == UNIQUE). If any
// of these three absolute times is outside the representable range of a // of these three absolute times is outside the representable range of a
// time_point<sys_seconds> the field is set to its maximum/minimum value. // time_point<seconds> the field is set to its maximum/minimum value.
// //
// Example: // Example:
// cctz::time_zone lax; // cctz::time_zone lax;
@ -152,9 +153,9 @@ class time_zone {
SKIPPED, // the civil time did not exist (pre >= trans > post) SKIPPED, // the civil time did not exist (pre >= trans > post)
REPEATED, // the civil time was ambiguous (pre < trans <= post) REPEATED, // the civil time was ambiguous (pre < trans <= post)
} kind; } kind;
time_point<sys_seconds> pre; // uses the pre-transition offset time_point<seconds> pre; // uses the pre-transition offset
time_point<sys_seconds> trans; // instant of civil-offset change time_point<seconds> trans; // instant of civil-offset change
time_point<sys_seconds> post; // uses the post-transition offset time_point<seconds> post; // uses the post-transition offset
}; };
civil_lookup lookup(const civil_second& cs) const; civil_lookup lookup(const civil_second& cs) const;
@ -180,7 +181,7 @@ time_zone utc_time_zone();
// Returns a time zone that is a fixed offset (seconds east) from UTC. // Returns a time zone that is a fixed offset (seconds east) from UTC.
// Note: If the absolute value of the offset is greater than 24 hours // Note: If the absolute value of the offset is greater than 24 hours
// you'll get UTC (i.e., zero offset) instead. // you'll get UTC (i.e., zero offset) instead.
time_zone fixed_time_zone(const sys_seconds& offset); time_zone fixed_time_zone(const seconds& offset);
// Returns a time zone representing the local time zone. Falls back to UTC. // Returns a time zone representing the local time zone. Falls back to UTC.
time_zone local_time_zone(); time_zone local_time_zone();
@ -199,7 +200,7 @@ inline civil_second convert(const time_point<D>& tp, const time_zone& tz) {
// it was either repeated or non-existent), then the returned time_point is // it was either repeated or non-existent), then the returned time_point is
// the best estimate that preserves relative order. That is, this function // the best estimate that preserves relative order. That is, this function
// guarantees that if cs1 < cs2, then convert(cs1, tz) <= convert(cs2, tz). // guarantees that if cs1 < cs2, then convert(cs1, tz) <= convert(cs2, tz).
inline time_point<sys_seconds> convert(const civil_second& cs, inline time_point<seconds> convert(const civil_second& cs,
const time_zone& tz) { const time_zone& tz) {
const time_zone::civil_lookup cl = tz.lookup(cs); const time_zone::civil_lookup cl = tz.lookup(cs);
if (cl.kind == time_zone::civil_lookup::SKIPPED) return cl.trans; if (cl.kind == time_zone::civil_lookup::SKIPPED) return cl.trans;
@ -208,10 +209,10 @@ inline time_point<sys_seconds> convert(const civil_second& cs,
namespace detail { namespace detail {
using femtoseconds = std::chrono::duration<std::int_fast64_t, std::femto>; using femtoseconds = std::chrono::duration<std::int_fast64_t, std::femto>;
std::string format(const std::string&, const time_point<sys_seconds>&, std::string format(const std::string&, const time_point<seconds>&,
const femtoseconds&, const time_zone&); const femtoseconds&, const time_zone&);
bool parse(const std::string&, const std::string&, const time_zone&, bool parse(const std::string&, const std::string&, const time_zone&,
time_point<sys_seconds>*, femtoseconds*, std::string* err = nullptr); time_point<seconds>*, femtoseconds*, std::string* err = nullptr);
} // namespace detail } // namespace detail
// Formats the given time_point in the given cctz::time_zone according to // Formats the given time_point in the given cctz::time_zone according to
@ -298,7 +299,7 @@ inline std::string format(const std::string& fmt, const time_point<D>& tp,
template <typename D> template <typename D>
inline bool parse(const std::string& fmt, const std::string& input, inline bool parse(const std::string& fmt, const std::string& input,
const time_zone& tz, time_point<D>* tpp) { const time_zone& tz, time_point<D>* tpp) {
time_point<sys_seconds> sec; time_point<seconds> sec;
detail::femtoseconds fs; detail::femtoseconds fs;
const bool b = detail::parse(fmt, input, tz, &sec, &fs); const bool b = detail::parse(fmt, input, tz, &sec, &fs);
if (b) { if (b) {

View file

@ -42,9 +42,9 @@ int Parse02d(const char* p) {
} // namespace } // namespace
bool FixedOffsetFromName(const std::string& name, sys_seconds* offset) { bool FixedOffsetFromName(const std::string& name, seconds* offset) {
if (name.compare(0, std::string::npos, "UTC", 3) == 0) { if (name.compare(0, std::string::npos, "UTC", 3) == 0) {
*offset = sys_seconds::zero(); *offset = seconds::zero();
return true; return true;
} }
@ -69,12 +69,12 @@ bool FixedOffsetFromName(const std::string& name, sys_seconds* offset) {
secs += ((hours * 60) + mins) * 60; secs += ((hours * 60) + mins) * 60;
if (secs > 24 * 60 * 60) return false; // outside supported offset range if (secs > 24 * 60 * 60) return false; // outside supported offset range
*offset = sys_seconds(secs * (np[0] == '-' ? -1 : 1)); // "-" means west *offset = seconds(secs * (np[0] == '-' ? -1 : 1)); // "-" means west
return true; return true;
} }
std::string FixedOffsetToName(const sys_seconds& offset) { std::string FixedOffsetToName(const seconds& offset) {
if (offset == sys_seconds::zero()) return "UTC"; if (offset == seconds::zero()) return "UTC";
if (offset < std::chrono::hours(-24) || offset > std::chrono::hours(24)) { if (offset < std::chrono::hours(-24) || offset > std::chrono::hours(24)) {
// We don't support fixed-offset zones more than 24 hours // We don't support fixed-offset zones more than 24 hours
// away from UTC to avoid complications in rendering such // away from UTC to avoid complications in rendering such
@ -101,7 +101,7 @@ std::string FixedOffsetToName(const sys_seconds& offset) {
return buf; return buf;
} }
std::string FixedOffsetToAbbr(const sys_seconds& offset) { std::string FixedOffsetToAbbr(const seconds& offset) {
std::string abbr = FixedOffsetToName(offset); std::string abbr = FixedOffsetToName(offset);
const std::size_t prefix_len = sizeof(kFixedOffsetPrefix) - 1; const std::size_t prefix_len = sizeof(kFixedOffsetPrefix) - 1;
if (abbr.size() == prefix_len + 9) { // <prefix>+99:99:99 if (abbr.size() == prefix_len + 9) { // <prefix>+99:99:99

View file

@ -38,9 +38,9 @@ namespace cctz {
// Note: FixedOffsetFromName() fails on syntax errors or when the parsed // Note: FixedOffsetFromName() fails on syntax errors or when the parsed
// offset exceeds 24 hours. FixedOffsetToName() and FixedOffsetToAbbr() // offset exceeds 24 hours. FixedOffsetToName() and FixedOffsetToAbbr()
// both produce "UTC" when the argument offset exceeds 24 hours. // both produce "UTC" when the argument offset exceeds 24 hours.
bool FixedOffsetFromName(const std::string& name, sys_seconds* offset); bool FixedOffsetFromName(const std::string& name, seconds* offset);
std::string FixedOffsetToName(const sys_seconds& offset); std::string FixedOffsetToName(const seconds& offset);
std::string FixedOffsetToAbbr(const sys_seconds& offset); std::string FixedOffsetToAbbr(const seconds& offset);
} // namespace cctz } // namespace cctz
} // namespace time_internal } // namespace time_internal

View file

@ -277,7 +277,7 @@ const std::int_fast64_t kExp10[kDigits10_64 + 1] = {
// not support the tm_gmtoff and tm_zone extensions to std::tm. // not support the tm_gmtoff and tm_zone extensions to std::tm.
// //
// Requires that zero() <= fs < seconds(1). // Requires that zero() <= fs < seconds(1).
std::string format(const std::string& format, const time_point<sys_seconds>& tp, std::string format(const std::string& format, const time_point<seconds>& tp,
const detail::femtoseconds& fs, const time_zone& tz) { const detail::femtoseconds& fs, const time_zone& tz) {
std::string result; std::string result;
result.reserve(format.size()); // A reasonable guess for the result size. result.reserve(format.size()); // A reasonable guess for the result size.
@ -555,7 +555,7 @@ const char* ParseTM(const char* dp, const char* fmt, std::tm* tm) {
// We also handle the %z specifier to accommodate platforms that do not // We also handle the %z specifier to accommodate platforms that do not
// support the tm_gmtoff extension to std::tm. %Z is parsed but ignored. // support the tm_gmtoff extension to std::tm. %Z is parsed but ignored.
bool parse(const std::string& format, const std::string& input, bool parse(const std::string& format, const std::string& input,
const time_zone& tz, time_point<sys_seconds>* sec, const time_zone& tz, time_point<seconds>* sec,
detail::femtoseconds* fs, std::string* err) { detail::femtoseconds* fs, std::string* err) {
// The unparsed input. // The unparsed input.
const char* data = input.c_str(); // NUL terminated const char* data = input.c_str(); // NUL terminated
@ -822,15 +822,15 @@ bool parse(const std::string& format, const std::string& input,
const auto tp = ptz.lookup(cs).pre; const auto tp = ptz.lookup(cs).pre;
// Checks for overflow/underflow and returns an error as necessary. // Checks for overflow/underflow and returns an error as necessary.
if (tp == time_point<sys_seconds>::max()) { if (tp == time_point<seconds>::max()) {
const auto al = ptz.lookup(time_point<sys_seconds>::max()); const auto al = ptz.lookup(time_point<seconds>::max());
if (cs > al.cs) { if (cs > al.cs) {
if (err != nullptr) *err = "Out-of-range field"; if (err != nullptr) *err = "Out-of-range field";
return false; return false;
} }
} }
if (tp == time_point<sys_seconds>::min()) { if (tp == time_point<seconds>::min()) {
const auto al = ptz.lookup(time_point<sys_seconds>::min()); const auto al = ptz.lookup(time_point<seconds>::min());
if (cs < al.cs) { if (cs < al.cs) {
if (err != nullptr) *err = "Out-of-range field"; if (err != nullptr) *err = "Out-of-range field";
return false; return false;

View file

@ -23,15 +23,7 @@
#include "gmock/gmock.h" #include "gmock/gmock.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
using std::chrono::time_point_cast; namespace chrono = std::chrono;
using std::chrono::system_clock;
using std::chrono::nanoseconds;
using std::chrono::microseconds;
using std::chrono::milliseconds;
using std::chrono::seconds;
using std::chrono::minutes;
using std::chrono::hours;
using testing::HasSubstr;
namespace absl { namespace absl {
namespace time_internal { namespace time_internal {
@ -81,33 +73,36 @@ void TestFormatSpecifier(time_point<D> tp, time_zone tz, const std::string& fmt,
TEST(Format, TimePointResolution) { TEST(Format, TimePointResolution) {
const char kFmt[] = "%H:%M:%E*S"; const char kFmt[] = "%H:%M:%E*S";
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const time_point<nanoseconds> t0 = system_clock::from_time_t(1420167845) + const time_point<chrono::nanoseconds> t0 =
milliseconds(123) + microseconds(456) + chrono::system_clock::from_time_t(1420167845) +
nanoseconds(789); chrono::milliseconds(123) + chrono::microseconds(456) +
EXPECT_EQ("03:04:05.123456789", chrono::nanoseconds(789);
format(kFmt, time_point_cast<nanoseconds>(t0), utc)); EXPECT_EQ(
EXPECT_EQ("03:04:05.123456", "03:04:05.123456789",
format(kFmt, time_point_cast<microseconds>(t0), utc)); format(kFmt, chrono::time_point_cast<chrono::nanoseconds>(t0), utc));
EXPECT_EQ("03:04:05.123", EXPECT_EQ(
format(kFmt, time_point_cast<milliseconds>(t0), utc)); "03:04:05.123456",
format(kFmt, chrono::time_point_cast<chrono::microseconds>(t0), utc));
EXPECT_EQ(
"03:04:05.123",
format(kFmt, chrono::time_point_cast<chrono::milliseconds>(t0), utc));
EXPECT_EQ("03:04:05", EXPECT_EQ("03:04:05",
format(kFmt, time_point_cast<seconds>(t0), utc)); format(kFmt, chrono::time_point_cast<chrono::seconds>(t0), utc));
EXPECT_EQ("03:04:05", EXPECT_EQ("03:04:05",
format(kFmt, time_point_cast<sys_seconds>(t0), utc)); format(kFmt, chrono::time_point_cast<absl::time_internal::cctz::seconds>(t0), utc));
EXPECT_EQ("03:04:00", EXPECT_EQ("03:04:00",
format(kFmt, time_point_cast<minutes>(t0), utc)); format(kFmt, chrono::time_point_cast<chrono::minutes>(t0), utc));
EXPECT_EQ("03:00:00", EXPECT_EQ("03:00:00",
format(kFmt, time_point_cast<hours>(t0), utc)); format(kFmt, chrono::time_point_cast<chrono::hours>(t0), utc));
} }
TEST(Format, TimePointExtendedResolution) { TEST(Format, TimePointExtendedResolution) {
const char kFmt[] = "%H:%M:%E*S"; const char kFmt[] = "%H:%M:%E*S";
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const time_point<sys_seconds> tp = const time_point<absl::time_internal::cctz::seconds> tp =
std::chrono::time_point_cast<sys_seconds>( chrono::time_point_cast<absl::time_internal::cctz::seconds>(
std::chrono::system_clock::from_time_t(0)) + chrono::system_clock::from_time_t(0)) +
std::chrono::hours(12) + std::chrono::minutes(34) + chrono::hours(12) + chrono::minutes(34) + chrono::seconds(56);
std::chrono::seconds(56);
EXPECT_EQ( EXPECT_EQ(
"12:34:56.123456789012345", "12:34:56.123456789012345",
@ -132,7 +127,7 @@ TEST(Format, TimePointExtendedResolution) {
TEST(Format, Basics) { TEST(Format, Basics) {
time_zone tz = utc_time_zone(); time_zone tz = utc_time_zone();
time_point<nanoseconds> tp = system_clock::from_time_t(0); time_point<chrono::nanoseconds> tp = chrono::system_clock::from_time_t(0);
// Starts with a couple basic edge cases. // Starts with a couple basic edge cases.
EXPECT_EQ("", format("", tp, tz)); EXPECT_EQ("", format("", tp, tz));
@ -145,8 +140,9 @@ TEST(Format, Basics) {
std::string bigger(100000, 'x'); std::string bigger(100000, 'x');
EXPECT_EQ(bigger, format(bigger, tp, tz)); EXPECT_EQ(bigger, format(bigger, tp, tz));
tp += hours(13) + minutes(4) + seconds(5); tp += chrono::hours(13) + chrono::minutes(4) + chrono::seconds(5);
tp += milliseconds(6) + microseconds(7) + nanoseconds(8); tp += chrono::milliseconds(6) + chrono::microseconds(7) +
chrono::nanoseconds(8);
EXPECT_EQ("1970-01-01", format("%Y-%m-%d", tp, tz)); EXPECT_EQ("1970-01-01", format("%Y-%m-%d", tp, tz));
EXPECT_EQ("13:04:05", format("%H:%M:%S", tp, tz)); EXPECT_EQ("13:04:05", format("%H:%M:%S", tp, tz));
EXPECT_EQ("13:04:05.006", format("%H:%M:%E3S", tp, tz)); EXPECT_EQ("13:04:05.006", format("%H:%M:%E3S", tp, tz));
@ -156,7 +152,7 @@ TEST(Format, Basics) {
TEST(Format, PosixConversions) { TEST(Format, PosixConversions) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
TestFormatSpecifier(tp, tz, "%d", "01"); TestFormatSpecifier(tp, tz, "%d", "01");
TestFormatSpecifier(tp, tz, "%e", " 1"); // extension but internal support TestFormatSpecifier(tp, tz, "%e", " 1"); // extension but internal support
@ -196,7 +192,7 @@ TEST(Format, PosixConversions) {
TEST(Format, LocaleSpecific) { TEST(Format, LocaleSpecific) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
TestFormatSpecifier(tp, tz, "%a", "Thu"); TestFormatSpecifier(tp, tz, "%a", "Thu");
TestFormatSpecifier(tp, tz, "%A", "Thursday"); TestFormatSpecifier(tp, tz, "%A", "Thursday");
@ -205,8 +201,8 @@ TEST(Format, LocaleSpecific) {
// %c should at least produce the numeric year and time-of-day. // %c should at least produce the numeric year and time-of-day.
const std::string s = format("%c", tp, utc_time_zone()); const std::string s = format("%c", tp, utc_time_zone());
EXPECT_THAT(s, HasSubstr("1970")); EXPECT_THAT(s, testing::HasSubstr("1970"));
EXPECT_THAT(s, HasSubstr("00:00:00")); EXPECT_THAT(s, testing::HasSubstr("00:00:00"));
TestFormatSpecifier(tp, tz, "%p", "AM"); TestFormatSpecifier(tp, tz, "%p", "AM");
TestFormatSpecifier(tp, tz, "%x", "01/01/70"); TestFormatSpecifier(tp, tz, "%x", "01/01/70");
@ -245,7 +241,7 @@ TEST(Format, LocaleSpecific) {
TEST(Format, Escaping) { TEST(Format, Escaping) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
TestFormatSpecifier(tp, tz, "%%", "%"); TestFormatSpecifier(tp, tz, "%%", "%");
TestFormatSpecifier(tp, tz, "%%a", "%a"); TestFormatSpecifier(tp, tz, "%%a", "%a");
@ -266,8 +262,8 @@ TEST(Format, ExtendedSeconds) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
// No subseconds. // No subseconds.
time_point<nanoseconds> tp = system_clock::from_time_t(0); time_point<chrono::nanoseconds> tp = chrono::system_clock::from_time_t(0);
tp += seconds(5); tp += chrono::seconds(5);
EXPECT_EQ("05", format("%E*S", tp, tz)); EXPECT_EQ("05", format("%E*S", tp, tz));
EXPECT_EQ("05", format("%E0S", tp, tz)); EXPECT_EQ("05", format("%E0S", tp, tz));
EXPECT_EQ("05.0", format("%E1S", tp, tz)); EXPECT_EQ("05.0", format("%E1S", tp, tz));
@ -287,7 +283,8 @@ TEST(Format, ExtendedSeconds) {
EXPECT_EQ("05.000000000000000", format("%E15S", tp, tz)); EXPECT_EQ("05.000000000000000", format("%E15S", tp, tz));
// With subseconds. // With subseconds.
tp += milliseconds(6) + microseconds(7) + nanoseconds(8); tp += chrono::milliseconds(6) + chrono::microseconds(7) +
chrono::nanoseconds(8);
EXPECT_EQ("05.006007008", format("%E*S", tp, tz)); EXPECT_EQ("05.006007008", format("%E*S", tp, tz));
EXPECT_EQ("05", format("%E0S", tp, tz)); EXPECT_EQ("05", format("%E0S", tp, tz));
EXPECT_EQ("05.0", format("%E1S", tp, tz)); EXPECT_EQ("05.0", format("%E1S", tp, tz));
@ -307,17 +304,18 @@ TEST(Format, ExtendedSeconds) {
EXPECT_EQ("05.006007008000000", format("%E15S", tp, tz)); EXPECT_EQ("05.006007008000000", format("%E15S", tp, tz));
// Times before the Unix epoch. // Times before the Unix epoch.
tp = system_clock::from_time_t(0) + microseconds(-1); tp = chrono::system_clock::from_time_t(0) + chrono::microseconds(-1);
EXPECT_EQ("1969-12-31 23:59:59.999999", EXPECT_EQ("1969-12-31 23:59:59.999999",
format("%Y-%m-%d %H:%M:%E*S", tp, tz)); format("%Y-%m-%d %H:%M:%E*S", tp, tz));
// Here is a "%E*S" case we got wrong for a while. While the first // Here is a "%E*S" case we got wrong for a while. While the first
// instant below is correctly rendered as "...:07.333304", the second // instant below is correctly rendered as "...:07.333304", the second
// one used to appear as "...:07.33330499999999999". // one used to appear as "...:07.33330499999999999".
tp = system_clock::from_time_t(0) + microseconds(1395024427333304); tp = chrono::system_clock::from_time_t(0) +
chrono::microseconds(1395024427333304);
EXPECT_EQ("2014-03-17 02:47:07.333304", EXPECT_EQ("2014-03-17 02:47:07.333304",
format("%Y-%m-%d %H:%M:%E*S", tp, tz)); format("%Y-%m-%d %H:%M:%E*S", tp, tz));
tp += microseconds(1); tp += chrono::microseconds(1);
EXPECT_EQ("2014-03-17 02:47:07.333305", EXPECT_EQ("2014-03-17 02:47:07.333305",
format("%Y-%m-%d %H:%M:%E*S", tp, tz)); format("%Y-%m-%d %H:%M:%E*S", tp, tz));
} }
@ -326,8 +324,8 @@ TEST(Format, ExtendedSubeconds) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
// No subseconds. // No subseconds.
time_point<nanoseconds> tp = system_clock::from_time_t(0); time_point<chrono::nanoseconds> tp = chrono::system_clock::from_time_t(0);
tp += seconds(5); tp += chrono::seconds(5);
EXPECT_EQ("0", format("%E*f", tp, tz)); EXPECT_EQ("0", format("%E*f", tp, tz));
EXPECT_EQ("", format("%E0f", tp, tz)); EXPECT_EQ("", format("%E0f", tp, tz));
EXPECT_EQ("0", format("%E1f", tp, tz)); EXPECT_EQ("0", format("%E1f", tp, tz));
@ -347,7 +345,8 @@ TEST(Format, ExtendedSubeconds) {
EXPECT_EQ("000000000000000", format("%E15f", tp, tz)); EXPECT_EQ("000000000000000", format("%E15f", tp, tz));
// With subseconds. // With subseconds.
tp += milliseconds(6) + microseconds(7) + nanoseconds(8); tp += chrono::milliseconds(6) + chrono::microseconds(7) +
chrono::nanoseconds(8);
EXPECT_EQ("006007008", format("%E*f", tp, tz)); EXPECT_EQ("006007008", format("%E*f", tp, tz));
EXPECT_EQ("", format("%E0f", tp, tz)); EXPECT_EQ("", format("%E0f", tp, tz));
EXPECT_EQ("0", format("%E1f", tp, tz)); EXPECT_EQ("0", format("%E1f", tp, tz));
@ -367,17 +366,18 @@ TEST(Format, ExtendedSubeconds) {
EXPECT_EQ("006007008000000", format("%E15f", tp, tz)); EXPECT_EQ("006007008000000", format("%E15f", tp, tz));
// Times before the Unix epoch. // Times before the Unix epoch.
tp = system_clock::from_time_t(0) + microseconds(-1); tp = chrono::system_clock::from_time_t(0) + chrono::microseconds(-1);
EXPECT_EQ("1969-12-31 23:59:59.999999", EXPECT_EQ("1969-12-31 23:59:59.999999",
format("%Y-%m-%d %H:%M:%S.%E*f", tp, tz)); format("%Y-%m-%d %H:%M:%S.%E*f", tp, tz));
// Here is a "%E*S" case we got wrong for a while. While the first // Here is a "%E*S" case we got wrong for a while. While the first
// instant below is correctly rendered as "...:07.333304", the second // instant below is correctly rendered as "...:07.333304", the second
// one used to appear as "...:07.33330499999999999". // one used to appear as "...:07.33330499999999999".
tp = system_clock::from_time_t(0) + microseconds(1395024427333304); tp = chrono::system_clock::from_time_t(0) +
chrono::microseconds(1395024427333304);
EXPECT_EQ("2014-03-17 02:47:07.333304", EXPECT_EQ("2014-03-17 02:47:07.333304",
format("%Y-%m-%d %H:%M:%S.%E*f", tp, tz)); format("%Y-%m-%d %H:%M:%S.%E*f", tp, tz));
tp += microseconds(1); tp += chrono::microseconds(1);
EXPECT_EQ("2014-03-17 02:47:07.333305", EXPECT_EQ("2014-03-17 02:47:07.333305",
format("%Y-%m-%d %H:%M:%S.%E*f", tp, tz)); format("%Y-%m-%d %H:%M:%S.%E*f", tp, tz));
} }
@ -392,8 +392,8 @@ TEST(Format, CompareExtendSecondsVsSubseconds) {
auto fmt_B = [](const std::string& prec) { return "%S.%E" + prec + "f"; }; auto fmt_B = [](const std::string& prec) { return "%S.%E" + prec + "f"; };
// No subseconds: // No subseconds:
time_point<nanoseconds> tp = system_clock::from_time_t(0); time_point<chrono::nanoseconds> tp = chrono::system_clock::from_time_t(0);
tp += seconds(5); tp += chrono::seconds(5);
// ... %E*S and %S.%E*f are different. // ... %E*S and %S.%E*f are different.
EXPECT_EQ("05", format(fmt_A("*"), tp, tz)); EXPECT_EQ("05", format(fmt_A("*"), tp, tz));
EXPECT_EQ("05.0", format(fmt_B("*"), tp, tz)); EXPECT_EQ("05.0", format(fmt_B("*"), tp, tz));
@ -409,7 +409,8 @@ TEST(Format, CompareExtendSecondsVsSubseconds) {
// With subseconds: // With subseconds:
// ... %E*S and %S.%E*f are the same. // ... %E*S and %S.%E*f are the same.
tp += milliseconds(6) + microseconds(7) + nanoseconds(8); tp += chrono::milliseconds(6) + chrono::microseconds(7) +
chrono::nanoseconds(8);
EXPECT_EQ("05.006007008", format(fmt_A("*"), tp, tz)); EXPECT_EQ("05.006007008", format(fmt_A("*"), tp, tz));
EXPECT_EQ("05.006007008", format(fmt_B("*"), tp, tz)); EXPECT_EQ("05.006007008", format(fmt_B("*"), tp, tz));
// ... %E0S and %S.%E0f are different. // ... %E0S and %S.%E0f are different.
@ -424,7 +425,7 @@ TEST(Format, CompareExtendSecondsVsSubseconds) {
} }
TEST(Format, ExtendedOffset) { TEST(Format, ExtendedOffset) {
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
time_zone tz = utc_time_zone(); time_zone tz = utc_time_zone();
TestFormatSpecifier(tp, tz, "%Ez", "+00:00"); TestFormatSpecifier(tp, tz, "%Ez", "+00:00");
@ -446,7 +447,7 @@ TEST(Format, ExtendedOffset) {
TEST(Format, ExtendedSecondOffset) { TEST(Format, ExtendedSecondOffset) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<seconds> tp; time_point<chrono::seconds> tp;
time_zone tz; time_zone tz;
EXPECT_TRUE(load_time_zone("America/New_York", &tz)); EXPECT_TRUE(load_time_zone("America/New_York", &tz));
@ -458,7 +459,7 @@ TEST(Format, ExtendedSecondOffset) {
TestFormatSpecifier(tp, tz, "%E*z", "-04:56:02"); TestFormatSpecifier(tp, tz, "%E*z", "-04:56:02");
TestFormatSpecifier(tp, tz, "%Ez", "-04:56"); TestFormatSpecifier(tp, tz, "%Ez", "-04:56");
} }
tp += seconds(1); tp += chrono::seconds(1);
TestFormatSpecifier(tp, tz, "%E*z", "-05:00:00"); TestFormatSpecifier(tp, tz, "%E*z", "-05:00:00");
EXPECT_TRUE(load_time_zone("Europe/Moscow", &tz)); EXPECT_TRUE(load_time_zone("Europe/Moscow", &tz));
@ -469,7 +470,7 @@ TEST(Format, ExtendedSecondOffset) {
TestFormatSpecifier(tp, tz, "%E*z", "+04:31:19"); TestFormatSpecifier(tp, tz, "%E*z", "+04:31:19");
TestFormatSpecifier(tp, tz, "%Ez", "+04:31"); TestFormatSpecifier(tp, tz, "%Ez", "+04:31");
#endif #endif
tp += seconds(1); tp += chrono::seconds(1);
TestFormatSpecifier(tp, tz, "%E*z", "+04:00:00"); TestFormatSpecifier(tp, tz, "%E*z", "+04:00:00");
} }
@ -510,44 +511,44 @@ TEST(Format, RFC3339Format) {
time_zone tz; time_zone tz;
EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz)); EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz));
time_point<nanoseconds> tp = time_point<chrono::nanoseconds> tp =
convert(civil_second(1977, 6, 28, 9, 8, 7), tz); convert(civil_second(1977, 6, 28, 9, 8, 7), tz);
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += milliseconds(100); tp += chrono::milliseconds(100);
EXPECT_EQ("1977-06-28T09:08:07.1-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.1-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += milliseconds(20); tp += chrono::milliseconds(20);
EXPECT_EQ("1977-06-28T09:08:07.12-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.12-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += milliseconds(3); tp += chrono::milliseconds(3);
EXPECT_EQ("1977-06-28T09:08:07.123-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.123-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += microseconds(400); tp += chrono::microseconds(400);
EXPECT_EQ("1977-06-28T09:08:07.1234-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.1234-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += microseconds(50); tp += chrono::microseconds(50);
EXPECT_EQ("1977-06-28T09:08:07.12345-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.12345-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += microseconds(6); tp += chrono::microseconds(6);
EXPECT_EQ("1977-06-28T09:08:07.123456-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.123456-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += nanoseconds(700); tp += chrono::nanoseconds(700);
EXPECT_EQ("1977-06-28T09:08:07.1234567-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.1234567-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += nanoseconds(80); tp += chrono::nanoseconds(80);
EXPECT_EQ("1977-06-28T09:08:07.12345678-07:00", format(RFC3339_full, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07.12345678-07:00", format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
tp += nanoseconds(9); tp += chrono::nanoseconds(9);
EXPECT_EQ("1977-06-28T09:08:07.123456789-07:00", EXPECT_EQ("1977-06-28T09:08:07.123456789-07:00",
format(RFC3339_full, tp, tz)); format(RFC3339_full, tp, tz));
EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz)); EXPECT_EQ("1977-06-28T09:08:07-07:00", format(RFC3339_sec, tp, tz));
@ -570,13 +571,13 @@ TEST(Parse, TimePointResolution) {
const char kFmt[] = "%H:%M:%E*S"; const char kFmt[] = "%H:%M:%E*S";
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<nanoseconds> tp_ns; time_point<chrono::nanoseconds> tp_ns;
EXPECT_TRUE(parse(kFmt, "03:04:05.123456789", utc, &tp_ns)); EXPECT_TRUE(parse(kFmt, "03:04:05.123456789", utc, &tp_ns));
EXPECT_EQ("03:04:05.123456789", format(kFmt, tp_ns, utc)); EXPECT_EQ("03:04:05.123456789", format(kFmt, tp_ns, utc));
EXPECT_TRUE(parse(kFmt, "03:04:05.123456", utc, &tp_ns)); EXPECT_TRUE(parse(kFmt, "03:04:05.123456", utc, &tp_ns));
EXPECT_EQ("03:04:05.123456", format(kFmt, tp_ns, utc)); EXPECT_EQ("03:04:05.123456", format(kFmt, tp_ns, utc));
time_point<microseconds> tp_us; time_point<chrono::microseconds> tp_us;
EXPECT_TRUE(parse(kFmt, "03:04:05.123456789", utc, &tp_us)); EXPECT_TRUE(parse(kFmt, "03:04:05.123456789", utc, &tp_us));
EXPECT_EQ("03:04:05.123456", format(kFmt, tp_us, utc)); EXPECT_EQ("03:04:05.123456", format(kFmt, tp_us, utc));
EXPECT_TRUE(parse(kFmt, "03:04:05.123456", utc, &tp_us)); EXPECT_TRUE(parse(kFmt, "03:04:05.123456", utc, &tp_us));
@ -584,7 +585,7 @@ TEST(Parse, TimePointResolution) {
EXPECT_TRUE(parse(kFmt, "03:04:05.123", utc, &tp_us)); EXPECT_TRUE(parse(kFmt, "03:04:05.123", utc, &tp_us));
EXPECT_EQ("03:04:05.123", format(kFmt, tp_us, utc)); EXPECT_EQ("03:04:05.123", format(kFmt, tp_us, utc));
time_point<milliseconds> tp_ms; time_point<chrono::milliseconds> tp_ms;
EXPECT_TRUE(parse(kFmt, "03:04:05.123456", utc, &tp_ms)); EXPECT_TRUE(parse(kFmt, "03:04:05.123456", utc, &tp_ms));
EXPECT_EQ("03:04:05.123", format(kFmt, tp_ms, utc)); EXPECT_EQ("03:04:05.123", format(kFmt, tp_ms, utc));
EXPECT_TRUE(parse(kFmt, "03:04:05.123", utc, &tp_ms)); EXPECT_TRUE(parse(kFmt, "03:04:05.123", utc, &tp_ms));
@ -592,17 +593,17 @@ TEST(Parse, TimePointResolution) {
EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_ms)); EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_ms));
EXPECT_EQ("03:04:05", format(kFmt, tp_ms, utc)); EXPECT_EQ("03:04:05", format(kFmt, tp_ms, utc));
time_point<seconds> tp_s; time_point<chrono::seconds> tp_s;
EXPECT_TRUE(parse(kFmt, "03:04:05.123", utc, &tp_s)); EXPECT_TRUE(parse(kFmt, "03:04:05.123", utc, &tp_s));
EXPECT_EQ("03:04:05", format(kFmt, tp_s, utc)); EXPECT_EQ("03:04:05", format(kFmt, tp_s, utc));
EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_s)); EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_s));
EXPECT_EQ("03:04:05", format(kFmt, tp_s, utc)); EXPECT_EQ("03:04:05", format(kFmt, tp_s, utc));
time_point<minutes> tp_m; time_point<chrono::minutes> tp_m;
EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_m)); EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_m));
EXPECT_EQ("03:04:00", format(kFmt, tp_m, utc)); EXPECT_EQ("03:04:00", format(kFmt, tp_m, utc));
time_point<hours> tp_h; time_point<chrono::hours> tp_h;
EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_h)); EXPECT_TRUE(parse(kFmt, "03:04:05", utc, &tp_h));
EXPECT_EQ("03:00:00", format(kFmt, tp_h, utc)); EXPECT_EQ("03:00:00", format(kFmt, tp_h, utc));
} }
@ -611,7 +612,7 @@ TEST(Parse, TimePointExtendedResolution) {
const char kFmt[] = "%H:%M:%E*S"; const char kFmt[] = "%H:%M:%E*S";
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<sys_seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
detail::femtoseconds fs; detail::femtoseconds fs;
EXPECT_TRUE(detail::parse(kFmt, "12:34:56.123456789012345", utc, &tp, &fs)); EXPECT_TRUE(detail::parse(kFmt, "12:34:56.123456789012345", utc, &tp, &fs));
EXPECT_EQ("12:34:56.123456789012345", detail::format(kFmt, tp, fs, utc)); EXPECT_EQ("12:34:56.123456789012345", detail::format(kFmt, tp, fs, utc));
@ -629,11 +630,12 @@ TEST(Parse, TimePointExtendedResolution) {
TEST(Parse, Basics) { TEST(Parse, Basics) {
time_zone tz = utc_time_zone(); time_zone tz = utc_time_zone();
time_point<nanoseconds> tp = system_clock::from_time_t(1234567890); time_point<chrono::nanoseconds> tp =
chrono::system_clock::from_time_t(1234567890);
// Simple edge cases. // Simple edge cases.
EXPECT_TRUE(parse("", "", tz, &tp)); EXPECT_TRUE(parse("", "", tz, &tp));
EXPECT_EQ(system_clock::from_time_t(0), tp); // everything defaulted EXPECT_EQ(chrono::system_clock::from_time_t(0), tp); // everything defaulted
EXPECT_TRUE(parse(" ", " ", tz, &tp)); EXPECT_TRUE(parse(" ", " ", tz, &tp));
EXPECT_TRUE(parse(" ", " ", tz, &tp)); EXPECT_TRUE(parse(" ", " ", tz, &tp));
EXPECT_TRUE(parse("x", "x", tz, &tp)); EXPECT_TRUE(parse("x", "x", tz, &tp));
@ -647,7 +649,7 @@ TEST(Parse, Basics) {
TEST(Parse, WithTimeZone) { TEST(Parse, WithTimeZone) {
time_zone tz; time_zone tz;
EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz)); EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz));
time_point<nanoseconds> tp; time_point<chrono::nanoseconds> tp;
// We can parse a std::string without a UTC offset if we supply a timezone. // We can parse a std::string without a UTC offset if we supply a timezone.
EXPECT_TRUE(parse("%Y-%m-%d %H:%M:%S", "2013-06-28 19:08:09", tz, &tp)); EXPECT_TRUE(parse("%Y-%m-%d %H:%M:%S", "2013-06-28 19:08:09", tz, &tp));
@ -672,7 +674,7 @@ TEST(Parse, WithTimeZone) {
TEST(Parse, LeapSecond) { TEST(Parse, LeapSecond) {
time_zone tz; time_zone tz;
EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz)); EXPECT_TRUE(load_time_zone("America/Los_Angeles", &tz));
time_point<nanoseconds> tp; time_point<chrono::nanoseconds> tp;
// ":59" -> ":59" // ":59" -> ":59"
EXPECT_TRUE(parse(RFC3339_full, "2013-06-28T07:08:59-08:00", tz, &tp)); EXPECT_TRUE(parse(RFC3339_full, "2013-06-28T07:08:59-08:00", tz, &tp));
@ -696,7 +698,7 @@ TEST(Parse, LeapSecond) {
TEST(Parse, ErrorCases) { TEST(Parse, ErrorCases) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
// Illegal trailing data. // Illegal trailing data.
EXPECT_FALSE(parse("%S", "123", tz, &tp)); EXPECT_FALSE(parse("%S", "123", tz, &tp));
@ -739,7 +741,7 @@ TEST(Parse, ErrorCases) {
TEST(Parse, PosixConversions) { TEST(Parse, PosixConversions) {
time_zone tz = utc_time_zone(); time_zone tz = utc_time_zone();
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
const auto reset = convert(civil_second(1977, 6, 28, 9, 8, 7), tz); const auto reset = convert(civil_second(1977, 6, 28, 9, 8, 7), tz);
tp = reset; tp = reset;
@ -828,14 +830,14 @@ TEST(Parse, PosixConversions) {
tp = reset; tp = reset;
EXPECT_TRUE(parse("%s", "1234567890", tz, &tp)); EXPECT_TRUE(parse("%s", "1234567890", tz, &tp));
EXPECT_EQ(system_clock::from_time_t(1234567890), tp); EXPECT_EQ(chrono::system_clock::from_time_t(1234567890), tp);
// %s conversion, like %z/%Ez, pays no heed to the optional zone. // %s conversion, like %z/%Ez, pays no heed to the optional zone.
time_zone lax; time_zone lax;
EXPECT_TRUE(load_time_zone("America/Los_Angeles", &lax)); EXPECT_TRUE(load_time_zone("America/Los_Angeles", &lax));
tp = reset; tp = reset;
EXPECT_TRUE(parse("%s", "1234567890", lax, &tp)); EXPECT_TRUE(parse("%s", "1234567890", lax, &tp));
EXPECT_EQ(system_clock::from_time_t(1234567890), tp); EXPECT_EQ(chrono::system_clock::from_time_t(1234567890), tp);
// This is most important when the time has the same YMDhms // This is most important when the time has the same YMDhms
// breakdown in the zone as some other time. For example, ... // breakdown in the zone as some other time. For example, ...
@ -843,16 +845,16 @@ TEST(Parse, PosixConversions) {
// 1414920600 in US/Pacific -> Sun Nov 2 01:30:00 2014 (PST) // 1414920600 in US/Pacific -> Sun Nov 2 01:30:00 2014 (PST)
tp = reset; tp = reset;
EXPECT_TRUE(parse("%s", "1414917000", lax, &tp)); EXPECT_TRUE(parse("%s", "1414917000", lax, &tp));
EXPECT_EQ(system_clock::from_time_t(1414917000), tp); EXPECT_EQ(chrono::system_clock::from_time_t(1414917000), tp);
tp = reset; tp = reset;
EXPECT_TRUE(parse("%s", "1414920600", lax, &tp)); EXPECT_TRUE(parse("%s", "1414920600", lax, &tp));
EXPECT_EQ(system_clock::from_time_t(1414920600), tp); EXPECT_EQ(chrono::system_clock::from_time_t(1414920600), tp);
#endif #endif
} }
TEST(Parse, LocaleSpecific) { TEST(Parse, LocaleSpecific) {
time_zone tz = utc_time_zone(); time_zone tz = utc_time_zone();
auto tp = system_clock::from_time_t(0); auto tp = chrono::system_clock::from_time_t(0);
const auto reset = convert(civil_second(1977, 6, 28, 9, 8, 7), tz); const auto reset = convert(civil_second(1977, 6, 28, 9, 8, 7), tz);
// %a is parsed but ignored. // %a is parsed but ignored.
@ -983,7 +985,8 @@ TEST(Parse, LocaleSpecific) {
TEST(Parse, ExtendedSeconds) { TEST(Parse, ExtendedSeconds) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
const time_point<nanoseconds> unix_epoch = system_clock::from_time_t(0); const time_point<chrono::nanoseconds> unix_epoch =
chrono::system_clock::from_time_t(0);
// All %E<prec>S cases are treated the same as %E*S on input. // All %E<prec>S cases are treated the same as %E*S on input.
auto precisions = {"*", "0", "1", "2", "3", "4", "5", "6", "7", auto precisions = {"*", "0", "1", "2", "3", "4", "5", "6", "7",
@ -991,47 +994,47 @@ TEST(Parse, ExtendedSeconds) {
for (const std::string& prec : precisions) { for (const std::string& prec : precisions) {
const std::string fmt = "%E" + prec + "S"; const std::string fmt = "%E" + prec + "S";
SCOPED_TRACE(fmt); SCOPED_TRACE(fmt);
time_point<nanoseconds> tp = unix_epoch; time_point<chrono::nanoseconds> tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "5", tz, &tp)); EXPECT_TRUE(parse(fmt, "5", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05", tz, &tp)); EXPECT_TRUE(parse(fmt, "05", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.0", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.0", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.00", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.00", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.6", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.6", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5) + milliseconds(600), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5) + chrono::milliseconds(600), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.60", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.60", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5) + milliseconds(600), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5) + chrono::milliseconds(600), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.600", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.600", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5) + milliseconds(600), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5) + chrono::milliseconds(600), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.67", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.67", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5) + milliseconds(670), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5) + chrono::milliseconds(670), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.670", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.670", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5) + milliseconds(670), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5) + chrono::milliseconds(670), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "05.678", tz, &tp)); EXPECT_TRUE(parse(fmt, "05.678", tz, &tp));
EXPECT_EQ(unix_epoch + seconds(5) + milliseconds(678), tp); EXPECT_EQ(unix_epoch + chrono::seconds(5) + chrono::milliseconds(678), tp);
} }
// Here is a "%E*S" case we got wrong for a while. The fractional // Here is a "%E*S" case we got wrong for a while. The fractional
// part of the first instant is less than 2^31 and was correctly // part of the first instant is less than 2^31 and was correctly
// parsed, while the second (and any subsecond field >=2^31) failed. // parsed, while the second (and any subsecond field >=2^31) failed.
time_point<nanoseconds> tp = unix_epoch; time_point<chrono::nanoseconds> tp = unix_epoch;
EXPECT_TRUE(parse("%E*S", "0.2147483647", tz, &tp)); EXPECT_TRUE(parse("%E*S", "0.2147483647", tz, &tp));
EXPECT_EQ(unix_epoch + nanoseconds(214748364), tp); EXPECT_EQ(unix_epoch + chrono::nanoseconds(214748364), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse("%E*S", "0.2147483648", tz, &tp)); EXPECT_TRUE(parse("%E*S", "0.2147483648", tz, &tp));
EXPECT_EQ(unix_epoch + nanoseconds(214748364), tp); EXPECT_EQ(unix_epoch + chrono::nanoseconds(214748364), tp);
// We should also be able to specify long strings of digits far // We should also be able to specify long strings of digits far
// beyond the current resolution and have them convert the same way. // beyond the current resolution and have them convert the same way.
@ -1039,18 +1042,18 @@ TEST(Parse, ExtendedSeconds) {
EXPECT_TRUE(parse( EXPECT_TRUE(parse(
"%E*S", "0.214748364801234567890123456789012345678901234567890123456789", "%E*S", "0.214748364801234567890123456789012345678901234567890123456789",
tz, &tp)); tz, &tp));
EXPECT_EQ(unix_epoch + nanoseconds(214748364), tp); EXPECT_EQ(unix_epoch + chrono::nanoseconds(214748364), tp);
} }
TEST(Parse, ExtendedSecondsScan) { TEST(Parse, ExtendedSecondsScan) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
time_point<nanoseconds> tp; time_point<chrono::nanoseconds> tp;
for (int ms = 0; ms < 1000; ms += 111) { for (int ms = 0; ms < 1000; ms += 111) {
for (int us = 0; us < 1000; us += 27) { for (int us = 0; us < 1000; us += 27) {
const int micros = ms * 1000 + us; const int micros = ms * 1000 + us;
for (int ns = 0; ns < 1000; ns += 9) { for (int ns = 0; ns < 1000; ns += 9) {
const auto expected = const auto expected = chrono::system_clock::from_time_t(0) +
system_clock::from_time_t(0) + nanoseconds(micros * 1000 + ns); chrono::nanoseconds(micros * 1000 + ns);
std::ostringstream oss; std::ostringstream oss;
oss << "0." << std::setfill('0') << std::setw(3); oss << "0." << std::setfill('0') << std::setw(3);
oss << ms << std::setw(3) << us << std::setw(3) << ns; oss << ms << std::setw(3) << us << std::setw(3) << ns;
@ -1064,7 +1067,8 @@ TEST(Parse, ExtendedSecondsScan) {
TEST(Parse, ExtendedSubeconds) { TEST(Parse, ExtendedSubeconds) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
const time_point<nanoseconds> unix_epoch = system_clock::from_time_t(0); const time_point<chrono::nanoseconds> unix_epoch =
chrono::system_clock::from_time_t(0);
// All %E<prec>f cases are treated the same as %E*f on input. // All %E<prec>f cases are treated the same as %E*f on input.
auto precisions = {"*", "0", "1", "2", "3", "4", "5", "6", "7", auto precisions = {"*", "0", "1", "2", "3", "4", "5", "6", "7",
@ -1072,41 +1076,42 @@ TEST(Parse, ExtendedSubeconds) {
for (const std::string& prec : precisions) { for (const std::string& prec : precisions) {
const std::string fmt = "%E" + prec + "f"; const std::string fmt = "%E" + prec + "f";
SCOPED_TRACE(fmt); SCOPED_TRACE(fmt);
time_point<nanoseconds> tp = unix_epoch - seconds(1); time_point<chrono::nanoseconds> tp = unix_epoch - chrono::seconds(1);
EXPECT_TRUE(parse(fmt, "", tz, &tp)); EXPECT_TRUE(parse(fmt, "", tz, &tp));
EXPECT_EQ(unix_epoch, tp); EXPECT_EQ(unix_epoch, tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "6", tz, &tp)); EXPECT_TRUE(parse(fmt, "6", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(600), tp); EXPECT_EQ(unix_epoch + chrono::milliseconds(600), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "60", tz, &tp)); EXPECT_TRUE(parse(fmt, "60", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(600), tp); EXPECT_EQ(unix_epoch + chrono::milliseconds(600), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "600", tz, &tp)); EXPECT_TRUE(parse(fmt, "600", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(600), tp); EXPECT_EQ(unix_epoch + chrono::milliseconds(600), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "67", tz, &tp)); EXPECT_TRUE(parse(fmt, "67", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(670), tp); EXPECT_EQ(unix_epoch + chrono::milliseconds(670), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "670", tz, &tp)); EXPECT_TRUE(parse(fmt, "670", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(670), tp); EXPECT_EQ(unix_epoch + chrono::milliseconds(670), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "678", tz, &tp)); EXPECT_TRUE(parse(fmt, "678", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(678), tp); EXPECT_EQ(unix_epoch + chrono::milliseconds(678), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse(fmt, "6789", tz, &tp)); EXPECT_TRUE(parse(fmt, "6789", tz, &tp));
EXPECT_EQ(unix_epoch + milliseconds(678) + microseconds(900), tp); EXPECT_EQ(
unix_epoch + chrono::milliseconds(678) + chrono::microseconds(900), tp);
} }
// Here is a "%E*f" case we got wrong for a while. The fractional // Here is a "%E*f" case we got wrong for a while. The fractional
// part of the first instant is less than 2^31 and was correctly // part of the first instant is less than 2^31 and was correctly
// parsed, while the second (and any subsecond field >=2^31) failed. // parsed, while the second (and any subsecond field >=2^31) failed.
time_point<nanoseconds> tp = unix_epoch; time_point<chrono::nanoseconds> tp = unix_epoch;
EXPECT_TRUE(parse("%E*f", "2147483647", tz, &tp)); EXPECT_TRUE(parse("%E*f", "2147483647", tz, &tp));
EXPECT_EQ(unix_epoch + nanoseconds(214748364), tp); EXPECT_EQ(unix_epoch + chrono::nanoseconds(214748364), tp);
tp = unix_epoch; tp = unix_epoch;
EXPECT_TRUE(parse("%E*f", "2147483648", tz, &tp)); EXPECT_TRUE(parse("%E*f", "2147483648", tz, &tp));
EXPECT_EQ(unix_epoch + nanoseconds(214748364), tp); EXPECT_EQ(unix_epoch + chrono::nanoseconds(214748364), tp);
// We should also be able to specify long strings of digits far // We should also be able to specify long strings of digits far
// beyond the current resolution and have them convert the same way. // beyond the current resolution and have them convert the same way.
@ -1114,11 +1119,11 @@ TEST(Parse, ExtendedSubeconds) {
EXPECT_TRUE(parse( EXPECT_TRUE(parse(
"%E*f", "214748364801234567890123456789012345678901234567890123456789", "%E*f", "214748364801234567890123456789012345678901234567890123456789",
tz, &tp)); tz, &tp));
EXPECT_EQ(unix_epoch + nanoseconds(214748364), tp); EXPECT_EQ(unix_epoch + chrono::nanoseconds(214748364), tp);
} }
TEST(Parse, ExtendedSubecondsScan) { TEST(Parse, ExtendedSubecondsScan) {
time_point<nanoseconds> tp; time_point<chrono::nanoseconds> tp;
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
for (int ms = 0; ms < 1000; ms += 111) { for (int ms = 0; ms < 1000; ms += 111) {
for (int us = 0; us < 1000; us += 27) { for (int us = 0; us < 1000; us += 27) {
@ -1128,14 +1133,14 @@ TEST(Parse, ExtendedSubecondsScan) {
oss << std::setfill('0') << std::setw(3) << ms; oss << std::setfill('0') << std::setw(3) << ms;
oss << std::setw(3) << us << std::setw(3) << ns; oss << std::setw(3) << us << std::setw(3) << ns;
const std::string nanos = oss.str(); const std::string nanos = oss.str();
const auto expected = const auto expected = chrono::system_clock::from_time_t(0) +
system_clock::from_time_t(0) + nanoseconds(micros * 1000 + ns); chrono::nanoseconds(micros * 1000 + ns);
for (int ps = 0; ps < 1000; ps += 250) { for (int ps = 0; ps < 1000; ps += 250) {
std::ostringstream oss; std::ostringstream oss;
oss << std::setfill('0') << std::setw(3) << ps; oss << std::setfill('0') << std::setw(3) << ps;
const std::string input = nanos + oss.str() + "999"; const std::string input = nanos + oss.str() + "999";
EXPECT_TRUE(parse("%E*f", input, tz, &tp)); EXPECT_TRUE(parse("%E*f", input, tz, &tp));
EXPECT_EQ(expected + nanoseconds(ps) / 1000, tp) << input; EXPECT_EQ(expected + chrono::nanoseconds(ps) / 1000, tp) << input;
} }
} }
} }
@ -1144,7 +1149,7 @@ TEST(Parse, ExtendedSubecondsScan) {
TEST(Parse, ExtendedOffset) { TEST(Parse, ExtendedOffset) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<sys_seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// %z against +-HHMM. // %z against +-HHMM.
EXPECT_TRUE(parse("%z", "+0000", utc, &tp)); EXPECT_TRUE(parse("%z", "+0000", utc, &tp));
@ -1194,7 +1199,7 @@ TEST(Parse, ExtendedOffset) {
TEST(Parse, ExtendedSecondOffset) { TEST(Parse, ExtendedSecondOffset) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<sys_seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// %Ez against +-HH:MM:SS. // %Ez against +-HH:MM:SS.
EXPECT_TRUE(parse("%Ez", "+00:00:00", utc, &tp)); EXPECT_TRUE(parse("%Ez", "+00:00:00", utc, &tp));
@ -1263,7 +1268,7 @@ TEST(Parse, ExtendedSecondOffset) {
TEST(Parse, ExtendedYears) { TEST(Parse, ExtendedYears) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const char e4y_fmt[] = "%E4Y%m%d"; // no separators const char e4y_fmt[] = "%E4Y%m%d"; // no separators
time_point<sys_seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// %E4Y consumes exactly four chars, including any sign. // %E4Y consumes exactly four chars, including any sign.
EXPECT_TRUE(parse(e4y_fmt, "-9991127", utc, &tp)); EXPECT_TRUE(parse(e4y_fmt, "-9991127", utc, &tp));
@ -1294,45 +1299,45 @@ TEST(Parse, ExtendedYears) {
TEST(Parse, RFC3339Format) { TEST(Parse, RFC3339Format) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
time_point<nanoseconds> tp; time_point<chrono::nanoseconds> tp;
EXPECT_TRUE(parse(RFC3339_sec, "2014-02-12T20:21:00+00:00", tz, &tp)); EXPECT_TRUE(parse(RFC3339_sec, "2014-02-12T20:21:00+00:00", tz, &tp));
ExpectTime(tp, tz, 2014, 2, 12, 20, 21, 0, 0, false, "UTC"); ExpectTime(tp, tz, 2014, 2, 12, 20, 21, 0, 0, false, "UTC");
// Check that %Ez also accepts "Z" as a synonym for "+00:00". // Check that %Ez also accepts "Z" as a synonym for "+00:00".
time_point<nanoseconds> tp2; time_point<chrono::nanoseconds> tp2;
EXPECT_TRUE(parse(RFC3339_sec, "2014-02-12T20:21:00Z", tz, &tp2)); EXPECT_TRUE(parse(RFC3339_sec, "2014-02-12T20:21:00Z", tz, &tp2));
EXPECT_EQ(tp, tp2); EXPECT_EQ(tp, tp2);
} }
TEST(Parse, MaxRange) { TEST(Parse, MaxRange) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
time_point<sys_seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// tests the upper limit using +00:00 offset // tests the upper limit using +00:00 offset
EXPECT_TRUE( EXPECT_TRUE(
parse(RFC3339_sec, "292277026596-12-04T15:30:07+00:00", utc, &tp)); parse(RFC3339_sec, "292277026596-12-04T15:30:07+00:00", utc, &tp));
EXPECT_EQ(tp, time_point<sys_seconds>::max()); EXPECT_EQ(tp, time_point<absl::time_internal::cctz::seconds>::max());
EXPECT_FALSE( EXPECT_FALSE(
parse(RFC3339_sec, "292277026596-12-04T15:30:08+00:00", utc, &tp)); parse(RFC3339_sec, "292277026596-12-04T15:30:08+00:00", utc, &tp));
// tests the upper limit using -01:00 offset // tests the upper limit using -01:00 offset
EXPECT_TRUE( EXPECT_TRUE(
parse(RFC3339_sec, "292277026596-12-04T14:30:07-01:00", utc, &tp)); parse(RFC3339_sec, "292277026596-12-04T14:30:07-01:00", utc, &tp));
EXPECT_EQ(tp, time_point<sys_seconds>::max()); EXPECT_EQ(tp, time_point<absl::time_internal::cctz::seconds>::max());
EXPECT_FALSE( EXPECT_FALSE(
parse(RFC3339_sec, "292277026596-12-04T15:30:07-01:00", utc, &tp)); parse(RFC3339_sec, "292277026596-12-04T15:30:07-01:00", utc, &tp));
// tests the lower limit using +00:00 offset // tests the lower limit using +00:00 offset
EXPECT_TRUE( EXPECT_TRUE(
parse(RFC3339_sec, "-292277022657-01-27T08:29:52+00:00", utc, &tp)); parse(RFC3339_sec, "-292277022657-01-27T08:29:52+00:00", utc, &tp));
EXPECT_EQ(tp, time_point<sys_seconds>::min()); EXPECT_EQ(tp, time_point<absl::time_internal::cctz::seconds>::min());
EXPECT_FALSE( EXPECT_FALSE(
parse(RFC3339_sec, "-292277022657-01-27T08:29:51+00:00", utc, &tp)); parse(RFC3339_sec, "-292277022657-01-27T08:29:51+00:00", utc, &tp));
// tests the lower limit using +01:00 offset // tests the lower limit using +01:00 offset
EXPECT_TRUE( EXPECT_TRUE(
parse(RFC3339_sec, "-292277022657-01-27T09:29:52+01:00", utc, &tp)); parse(RFC3339_sec, "-292277022657-01-27T09:29:52+01:00", utc, &tp));
EXPECT_EQ(tp, time_point<sys_seconds>::min()); EXPECT_EQ(tp, time_point<absl::time_internal::cctz::seconds>::min());
EXPECT_FALSE( EXPECT_FALSE(
parse(RFC3339_sec, "-292277022657-01-27T08:29:51+01:00", utc, &tp)); parse(RFC3339_sec, "-292277022657-01-27T08:29:51+01:00", utc, &tp));
@ -1355,11 +1360,11 @@ TEST(FormatParse, RoundTrip) {
time_zone lax; time_zone lax;
EXPECT_TRUE(load_time_zone("America/Los_Angeles", &lax)); EXPECT_TRUE(load_time_zone("America/Los_Angeles", &lax));
const auto in = convert(civil_second(1977, 6, 28, 9, 8, 7), lax); const auto in = convert(civil_second(1977, 6, 28, 9, 8, 7), lax);
const auto subseconds = nanoseconds(654321); const auto subseconds = chrono::nanoseconds(654321);
// RFC3339, which renders subseconds. // RFC3339, which renders subseconds.
{ {
time_point<nanoseconds> out; time_point<chrono::nanoseconds> out;
const std::string s = format(RFC3339_full, in + subseconds, lax); const std::string s = format(RFC3339_full, in + subseconds, lax);
EXPECT_TRUE(parse(RFC3339_full, s, lax, &out)) << s; EXPECT_TRUE(parse(RFC3339_full, s, lax, &out)) << s;
EXPECT_EQ(in + subseconds, out); // RFC3339_full includes %Ez EXPECT_EQ(in + subseconds, out); // RFC3339_full includes %Ez
@ -1367,7 +1372,7 @@ TEST(FormatParse, RoundTrip) {
// RFC1123, which only does whole seconds. // RFC1123, which only does whole seconds.
{ {
time_point<nanoseconds> out; time_point<chrono::nanoseconds> out;
const std::string s = format(RFC1123_full, in, lax); const std::string s = format(RFC1123_full, in, lax);
EXPECT_TRUE(parse(RFC1123_full, s, lax, &out)) << s; EXPECT_TRUE(parse(RFC1123_full, s, lax, &out)) << s;
EXPECT_EQ(in, out); // RFC1123_full includes %z EXPECT_EQ(in, out); // RFC1123_full includes %z
@ -1380,7 +1385,7 @@ TEST(FormatParse, RoundTrip) {
// Even though we don't know what %c will produce, it should roundtrip, // Even though we don't know what %c will produce, it should roundtrip,
// but only in the 0-offset timezone. // but only in the 0-offset timezone.
{ {
time_point<nanoseconds> out; time_point<chrono::nanoseconds> out;
time_zone utc = utc_time_zone(); time_zone utc = utc_time_zone();
const std::string s = format("%c", in, utc); const std::string s = format("%c", in, utc);
EXPECT_TRUE(parse("%c", s, utc, &out)) << s; EXPECT_TRUE(parse("%c", s, utc, &out)) << s;
@ -1391,18 +1396,18 @@ TEST(FormatParse, RoundTrip) {
TEST(FormatParse, RoundTripDistantFuture) { TEST(FormatParse, RoundTripDistantFuture) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const time_point<sys_seconds> in = time_point<sys_seconds>::max(); const time_point<absl::time_internal::cctz::seconds> in = time_point<absl::time_internal::cctz::seconds>::max();
const std::string s = format(RFC3339_full, in, utc); const std::string s = format(RFC3339_full, in, utc);
time_point<sys_seconds> out; time_point<absl::time_internal::cctz::seconds> out;
EXPECT_TRUE(parse(RFC3339_full, s, utc, &out)) << s; EXPECT_TRUE(parse(RFC3339_full, s, utc, &out)) << s;
EXPECT_EQ(in, out); EXPECT_EQ(in, out);
} }
TEST(FormatParse, RoundTripDistantPast) { TEST(FormatParse, RoundTripDistantPast) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const time_point<sys_seconds> in = time_point<sys_seconds>::min(); const time_point<absl::time_internal::cctz::seconds> in = time_point<absl::time_internal::cctz::seconds>::min();
const std::string s = format(RFC3339_full, in, utc); const std::string s = format(RFC3339_full, in, utc);
time_point<sys_seconds> out; time_point<absl::time_internal::cctz::seconds> out;
EXPECT_TRUE(parse(RFC3339_full, s, utc, &out)) << s; EXPECT_TRUE(parse(RFC3339_full, s, utc, &out)) << s;
EXPECT_EQ(in, out); EXPECT_EQ(in, out);
} }

View file

@ -37,30 +37,28 @@ class TimeZoneIf {
virtual ~TimeZoneIf(); virtual ~TimeZoneIf();
virtual time_zone::absolute_lookup BreakTime( virtual time_zone::absolute_lookup BreakTime(
const time_point<sys_seconds>& tp) const = 0; const time_point<seconds>& tp) const = 0;
virtual time_zone::civil_lookup MakeTime( virtual time_zone::civil_lookup MakeTime(
const civil_second& cs) const = 0; const civil_second& cs) const = 0;
virtual std::string Description() const = 0; virtual std::string Description() const = 0;
virtual bool NextTransition(time_point<sys_seconds>* tp) const = 0; virtual bool NextTransition(time_point<seconds>* tp) const = 0;
virtual bool PrevTransition(time_point<sys_seconds>* tp) const = 0; virtual bool PrevTransition(time_point<seconds>* tp) const = 0;
protected: protected:
TimeZoneIf() {} TimeZoneIf() {}
}; };
// Convert between time_point<sys_seconds> and a count of seconds since // Convert between time_point<seconds> and a count of seconds since the
// the Unix epoch. We assume that the std::chrono::system_clock and the // Unix epoch. We assume that the std::chrono::system_clock and the
// Unix clock are second aligned, but not that they share an epoch. // Unix clock are second aligned, but not that they share an epoch.
inline std::int_fast64_t ToUnixSeconds(const time_point<sys_seconds>& tp) { inline std::int_fast64_t ToUnixSeconds(const time_point<seconds>& tp) {
return (tp - std::chrono::time_point_cast<sys_seconds>( return (tp - std::chrono::time_point_cast<seconds>(
std::chrono::system_clock::from_time_t(0))) std::chrono::system_clock::from_time_t(0))).count();
.count();
} }
inline time_point<sys_seconds> FromUnixSeconds(std::int_fast64_t t) { inline time_point<seconds> FromUnixSeconds(std::int_fast64_t t) {
return std::chrono::time_point_cast<sys_seconds>( return std::chrono::time_point_cast<seconds>(
std::chrono::system_clock::from_time_t(0)) + std::chrono::system_clock::from_time_t(0)) + seconds(t);
sys_seconds(t);
} }
} // namespace cctz } // namespace cctz

View file

@ -45,8 +45,8 @@ bool time_zone::Impl::LoadTimeZone(const std::string& name, time_zone* tz) {
const time_zone::Impl* const utc_impl = UTCImpl(); const time_zone::Impl* const utc_impl = UTCImpl();
// First check for UTC (which is never a key in time_zone_map). // First check for UTC (which is never a key in time_zone_map).
auto offset = sys_seconds::zero(); auto offset = seconds::zero();
if (FixedOffsetFromName(name, &offset) && offset == sys_seconds::zero()) { if (FixedOffsetFromName(name, &offset) && offset == seconds::zero()) {
*tz = time_zone(utc_impl); *tz = time_zone(utc_impl);
return true; return true;
} }

View file

@ -48,8 +48,7 @@ class time_zone::Impl {
const std::string& name() const { return name_; } const std::string& name() const { return name_; }
// Breaks a time_point down to civil-time components in this time zone. // Breaks a time_point down to civil-time components in this time zone.
time_zone::absolute_lookup BreakTime( time_zone::absolute_lookup BreakTime(const time_point<seconds>& tp) const {
const time_point<sys_seconds>& tp) const {
return zone_->BreakTime(tp); return zone_->BreakTime(tp);
} }
@ -75,10 +74,10 @@ class time_zone::Impl {
// to NextTransition()/PrevTransition() will eventually return false, // to NextTransition()/PrevTransition() will eventually return false,
// but it is unspecified exactly when NextTransition(&tp) jumps to false, // but it is unspecified exactly when NextTransition(&tp) jumps to false,
// or what time is set by PrevTransition(&tp) for a very distant tp. // or what time is set by PrevTransition(&tp) for a very distant tp.
bool NextTransition(time_point<sys_seconds>* tp) const { bool NextTransition(time_point<seconds>* tp) const {
return zone_->NextTransition(tp); return zone_->NextTransition(tp);
} }
bool PrevTransition(time_point<sys_seconds>* tp) const { bool PrevTransition(time_point<seconds>* tp) const {
return zone_->PrevTransition(tp); return zone_->PrevTransition(tp);
} }

View file

@ -140,7 +140,7 @@ std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
return (days * kSecsPerDay) + pt.time.offset; return (days * kSecsPerDay) + pt.time.offset;
} }
inline time_zone::civil_lookup MakeUnique(const time_point<sys_seconds>& tp) { inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
time_zone::civil_lookup cl; time_zone::civil_lookup cl;
cl.kind = time_zone::civil_lookup::UNIQUE; cl.kind = time_zone::civil_lookup::UNIQUE;
cl.pre = cl.trans = cl.post = tp; cl.pre = cl.trans = cl.post = tp;
@ -179,7 +179,7 @@ inline civil_second YearShift(const civil_second& cs, year_t shift) {
} // namespace } // namespace
// What (no leap-seconds) UTC+seconds zoneinfo would look like. // What (no leap-seconds) UTC+seconds zoneinfo would look like.
bool TimeZoneInfo::ResetToBuiltinUTC(const sys_seconds& offset) { bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
transition_types_.resize(1); transition_types_.resize(1);
TransitionType& tt(transition_types_.back()); TransitionType& tt(transition_types_.back());
tt.utc_offset = static_cast<std::int_least32_t>(offset.count()); tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
@ -218,8 +218,8 @@ bool TimeZoneInfo::ResetToBuiltinUTC(const sys_seconds& offset) {
future_spec_.clear(); // never needed for a fixed-offset zone future_spec_.clear(); // never needed for a fixed-offset zone
extended_ = false; extended_ = false;
tt.civil_max = LocalTime(sys_seconds::max().count(), tt).cs; tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
tt.civil_min = LocalTime(sys_seconds::min().count(), tt).cs; tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
transitions_.shrink_to_fit(); transitions_.shrink_to_fit();
return true; return true;
@ -565,10 +565,10 @@ bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) {
} }
// Compute the maximum/minimum civil times that can be converted to a // Compute the maximum/minimum civil times that can be converted to a
// time_point<sys_seconds> for each of the zone's transition types. // time_point<seconds> for each of the zone's transition types.
for (auto& tt : transition_types_) { for (auto& tt : transition_types_) {
tt.civil_max = LocalTime(sys_seconds::max().count(), tt).cs; tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
tt.civil_min = LocalTime(sys_seconds::min().count(), tt).cs; tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
} }
transitions_.shrink_to_fit(); transitions_.shrink_to_fit();
@ -713,7 +713,7 @@ bool TimeZoneInfo::Load(const std::string& name) {
// zone never fails because the simple, fixed-offset state can be // zone never fails because the simple, fixed-offset state can be
// internally generated. Note that this depends on our choice to not // internally generated. Note that this depends on our choice to not
// accept leap-second encoded ("right") zoneinfo. // accept leap-second encoded ("right") zoneinfo.
auto offset = sys_seconds::zero(); auto offset = seconds::zero();
if (FixedOffsetFromName(name, &offset)) { if (FixedOffsetFromName(name, &offset)) {
return ResetToBuiltinUTC(offset); return ResetToBuiltinUTC(offset);
} }
@ -755,14 +755,14 @@ time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
year_t c4_shift) const { year_t c4_shift) const {
assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_); assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
time_zone::civil_lookup cl = MakeTime(cs); time_zone::civil_lookup cl = MakeTime(cs);
if (c4_shift > sys_seconds::max().count() / kSecsPer400Years) { if (c4_shift > seconds::max().count() / kSecsPer400Years) {
cl.pre = cl.trans = cl.post = time_point<sys_seconds>::max(); cl.pre = cl.trans = cl.post = time_point<seconds>::max();
} else { } else {
const auto offset = sys_seconds(c4_shift * kSecsPer400Years); const auto offset = seconds(c4_shift * kSecsPer400Years);
const auto limit = time_point<sys_seconds>::max() - offset; const auto limit = time_point<seconds>::max() - offset;
for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) { for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
if (*tp > limit) { if (*tp > limit) {
*tp = time_point<sys_seconds>::max(); *tp = time_point<seconds>::max();
} else { } else {
*tp += offset; *tp += offset;
} }
@ -772,7 +772,7 @@ time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
} }
time_zone::absolute_lookup TimeZoneInfo::BreakTime( time_zone::absolute_lookup TimeZoneInfo::BreakTime(
const time_point<sys_seconds>& tp) const { const time_point<seconds>& tp) const {
std::int_fast64_t unix_time = ToUnixSeconds(tp); std::int_fast64_t unix_time = ToUnixSeconds(tp);
const std::size_t timecnt = transitions_.size(); const std::size_t timecnt = transitions_.size();
assert(timecnt != 0); // We always add a transition. assert(timecnt != 0); // We always add a transition.
@ -788,7 +788,7 @@ time_zone::absolute_lookup TimeZoneInfo::BreakTime(
const std::int_fast64_t diff = const std::int_fast64_t diff =
unix_time - transitions_[timecnt - 1].unix_time; unix_time - transitions_[timecnt - 1].unix_time;
const year_t shift = diff / kSecsPer400Years + 1; const year_t shift = diff / kSecsPer400Years + 1;
const auto d = sys_seconds(shift * kSecsPer400Years); const auto d = seconds(shift * kSecsPer400Years);
time_zone::absolute_lookup al = BreakTime(tp - d); time_zone::absolute_lookup al = BreakTime(tp - d);
al.cs = YearShift(al.cs, shift * 400); al.cs = YearShift(al.cs, shift * 400);
return al; return al;
@ -847,7 +847,7 @@ time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
if (tr->prev_civil_sec >= cs) { if (tr->prev_civil_sec >= cs) {
// Before first transition, so use the default offset. // Before first transition, so use the default offset.
const TransitionType& tt(transition_types_[default_transition_type_]); const TransitionType& tt(transition_types_[default_transition_type_]);
if (cs < tt.civil_min) return MakeUnique(time_point<sys_seconds>::min()); if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
return MakeUnique(cs - (civil_second() + tt.utc_offset)); return MakeUnique(cs - (civil_second() + tt.utc_offset));
} }
// tr->prev_civil_sec < cs < tr->civil_sec // tr->prev_civil_sec < cs < tr->civil_sec
@ -864,7 +864,7 @@ time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
return TimeLocal(YearShift(cs, shift * -400), shift); return TimeLocal(YearShift(cs, shift * -400), shift);
} }
const TransitionType& tt(transition_types_[tr->type_index]); const TransitionType& tt(transition_types_[tr->type_index]);
if (cs > tt.civil_max) return MakeUnique(time_point<sys_seconds>::max()); if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
} }
// tr->civil_sec <= cs <= tr->prev_civil_sec // tr->civil_sec <= cs <= tr->prev_civil_sec
@ -895,7 +895,7 @@ std::string TimeZoneInfo::Description() const {
return oss.str(); return oss.str();
} }
bool TimeZoneInfo::NextTransition(time_point<sys_seconds>* tp) const { bool TimeZoneInfo::NextTransition(time_point<seconds>* tp) const {
if (transitions_.empty()) return false; if (transitions_.empty()) return false;
const Transition* begin = &transitions_[0]; const Transition* begin = &transitions_[0];
const Transition* end = begin + transitions_.size(); const Transition* end = begin + transitions_.size();
@ -919,7 +919,7 @@ bool TimeZoneInfo::NextTransition(time_point<sys_seconds>* tp) const {
return true; return true;
} }
bool TimeZoneInfo::PrevTransition(time_point<sys_seconds>* tp) const { bool TimeZoneInfo::PrevTransition(time_point<seconds>* tp) const {
if (transitions_.empty()) return false; if (transitions_.empty()) return false;
const Transition* begin = &transitions_[0]; const Transition* begin = &transitions_[0];
const Transition* end = begin + transitions_.size(); const Transition* end = begin + transitions_.size();

View file

@ -71,12 +71,12 @@ class TimeZoneInfo : public TimeZoneIf {
// TimeZoneIf implementations. // TimeZoneIf implementations.
time_zone::absolute_lookup BreakTime( time_zone::absolute_lookup BreakTime(
const time_point<sys_seconds>& tp) const override; const time_point<seconds>& tp) const override;
time_zone::civil_lookup MakeTime( time_zone::civil_lookup MakeTime(
const civil_second& cs) const override; const civil_second& cs) const override;
std::string Description() const override; std::string Description() const override;
bool NextTransition(time_point<sys_seconds>* tp) const override; bool NextTransition(time_point<seconds>* tp) const override;
bool PrevTransition(time_point<sys_seconds>* tp) const override; bool PrevTransition(time_point<seconds>* tp) const override;
private: private:
struct Header { // counts of: struct Header { // counts of:
@ -98,7 +98,7 @@ class TimeZoneInfo : public TimeZoneIf {
std::uint_fast8_t tt2_index) const; std::uint_fast8_t tt2_index) const;
void ExtendTransitions(const std::string& name, const Header& hdr); void ExtendTransitions(const std::string& name, const Header& hdr);
bool ResetToBuiltinUTC(const sys_seconds& offset); bool ResetToBuiltinUTC(const seconds& offset);
bool Load(const std::string& name, ZoneInfoSource* zip); bool Load(const std::string& name, ZoneInfoSource* zip);
// Helpers for BreakTime() and MakeTime(). // Helpers for BreakTime() and MakeTime().

View file

@ -91,7 +91,7 @@ TimeZoneLibC::TimeZoneLibC(const std::string& name)
: local_(name == "localtime") {} : local_(name == "localtime") {}
time_zone::absolute_lookup TimeZoneLibC::BreakTime( time_zone::absolute_lookup TimeZoneLibC::BreakTime(
const time_point<sys_seconds>& tp) const { const time_point<seconds>& tp) const {
time_zone::absolute_lookup al; time_zone::absolute_lookup al;
std::time_t t = ToUnixSeconds(tp); std::time_t t = ToUnixSeconds(tp);
std::tm tm; std::tm tm;
@ -143,11 +143,11 @@ std::string TimeZoneLibC::Description() const {
return local_ ? "localtime" : "UTC"; return local_ ? "localtime" : "UTC";
} }
bool TimeZoneLibC::NextTransition(time_point<sys_seconds>* tp) const { bool TimeZoneLibC::NextTransition(time_point<seconds>* tp) const {
return false; return false;
} }
bool TimeZoneLibC::PrevTransition(time_point<sys_seconds>* tp) const { bool TimeZoneLibC::PrevTransition(time_point<seconds>* tp) const {
return false; return false;
} }

View file

@ -32,12 +32,12 @@ class TimeZoneLibC : public TimeZoneIf {
// TimeZoneIf implementations. // TimeZoneIf implementations.
time_zone::absolute_lookup BreakTime( time_zone::absolute_lookup BreakTime(
const time_point<sys_seconds>& tp) const override; const time_point<seconds>& tp) const override;
time_zone::civil_lookup MakeTime( time_zone::civil_lookup MakeTime(
const civil_second& cs) const override; const civil_second& cs) const override;
std::string Description() const override; std::string Description() const override;
bool NextTransition(time_point<sys_seconds>* tp) const override; bool NextTransition(time_point<seconds>* tp) const override;
bool PrevTransition(time_point<sys_seconds>* tp) const override; bool PrevTransition(time_point<seconds>* tp) const override;
private: private:
const bool local_; // localtime or UTC const bool local_; // localtime or UTC

View file

@ -65,7 +65,7 @@ std::string time_zone::name() const {
} }
time_zone::absolute_lookup time_zone::lookup( time_zone::absolute_lookup time_zone::lookup(
const time_point<sys_seconds>& tp) const { const time_point<seconds>& tp) const {
return time_zone::Impl::get(*this).BreakTime(tp); return time_zone::Impl::get(*this).BreakTime(tp);
} }
@ -85,7 +85,7 @@ time_zone utc_time_zone() {
return time_zone::Impl::UTC(); // avoid name lookup return time_zone::Impl::UTC(); // avoid name lookup
} }
time_zone fixed_time_zone(const sys_seconds& offset) { time_zone fixed_time_zone(const seconds& offset) {
time_zone tz; time_zone tz;
load_time_zone(FixedOffsetToName(offset), &tz); load_time_zone(FixedOffsetToName(offset), &tz);
return tz; return tz;

View file

@ -24,14 +24,7 @@
#include "absl/time/internal/cctz/include/cctz/civil_time.h" #include "absl/time/internal/cctz/include/cctz/civil_time.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
using std::chrono::time_point_cast; namespace chrono = std::chrono;
using std::chrono::system_clock;
using std::chrono::nanoseconds;
using std::chrono::microseconds;
using std::chrono::milliseconds;
using std::chrono::seconds;
using std::chrono::minutes;
using std::chrono::hours;
namespace absl { namespace absl {
namespace time_internal { namespace time_internal {
@ -715,13 +708,13 @@ TEST(TimeZone, NamedTimeZones) {
EXPECT_EQ("America/New_York", nyc.name()); EXPECT_EQ("America/New_York", nyc.name());
const time_zone syd = LoadZone("Australia/Sydney"); const time_zone syd = LoadZone("Australia/Sydney");
EXPECT_EQ("Australia/Sydney", syd.name()); EXPECT_EQ("Australia/Sydney", syd.name());
const time_zone fixed0 = fixed_time_zone(sys_seconds::zero()); const time_zone fixed0 = fixed_time_zone(absl::time_internal::cctz::seconds::zero());
EXPECT_EQ("UTC", fixed0.name()); EXPECT_EQ("UTC", fixed0.name());
const time_zone fixed_pos = const time_zone fixed_pos = fixed_time_zone(
fixed_time_zone(hours(3) + minutes(25) + seconds(45)); chrono::hours(3) + chrono::minutes(25) + chrono::seconds(45));
EXPECT_EQ("Fixed/UTC+03:25:45", fixed_pos.name()); EXPECT_EQ("Fixed/UTC+03:25:45", fixed_pos.name());
const time_zone fixed_neg = const time_zone fixed_neg = fixed_time_zone(
fixed_time_zone(-(hours(12) + minutes(34) + seconds(56))); -(chrono::hours(12) + chrono::minutes(34) + chrono::seconds(56)));
EXPECT_EQ("Fixed/UTC-12:34:56", fixed_neg.name()); EXPECT_EQ("Fixed/UTC-12:34:56", fixed_neg.name());
} }
@ -731,19 +724,19 @@ TEST(TimeZone, Failures) {
tz = LoadZone("America/Los_Angeles"); tz = LoadZone("America/Los_Angeles");
EXPECT_FALSE(load_time_zone("Invalid/TimeZone", &tz)); EXPECT_FALSE(load_time_zone("Invalid/TimeZone", &tz));
EXPECT_EQ(system_clock::from_time_t(0), EXPECT_EQ(chrono::system_clock::from_time_t(0),
convert(civil_second(1970, 1, 1, 0, 0, 0), tz)); // UTC convert(civil_second(1970, 1, 1, 0, 0, 0), tz)); // UTC
// Ensures that the load still fails on a subsequent attempt. // Ensures that the load still fails on a subsequent attempt.
tz = LoadZone("America/Los_Angeles"); tz = LoadZone("America/Los_Angeles");
EXPECT_FALSE(load_time_zone("Invalid/TimeZone", &tz)); EXPECT_FALSE(load_time_zone("Invalid/TimeZone", &tz));
EXPECT_EQ(system_clock::from_time_t(0), EXPECT_EQ(chrono::system_clock::from_time_t(0),
convert(civil_second(1970, 1, 1, 0, 0, 0), tz)); // UTC convert(civil_second(1970, 1, 1, 0, 0, 0), tz)); // UTC
// Loading an empty std::string timezone should fail. // Loading an empty std::string timezone should fail.
tz = LoadZone("America/Los_Angeles"); tz = LoadZone("America/Los_Angeles");
EXPECT_FALSE(load_time_zone("", &tz)); EXPECT_FALSE(load_time_zone("", &tz));
EXPECT_EQ(system_clock::from_time_t(0), EXPECT_EQ(chrono::system_clock::from_time_t(0),
convert(civil_second(1970, 1, 1, 0, 0, 0), tz)); // UTC convert(civil_second(1970, 1, 1, 0, 0, 0), tz)); // UTC
} }
@ -758,7 +751,7 @@ TEST(TimeZone, Equality) {
EXPECT_EQ(implicit_utc, explicit_utc); EXPECT_EQ(implicit_utc, explicit_utc);
EXPECT_EQ(implicit_utc.name(), explicit_utc.name()); EXPECT_EQ(implicit_utc.name(), explicit_utc.name());
const time_zone fixed_zero = fixed_time_zone(sys_seconds::zero()); const time_zone fixed_zero = fixed_time_zone(absl::time_internal::cctz::seconds::zero());
EXPECT_EQ(fixed_zero, LoadZone(fixed_zero.name())); EXPECT_EQ(fixed_zero, LoadZone(fixed_zero.name()));
EXPECT_EQ(fixed_zero, explicit_utc); EXPECT_EQ(fixed_zero, explicit_utc);
@ -766,23 +759,25 @@ TEST(TimeZone, Equality) {
EXPECT_EQ(fixed_utc, LoadZone(fixed_utc.name())); EXPECT_EQ(fixed_utc, LoadZone(fixed_utc.name()));
EXPECT_EQ(fixed_utc, explicit_utc); EXPECT_EQ(fixed_utc, explicit_utc);
const time_zone fixed_pos = const time_zone fixed_pos = fixed_time_zone(
fixed_time_zone(hours(3) + minutes(25) + seconds(45)); chrono::hours(3) + chrono::minutes(25) + chrono::seconds(45));
EXPECT_EQ(fixed_pos, LoadZone(fixed_pos.name())); EXPECT_EQ(fixed_pos, LoadZone(fixed_pos.name()));
EXPECT_NE(fixed_pos, explicit_utc); EXPECT_NE(fixed_pos, explicit_utc);
const time_zone fixed_neg = const time_zone fixed_neg = fixed_time_zone(
fixed_time_zone(-(hours(12) + minutes(34) + seconds(56))); -(chrono::hours(12) + chrono::minutes(34) + chrono::seconds(56)));
EXPECT_EQ(fixed_neg, LoadZone(fixed_neg.name())); EXPECT_EQ(fixed_neg, LoadZone(fixed_neg.name()));
EXPECT_NE(fixed_neg, explicit_utc); EXPECT_NE(fixed_neg, explicit_utc);
const time_zone fixed_lim = fixed_time_zone(hours(24)); const time_zone fixed_lim = fixed_time_zone(chrono::hours(24));
EXPECT_EQ(fixed_lim, LoadZone(fixed_lim.name())); EXPECT_EQ(fixed_lim, LoadZone(fixed_lim.name()));
EXPECT_NE(fixed_lim, explicit_utc); EXPECT_NE(fixed_lim, explicit_utc);
const time_zone fixed_ovfl = fixed_time_zone(hours(24) + seconds(1)); const time_zone fixed_ovfl =
fixed_time_zone(chrono::hours(24) + chrono::seconds(1));
EXPECT_EQ(fixed_ovfl, LoadZone(fixed_ovfl.name())); EXPECT_EQ(fixed_ovfl, LoadZone(fixed_ovfl.name()));
EXPECT_EQ(fixed_ovfl, explicit_utc); EXPECT_EQ(fixed_ovfl, explicit_utc);
EXPECT_EQ(fixed_time_zone(seconds(1)), fixed_time_zone(seconds(1))); EXPECT_EQ(fixed_time_zone(chrono::seconds(1)),
fixed_time_zone(chrono::seconds(1)));
const time_zone local = local_time_zone(); const time_zone local = local_time_zone();
EXPECT_EQ(local, LoadZone(local.name())); EXPECT_EQ(local, LoadZone(local.name()));
@ -795,40 +790,43 @@ TEST(TimeZone, Equality) {
TEST(StdChronoTimePoint, TimeTAlignment) { TEST(StdChronoTimePoint, TimeTAlignment) {
// Ensures that the Unix epoch and the system clock epoch are an integral // Ensures that the Unix epoch and the system clock epoch are an integral
// number of seconds apart. This simplifies conversions to/from time_t. // number of seconds apart. This simplifies conversions to/from time_t.
auto diff = system_clock::time_point() - system_clock::from_time_t(0); auto diff = chrono::system_clock::time_point() -
EXPECT_EQ(system_clock::time_point::duration::zero(), diff % seconds(1)); chrono::system_clock::from_time_t(0);
EXPECT_EQ(chrono::system_clock::time_point::duration::zero(),
diff % chrono::seconds(1));
} }
TEST(BreakTime, TimePointResolution) { TEST(BreakTime, TimePointResolution) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const auto t0 = system_clock::from_time_t(0); const auto t0 = chrono::system_clock::from_time_t(0);
ExpectTime(time_point_cast<nanoseconds>(t0), utc, ExpectTime(chrono::time_point_cast<chrono::nanoseconds>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
ExpectTime(time_point_cast<microseconds>(t0), utc, ExpectTime(chrono::time_point_cast<chrono::microseconds>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
ExpectTime(time_point_cast<milliseconds>(t0), utc, ExpectTime(chrono::time_point_cast<chrono::milliseconds>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
ExpectTime(time_point_cast<seconds>(t0), utc, ExpectTime(chrono::time_point_cast<chrono::seconds>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
ExpectTime(time_point_cast<sys_seconds>(t0), utc, ExpectTime(chrono::time_point_cast<absl::time_internal::cctz::seconds>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
ExpectTime(time_point_cast<minutes>(t0), utc, ExpectTime(chrono::time_point_cast<chrono::minutes>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
ExpectTime(time_point_cast<hours>(t0), utc, ExpectTime(chrono::time_point_cast<chrono::hours>(t0), utc,
1970, 1, 1, 0, 0, 0, 0, false, "UTC"); 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
} }
TEST(BreakTime, LocalTimeInUTC) { TEST(BreakTime, LocalTimeInUTC) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
const auto tp = system_clock::from_time_t(0); const auto tp = chrono::system_clock::from_time_t(0);
ExpectTime(tp, tz, 1970, 1, 1, 0, 0, 0, 0, false, "UTC"); ExpectTime(tp, tz, 1970, 1, 1, 0, 0, 0, 0, false, "UTC");
EXPECT_EQ(weekday::thursday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::thursday, get_weekday(civil_day(convert(tp, tz))));
} }
TEST(BreakTime, LocalTimeInUTCUnaligned) { TEST(BreakTime, LocalTimeInUTCUnaligned) {
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
const auto tp = system_clock::from_time_t(0) - milliseconds(500); const auto tp =
chrono::system_clock::from_time_t(0) - chrono::milliseconds(500);
ExpectTime(tp, tz, 1969, 12, 31, 23, 59, 59, 0, false, "UTC"); ExpectTime(tp, tz, 1969, 12, 31, 23, 59, 59, 0, false, "UTC");
EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz))));
} }
@ -836,15 +834,16 @@ TEST(BreakTime, LocalTimeInUTCUnaligned) {
TEST(BreakTime, LocalTimePosix) { TEST(BreakTime, LocalTimePosix) {
// See IEEE Std 1003.1-1988 B.2.3 General Terms, Epoch. // See IEEE Std 1003.1-1988 B.2.3 General Terms, Epoch.
const time_zone tz = utc_time_zone(); const time_zone tz = utc_time_zone();
const auto tp = system_clock::from_time_t(536457599); const auto tp = chrono::system_clock::from_time_t(536457599);
ExpectTime(tp, tz, 1986, 12, 31, 23, 59, 59, 0, false, "UTC"); ExpectTime(tp, tz, 1986, 12, 31, 23, 59, 59, 0, false, "UTC");
EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz))));
} }
TEST(TimeZoneImpl, LocalTimeInFixed) { TEST(TimeZoneImpl, LocalTimeInFixed) {
const sys_seconds offset = -(hours(8) + minutes(33) + seconds(47)); const absl::time_internal::cctz::seconds offset =
-(chrono::hours(8) + chrono::minutes(33) + chrono::seconds(47));
const time_zone tz = fixed_time_zone(offset); const time_zone tz = fixed_time_zone(offset);
const auto tp = system_clock::from_time_t(0); const auto tp = chrono::system_clock::from_time_t(0);
ExpectTime(tp, tz, 1969, 12, 31, 15, 26, 13, offset.count(), false, ExpectTime(tp, tz, 1969, 12, 31, 15, 26, 13, offset.count(), false,
"-083347"); "-083347");
EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz))));
@ -852,52 +851,52 @@ TEST(TimeZoneImpl, LocalTimeInFixed) {
TEST(BreakTime, LocalTimeInNewYork) { TEST(BreakTime, LocalTimeInNewYork) {
const time_zone tz = LoadZone("America/New_York"); const time_zone tz = LoadZone("America/New_York");
const auto tp = system_clock::from_time_t(45); const auto tp = chrono::system_clock::from_time_t(45);
ExpectTime(tp, tz, 1969, 12, 31, 19, 0, 45, -5 * 60 * 60, false, "EST"); ExpectTime(tp, tz, 1969, 12, 31, 19, 0, 45, -5 * 60 * 60, false, "EST");
EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz))));
} }
TEST(BreakTime, LocalTimeInMTV) { TEST(BreakTime, LocalTimeInMTV) {
const time_zone tz = LoadZone("America/Los_Angeles"); const time_zone tz = LoadZone("America/Los_Angeles");
const auto tp = system_clock::from_time_t(1380855729); const auto tp = chrono::system_clock::from_time_t(1380855729);
ExpectTime(tp, tz, 2013, 10, 3, 20, 2, 9, -7 * 60 * 60, true, "PDT"); ExpectTime(tp, tz, 2013, 10, 3, 20, 2, 9, -7 * 60 * 60, true, "PDT");
EXPECT_EQ(weekday::thursday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::thursday, get_weekday(civil_day(convert(tp, tz))));
} }
TEST(BreakTime, LocalTimeInSydney) { TEST(BreakTime, LocalTimeInSydney) {
const time_zone tz = LoadZone("Australia/Sydney"); const time_zone tz = LoadZone("Australia/Sydney");
const auto tp = system_clock::from_time_t(90); const auto tp = chrono::system_clock::from_time_t(90);
ExpectTime(tp, tz, 1970, 1, 1, 10, 1, 30, 10 * 60 * 60, false, "AEST"); ExpectTime(tp, tz, 1970, 1, 1, 10, 1, 30, 10 * 60 * 60, false, "AEST");
EXPECT_EQ(weekday::thursday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::thursday, get_weekday(civil_day(convert(tp, tz))));
} }
TEST(MakeTime, TimePointResolution) { TEST(MakeTime, TimePointResolution) {
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const time_point<nanoseconds> tp_ns = const time_point<chrono::nanoseconds> tp_ns =
convert(civil_second(2015, 1, 2, 3, 4, 5), utc); convert(civil_second(2015, 1, 2, 3, 4, 5), utc);
EXPECT_EQ("04:05", format("%M:%E*S", tp_ns, utc)); EXPECT_EQ("04:05", format("%M:%E*S", tp_ns, utc));
const time_point<microseconds> tp_us = const time_point<chrono::microseconds> tp_us =
convert(civil_second(2015, 1, 2, 3, 4, 5), utc); convert(civil_second(2015, 1, 2, 3, 4, 5), utc);
EXPECT_EQ("04:05", format("%M:%E*S", tp_us, utc)); EXPECT_EQ("04:05", format("%M:%E*S", tp_us, utc));
const time_point<milliseconds> tp_ms = const time_point<chrono::milliseconds> tp_ms =
convert(civil_second(2015, 1, 2, 3, 4, 5), utc); convert(civil_second(2015, 1, 2, 3, 4, 5), utc);
EXPECT_EQ("04:05", format("%M:%E*S", tp_ms, utc)); EXPECT_EQ("04:05", format("%M:%E*S", tp_ms, utc));
const time_point<seconds> tp_s = const time_point<chrono::seconds> tp_s =
convert(civil_second(2015, 1, 2, 3, 4, 5), utc); convert(civil_second(2015, 1, 2, 3, 4, 5), utc);
EXPECT_EQ("04:05", format("%M:%E*S", tp_s, utc)); EXPECT_EQ("04:05", format("%M:%E*S", tp_s, utc));
const time_point<sys_seconds> tp_s64 = const time_point<absl::time_internal::cctz::seconds> tp_s64 =
convert(civil_second(2015, 1, 2, 3, 4, 5), utc); convert(civil_second(2015, 1, 2, 3, 4, 5), utc);
EXPECT_EQ("04:05", format("%M:%E*S", tp_s64, utc)); EXPECT_EQ("04:05", format("%M:%E*S", tp_s64, utc));
// These next two require time_point_cast because the conversion from a // These next two require chrono::time_point_cast because the conversion
// resolution of seconds (the return value of convert()) to a coarser // from a resolution of seconds (the return value of convert()) to a
// resolution requires an explicit cast. // coarser resolution requires an explicit cast.
const time_point<minutes> tp_m = const time_point<chrono::minutes> tp_m =
time_point_cast<minutes>( chrono::time_point_cast<chrono::minutes>(
convert(civil_second(2015, 1, 2, 3, 4, 5), utc)); convert(civil_second(2015, 1, 2, 3, 4, 5), utc));
EXPECT_EQ("04:00", format("%M:%E*S", tp_m, utc)); EXPECT_EQ("04:00", format("%M:%E*S", tp_m, utc));
const time_point<hours> tp_h = const time_point<chrono::hours> tp_h =
time_point_cast<hours>( chrono::time_point_cast<chrono::hours>(
convert(civil_second(2015, 1, 2, 3, 4, 5), utc)); convert(civil_second(2015, 1, 2, 3, 4, 5), utc));
EXPECT_EQ("00:00", format("%M:%E*S", tp_h, utc)); EXPECT_EQ("00:00", format("%M:%E*S", tp_h, utc));
} }
@ -905,7 +904,7 @@ TEST(MakeTime, TimePointResolution) {
TEST(MakeTime, Normalization) { TEST(MakeTime, Normalization) {
const time_zone tz = LoadZone("America/New_York"); const time_zone tz = LoadZone("America/New_York");
const auto tp = convert(civil_second(2009, 2, 13, 18, 31, 30), tz); const auto tp = convert(civil_second(2009, 2, 13, 18, 31, 30), tz);
EXPECT_EQ(system_clock::from_time_t(1234567890), tp); EXPECT_EQ(chrono::system_clock::from_time_t(1234567890), tp);
// Now requests for the same time_point but with out-of-range fields. // Now requests for the same time_point but with out-of-range fields.
EXPECT_EQ(tp, convert(civil_second(2008, 14, 13, 18, 31, 30), tz)); // month EXPECT_EQ(tp, convert(civil_second(2008, 14, 13, 18, 31, 30), tz)); // month
@ -919,67 +918,67 @@ TEST(MakeTime, Normalization) {
TEST(MakeTime, SysSecondsLimits) { TEST(MakeTime, SysSecondsLimits) {
const char RFC3339[] = "%Y-%m-%dT%H:%M:%S%Ez"; const char RFC3339[] = "%Y-%m-%dT%H:%M:%S%Ez";
const time_zone utc = utc_time_zone(); const time_zone utc = utc_time_zone();
const time_zone east = fixed_time_zone(hours(14)); const time_zone east = fixed_time_zone(chrono::hours(14));
const time_zone west = fixed_time_zone(-hours(14)); const time_zone west = fixed_time_zone(-chrono::hours(14));
time_point<sys_seconds> tp; time_point<absl::time_internal::cctz::seconds> tp;
// Approach the maximal time_point<sys_seconds> value from below. // Approach the maximal time_point<cctz::seconds> value from below.
tp = convert(civil_second(292277026596, 12, 4, 15, 30, 6), utc); tp = convert(civil_second(292277026596, 12, 4, 15, 30, 6), utc);
EXPECT_EQ("292277026596-12-04T15:30:06+00:00", format(RFC3339, tp, utc)); EXPECT_EQ("292277026596-12-04T15:30:06+00:00", format(RFC3339, tp, utc));
tp = convert(civil_second(292277026596, 12, 4, 15, 30, 7), utc); tp = convert(civil_second(292277026596, 12, 4, 15, 30, 7), utc);
EXPECT_EQ("292277026596-12-04T15:30:07+00:00", format(RFC3339, tp, utc)); EXPECT_EQ("292277026596-12-04T15:30:07+00:00", format(RFC3339, tp, utc));
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
tp = convert(civil_second(292277026596, 12, 4, 15, 30, 8), utc); tp = convert(civil_second(292277026596, 12, 4, 15, 30, 8), utc);
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
tp = convert(civil_second::max(), utc); tp = convert(civil_second::max(), utc);
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
// Checks that we can also get the maximal value for a far-east zone. // Checks that we can also get the maximal value for a far-east zone.
tp = convert(civil_second(292277026596, 12, 5, 5, 30, 7), east); tp = convert(civil_second(292277026596, 12, 5, 5, 30, 7), east);
EXPECT_EQ("292277026596-12-05T05:30:07+14:00", format(RFC3339, tp, east)); EXPECT_EQ("292277026596-12-05T05:30:07+14:00", format(RFC3339, tp, east));
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
tp = convert(civil_second(292277026596, 12, 5, 5, 30, 8), east); tp = convert(civil_second(292277026596, 12, 5, 5, 30, 8), east);
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
tp = convert(civil_second::max(), east); tp = convert(civil_second::max(), east);
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
// Checks that we can also get the maximal value for a far-west zone. // Checks that we can also get the maximal value for a far-west zone.
tp = convert(civil_second(292277026596, 12, 4, 1, 30, 7), west); tp = convert(civil_second(292277026596, 12, 4, 1, 30, 7), west);
EXPECT_EQ("292277026596-12-04T01:30:07-14:00", format(RFC3339, tp, west)); EXPECT_EQ("292277026596-12-04T01:30:07-14:00", format(RFC3339, tp, west));
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
tp = convert(civil_second(292277026596, 12, 4, 7, 30, 8), west); tp = convert(civil_second(292277026596, 12, 4, 7, 30, 8), west);
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
tp = convert(civil_second::max(), west); tp = convert(civil_second::max(), west);
EXPECT_EQ(time_point<sys_seconds>::max(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::max(), tp);
// Approach the minimal time_point<sys_seconds> value from above. // Approach the minimal time_point<cctz::seconds> value from above.
tp = convert(civil_second(-292277022657, 1, 27, 8, 29, 53), utc); tp = convert(civil_second(-292277022657, 1, 27, 8, 29, 53), utc);
EXPECT_EQ("-292277022657-01-27T08:29:53+00:00", format(RFC3339, tp, utc)); EXPECT_EQ("-292277022657-01-27T08:29:53+00:00", format(RFC3339, tp, utc));
tp = convert(civil_second(-292277022657, 1, 27, 8, 29, 52), utc); tp = convert(civil_second(-292277022657, 1, 27, 8, 29, 52), utc);
EXPECT_EQ("-292277022657-01-27T08:29:52+00:00", format(RFC3339, tp, utc)); EXPECT_EQ("-292277022657-01-27T08:29:52+00:00", format(RFC3339, tp, utc));
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
tp = convert(civil_second(-292277022657, 1, 27, 8, 29, 51), utc); tp = convert(civil_second(-292277022657, 1, 27, 8, 29, 51), utc);
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
tp = convert(civil_second::min(), utc); tp = convert(civil_second::min(), utc);
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
// Checks that we can also get the minimal value for a far-east zone. // Checks that we can also get the minimal value for a far-east zone.
tp = convert(civil_second(-292277022657, 1, 27, 22, 29, 52), east); tp = convert(civil_second(-292277022657, 1, 27, 22, 29, 52), east);
EXPECT_EQ("-292277022657-01-27T22:29:52+14:00", format(RFC3339, tp, east)); EXPECT_EQ("-292277022657-01-27T22:29:52+14:00", format(RFC3339, tp, east));
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
tp = convert(civil_second(-292277022657, 1, 27, 22, 29, 51), east); tp = convert(civil_second(-292277022657, 1, 27, 22, 29, 51), east);
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
tp = convert(civil_second::min(), east); tp = convert(civil_second::min(), east);
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
// Checks that we can also get the minimal value for a far-west zone. // Checks that we can also get the minimal value for a far-west zone.
tp = convert(civil_second(-292277022657, 1, 26, 18, 29, 52), west); tp = convert(civil_second(-292277022657, 1, 26, 18, 29, 52), west);
EXPECT_EQ("-292277022657-01-26T18:29:52-14:00", format(RFC3339, tp, west)); EXPECT_EQ("-292277022657-01-26T18:29:52-14:00", format(RFC3339, tp, west));
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
tp = convert(civil_second(-292277022657, 1, 26, 18, 29, 51), west); tp = convert(civil_second(-292277022657, 1, 26, 18, 29, 51), west);
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
tp = convert(civil_second::min(), west); tp = convert(civil_second::min(), west);
EXPECT_EQ(time_point<sys_seconds>::min(), tp); EXPECT_EQ(time_point<absl::time_internal::cctz::seconds>::min(), tp);
} }
TEST(TimeZoneEdgeCase, AmericaNewYork) { TEST(TimeZoneEdgeCase, AmericaNewYork) {
@ -988,13 +987,13 @@ TEST(TimeZoneEdgeCase, AmericaNewYork) {
// Spring 1:59:59 -> 3:00:00 // Spring 1:59:59 -> 3:00:00
auto tp = convert(civil_second(2013, 3, 10, 1, 59, 59), tz); auto tp = convert(civil_second(2013, 3, 10, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 3, 10, 1, 59, 59, -5 * 3600, false, "EST"); ExpectTime(tp, tz, 2013, 3, 10, 1, 59, 59, -5 * 3600, false, "EST");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 3, 10, 3, 0, 0, -4 * 3600, true, "EDT"); ExpectTime(tp, tz, 2013, 3, 10, 3, 0, 0, -4 * 3600, true, "EDT");
// Fall 1:59:59 -> 1:00:00 // Fall 1:59:59 -> 1:00:00
tp = convert(civil_second(2013, 11, 3, 1, 59, 59), tz); tp = convert(civil_second(2013, 11, 3, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 11, 3, 1, 59, 59, -4 * 3600, true, "EDT"); ExpectTime(tp, tz, 2013, 11, 3, 1, 59, 59, -4 * 3600, true, "EDT");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 11, 3, 1, 0, 0, -5 * 3600, false, "EST"); ExpectTime(tp, tz, 2013, 11, 3, 1, 0, 0, -5 * 3600, false, "EST");
} }
@ -1004,13 +1003,13 @@ TEST(TimeZoneEdgeCase, AmericaLosAngeles) {
// Spring 1:59:59 -> 3:00:00 // Spring 1:59:59 -> 3:00:00
auto tp = convert(civil_second(2013, 3, 10, 1, 59, 59), tz); auto tp = convert(civil_second(2013, 3, 10, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 3, 10, 1, 59, 59, -8 * 3600, false, "PST"); ExpectTime(tp, tz, 2013, 3, 10, 1, 59, 59, -8 * 3600, false, "PST");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 3, 10, 3, 0, 0, -7 * 3600, true, "PDT"); ExpectTime(tp, tz, 2013, 3, 10, 3, 0, 0, -7 * 3600, true, "PDT");
// Fall 1:59:59 -> 1:00:00 // Fall 1:59:59 -> 1:00:00
tp = convert(civil_second(2013, 11, 3, 1, 59, 59), tz); tp = convert(civil_second(2013, 11, 3, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 11, 3, 1, 59, 59, -7 * 3600, true, "PDT"); ExpectTime(tp, tz, 2013, 11, 3, 1, 59, 59, -7 * 3600, true, "PDT");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 11, 3, 1, 0, 0, -8 * 3600, false, "PST"); ExpectTime(tp, tz, 2013, 11, 3, 1, 0, 0, -8 * 3600, false, "PST");
} }
@ -1020,13 +1019,13 @@ TEST(TimeZoneEdgeCase, ArizonaNoTransition) {
// No transition in Spring. // No transition in Spring.
auto tp = convert(civil_second(2013, 3, 10, 1, 59, 59), tz); auto tp = convert(civil_second(2013, 3, 10, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 3, 10, 1, 59, 59, -7 * 3600, false, "MST"); ExpectTime(tp, tz, 2013, 3, 10, 1, 59, 59, -7 * 3600, false, "MST");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 3, 10, 2, 0, 0, -7 * 3600, false, "MST"); ExpectTime(tp, tz, 2013, 3, 10, 2, 0, 0, -7 * 3600, false, "MST");
// No transition in Fall. // No transition in Fall.
tp = convert(civil_second(2013, 11, 3, 1, 59, 59), tz); tp = convert(civil_second(2013, 11, 3, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 11, 3, 1, 59, 59, -7 * 3600, false, "MST"); ExpectTime(tp, tz, 2013, 11, 3, 1, 59, 59, -7 * 3600, false, "MST");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 11, 3, 2, 0, 0, -7 * 3600, false, "MST"); ExpectTime(tp, tz, 2013, 11, 3, 2, 0, 0, -7 * 3600, false, "MST");
} }
@ -1039,7 +1038,7 @@ TEST(TimeZoneEdgeCase, AsiaKathmandu) {
// 504901800 == Wed, 1 Jan 1986 00:15:00 +0545 (+0545) // 504901800 == Wed, 1 Jan 1986 00:15:00 +0545 (+0545)
auto tp = convert(civil_second(1985, 12, 31, 23, 59, 59), tz); auto tp = convert(civil_second(1985, 12, 31, 23, 59, 59), tz);
ExpectTime(tp, tz, 1985, 12, 31, 23, 59, 59, 5.5 * 3600, false, "+0530"); ExpectTime(tp, tz, 1985, 12, 31, 23, 59, 59, 5.5 * 3600, false, "+0530");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 1986, 1, 1, 0, 15, 0, 5.75 * 3600, false, "+0545"); ExpectTime(tp, tz, 1986, 1, 1, 0, 15, 0, 5.75 * 3600, false, "+0545");
} }
@ -1052,14 +1051,14 @@ TEST(TimeZoneEdgeCase, PacificChatham) {
// 1365256800 == Sun, 7 Apr 2013 02:45:00 +1245 (+1245) // 1365256800 == Sun, 7 Apr 2013 02:45:00 +1245 (+1245)
auto tp = convert(civil_second(2013, 4, 7, 3, 44, 59), tz); auto tp = convert(civil_second(2013, 4, 7, 3, 44, 59), tz);
ExpectTime(tp, tz, 2013, 4, 7, 3, 44, 59, 13.75 * 3600, true, "+1345"); ExpectTime(tp, tz, 2013, 4, 7, 3, 44, 59, 13.75 * 3600, true, "+1345");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 4, 7, 2, 45, 0, 12.75 * 3600, false, "+1245"); ExpectTime(tp, tz, 2013, 4, 7, 2, 45, 0, 12.75 * 3600, false, "+1245");
// 1380376799 == Sun, 29 Sep 2013 02:44:59 +1245 (+1245) // 1380376799 == Sun, 29 Sep 2013 02:44:59 +1245 (+1245)
// 1380376800 == Sun, 29 Sep 2013 03:45:00 +1345 (+1345) // 1380376800 == Sun, 29 Sep 2013 03:45:00 +1345 (+1345)
tp = convert(civil_second(2013, 9, 29, 2, 44, 59), tz); tp = convert(civil_second(2013, 9, 29, 2, 44, 59), tz);
ExpectTime(tp, tz, 2013, 9, 29, 2, 44, 59, 12.75 * 3600, false, "+1245"); ExpectTime(tp, tz, 2013, 9, 29, 2, 44, 59, 12.75 * 3600, false, "+1245");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 9, 29, 3, 45, 0, 13.75 * 3600, true, "+1345"); ExpectTime(tp, tz, 2013, 9, 29, 3, 45, 0, 13.75 * 3600, true, "+1345");
} }
@ -1072,14 +1071,14 @@ TEST(TimeZoneEdgeCase, AustraliaLordHowe) {
// 1365260400 == Sun, 7 Apr 2013 01:30:00 +1030 (+1030) // 1365260400 == Sun, 7 Apr 2013 01:30:00 +1030 (+1030)
auto tp = convert(civil_second(2013, 4, 7, 1, 59, 59), tz); auto tp = convert(civil_second(2013, 4, 7, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 4, 7, 1, 59, 59, 11 * 3600, true, "+11"); ExpectTime(tp, tz, 2013, 4, 7, 1, 59, 59, 11 * 3600, true, "+11");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 4, 7, 1, 30, 0, 10.5 * 3600, false, "+1030"); ExpectTime(tp, tz, 2013, 4, 7, 1, 30, 0, 10.5 * 3600, false, "+1030");
// 1380986999 == Sun, 6 Oct 2013 01:59:59 +1030 (+1030) // 1380986999 == Sun, 6 Oct 2013 01:59:59 +1030 (+1030)
// 1380987000 == Sun, 6 Oct 2013 02:30:00 +1100 (+11) // 1380987000 == Sun, 6 Oct 2013 02:30:00 +1100 (+11)
tp = convert(civil_second(2013, 10, 6, 1, 59, 59), tz); tp = convert(civil_second(2013, 10, 6, 1, 59, 59), tz);
ExpectTime(tp, tz, 2013, 10, 6, 1, 59, 59, 10.5 * 3600, false, "+1030"); ExpectTime(tp, tz, 2013, 10, 6, 1, 59, 59, 10.5 * 3600, false, "+1030");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2013, 10, 6, 2, 30, 0, 11 * 3600, true, "+11"); ExpectTime(tp, tz, 2013, 10, 6, 2, 30, 0, 11 * 3600, true, "+11");
} }
@ -1097,7 +1096,7 @@ TEST(TimeZoneEdgeCase, PacificApia) {
auto tp = convert(civil_second(2011, 12, 29, 23, 59, 59), tz); auto tp = convert(civil_second(2011, 12, 29, 23, 59, 59), tz);
ExpectTime(tp, tz, 2011, 12, 29, 23, 59, 59, -10 * 3600, true, "-10"); ExpectTime(tp, tz, 2011, 12, 29, 23, 59, 59, -10 * 3600, true, "-10");
EXPECT_EQ(363, get_yearday(civil_day(convert(tp, tz)))); EXPECT_EQ(363, get_yearday(civil_day(convert(tp, tz))));
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2011, 12, 31, 0, 0, 0, 14 * 3600, true, "+14"); ExpectTime(tp, tz, 2011, 12, 31, 0, 0, 0, 14 * 3600, true, "+14");
EXPECT_EQ(365, get_yearday(civil_day(convert(tp, tz)))); EXPECT_EQ(365, get_yearday(civil_day(convert(tp, tz))));
} }
@ -1114,7 +1113,7 @@ TEST(TimeZoneEdgeCase, AfricaCairo) {
// 1400191200 == Fri, 16 May 2014 01:00:00 +0300 (EEST) // 1400191200 == Fri, 16 May 2014 01:00:00 +0300 (EEST)
auto tp = convert(civil_second(2014, 5, 15, 23, 59, 59), tz); auto tp = convert(civil_second(2014, 5, 15, 23, 59, 59), tz);
ExpectTime(tp, tz, 2014, 5, 15, 23, 59, 59, 2 * 3600, false, "EET"); ExpectTime(tp, tz, 2014, 5, 15, 23, 59, 59, 2 * 3600, false, "EET");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2014, 5, 16, 1, 0, 0, 3 * 3600, true, "EEST"); ExpectTime(tp, tz, 2014, 5, 16, 1, 0, 0, 3 * 3600, true, "EEST");
#endif #endif
} }
@ -1131,7 +1130,7 @@ TEST(TimeZoneEdgeCase, AfricaMonrovia) {
// 63593070 == Fri, 7 Jan 1972 00:44:30 +0000 (GMT) // 63593070 == Fri, 7 Jan 1972 00:44:30 +0000 (GMT)
auto tp = convert(civil_second(1972, 1, 6, 23, 59, 59), tz); auto tp = convert(civil_second(1972, 1, 6, 23, 59, 59), tz);
ExpectTime(tp, tz, 1972, 1, 6, 23, 59, 59, -44.5 * 60, false, "MMT"); ExpectTime(tp, tz, 1972, 1, 6, 23, 59, 59, -44.5 * 60, false, "MMT");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 1972, 1, 7, 0, 44, 30, 0 * 60, false, "GMT"); ExpectTime(tp, tz, 1972, 1, 7, 0, 44, 30, 0 * 60, false, "GMT");
#endif #endif
} }
@ -1159,7 +1158,7 @@ TEST(TimeZoneEdgeCase, AmericaJamaica) {
tp = convert(civil_second(1889, 12, 31, 23, 59, 59), tz); tp = convert(civil_second(1889, 12, 31, 23, 59, 59), tz);
ExpectTime(tp, tz, 1889, 12, 31, 23, 59, 59, -18430, false, ExpectTime(tp, tz, 1889, 12, 31, 23, 59, 59, -18430, false,
tz.lookup(tp).abbr); tz.lookup(tp).abbr);
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 1890, 1, 1, 0, 0, 0, -18430, false, "KMT"); ExpectTime(tp, tz, 1890, 1, 1, 0, 0, 0, -18430, false, "KMT");
#endif #endif
@ -1168,7 +1167,7 @@ TEST(TimeZoneEdgeCase, AmericaJamaica) {
// 436341600 == Sun, 30 Oct 1983 01:00:00 -0500 (EST) // 436341600 == Sun, 30 Oct 1983 01:00:00 -0500 (EST)
tp = convert(civil_second(1983, 10, 30, 1, 59, 59), tz); tp = convert(civil_second(1983, 10, 30, 1, 59, 59), tz);
ExpectTime(tp, tz, 1983, 10, 30, 1, 59, 59, -4 * 3600, true, "EDT"); ExpectTime(tp, tz, 1983, 10, 30, 1, 59, 59, -4 * 3600, true, "EDT");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 1983, 10, 30, 1, 0, 0, -5 * 3600, false, "EST"); ExpectTime(tp, tz, 1983, 10, 30, 1, 0, 0, -5 * 3600, false, "EST");
// After the last transition. // After the last transition.
@ -1189,7 +1188,7 @@ TEST(TimeZoneEdgeCase, WET) {
// 228877200 == Sun, 3 Apr 1977 02:00:00 +0100 (WEST) // 228877200 == Sun, 3 Apr 1977 02:00:00 +0100 (WEST)
tp = convert(civil_second(1977, 4, 3, 0, 59, 59), tz); tp = convert(civil_second(1977, 4, 3, 0, 59, 59), tz);
ExpectTime(tp, tz, 1977, 4, 3, 0, 59, 59, 0, false, "WET"); ExpectTime(tp, tz, 1977, 4, 3, 0, 59, 59, 0, false, "WET");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 1977, 4, 3, 2, 0, 0, 1 * 3600, true, "WEST"); ExpectTime(tp, tz, 1977, 4, 3, 2, 0, 0, 1 * 3600, true, "WEST");
// A non-existent time within the first transition. // A non-existent time within the first transition.
@ -1211,12 +1210,12 @@ TEST(TimeZoneEdgeCase, FixedOffsets) {
const time_zone gmtm5 = LoadZone("Etc/GMT+5"); // -0500 const time_zone gmtm5 = LoadZone("Etc/GMT+5"); // -0500
auto tp = convert(civil_second(1970, 1, 1, 0, 0, 0), gmtm5); auto tp = convert(civil_second(1970, 1, 1, 0, 0, 0), gmtm5);
ExpectTime(tp, gmtm5, 1970, 1, 1, 0, 0, 0, -5 * 3600, false, "-05"); ExpectTime(tp, gmtm5, 1970, 1, 1, 0, 0, 0, -5 * 3600, false, "-05");
EXPECT_EQ(system_clock::from_time_t(5 * 3600), tp); EXPECT_EQ(chrono::system_clock::from_time_t(5 * 3600), tp);
const time_zone gmtp5 = LoadZone("Etc/GMT-5"); // +0500 const time_zone gmtp5 = LoadZone("Etc/GMT-5"); // +0500
tp = convert(civil_second(1970, 1, 1, 0, 0, 0), gmtp5); tp = convert(civil_second(1970, 1, 1, 0, 0, 0), gmtp5);
ExpectTime(tp, gmtp5, 1970, 1, 1, 0, 0, 0, 5 * 3600, false, "+05"); ExpectTime(tp, gmtp5, 1970, 1, 1, 0, 0, 0, 5 * 3600, false, "+05");
EXPECT_EQ(system_clock::from_time_t(-5 * 3600), tp); EXPECT_EQ(chrono::system_clock::from_time_t(-5 * 3600), tp);
} }
TEST(TimeZoneEdgeCase, NegativeYear) { TEST(TimeZoneEdgeCase, NegativeYear) {
@ -1225,7 +1224,7 @@ TEST(TimeZoneEdgeCase, NegativeYear) {
auto tp = convert(civil_second(0, 1, 1, 0, 0, 0), tz); auto tp = convert(civil_second(0, 1, 1, 0, 0, 0), tz);
ExpectTime(tp, tz, 0, 1, 1, 0, 0, 0, 0 * 3600, false, "UTC"); ExpectTime(tp, tz, 0, 1, 1, 0, 0, 0, 0 * 3600, false, "UTC");
EXPECT_EQ(weekday::saturday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::saturday, get_weekday(civil_day(convert(tp, tz))));
tp -= seconds(1); tp -= absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, -1, 12, 31, 23, 59, 59, 0 * 3600, false, "UTC"); ExpectTime(tp, tz, -1, 12, 31, 23, 59, 59, 0 * 3600, false, "UTC");
EXPECT_EQ(weekday::friday, get_weekday(civil_day(convert(tp, tz)))); EXPECT_EQ(weekday::friday, get_weekday(civil_day(convert(tp, tz))));
} }
@ -1239,7 +1238,7 @@ TEST(TimeZoneEdgeCase, UTC32bitLimit) {
// 2147483648 == Tue, 19 Jan 2038 03:14:08 +0000 (UTC) // 2147483648 == Tue, 19 Jan 2038 03:14:08 +0000 (UTC)
auto tp = convert(civil_second(2038, 1, 19, 3, 14, 7), tz); auto tp = convert(civil_second(2038, 1, 19, 3, 14, 7), tz);
ExpectTime(tp, tz, 2038, 1, 19, 3, 14, 7, 0 * 3600, false, "UTC"); ExpectTime(tp, tz, 2038, 1, 19, 3, 14, 7, 0 * 3600, false, "UTC");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 2038, 1, 19, 3, 14, 8, 0 * 3600, false, "UTC"); ExpectTime(tp, tz, 2038, 1, 19, 3, 14, 8, 0 * 3600, false, "UTC");
} }
@ -1252,7 +1251,7 @@ TEST(TimeZoneEdgeCase, UTC5DigitYear) {
// 253402300800 == Sat, 1 Jan 1000 00:00:00 +0000 (UTC) // 253402300800 == Sat, 1 Jan 1000 00:00:00 +0000 (UTC)
auto tp = convert(civil_second(9999, 12, 31, 23, 59, 59), tz); auto tp = convert(civil_second(9999, 12, 31, 23, 59, 59), tz);
ExpectTime(tp, tz, 9999, 12, 31, 23, 59, 59, 0 * 3600, false, "UTC"); ExpectTime(tp, tz, 9999, 12, 31, 23, 59, 59, 0 * 3600, false, "UTC");
tp += seconds(1); tp += absl::time_internal::cctz::seconds(1);
ExpectTime(tp, tz, 10000, 1, 1, 0, 0, 0, 0 * 3600, false, "UTC"); ExpectTime(tp, tz, 10000, 1, 1, 0, 0, 0, 0 * 3600, false, "UTC");
} }

View file

@ -60,9 +60,17 @@ ZoneInfoSourceFactory default_factory = DefaultFactory;
#else #else
#error Unsupported MSVC platform #error Unsupported MSVC platform
#endif #endif
#else #else // _MSC_VER
#if !defined(__has_attribute)
#define __has_attribute(x) 0
#endif
#if __has_attribute(weak) || defined(__GNUC__)
ZoneInfoSourceFactory zone_info_source_factory ZoneInfoSourceFactory zone_info_source_factory
__attribute__((weak)) = DefaultFactory; __attribute__((weak)) = DefaultFactory;
#else
// Make it a "strong" definition if we have no other choice.
ZoneInfoSourceFactory zone_info_source_factory = DefaultFactory;
#endif
#endif // _MSC_VER #endif // _MSC_VER
} // namespace cctz_extension } // namespace cctz_extension

View file

@ -44,8 +44,8 @@ namespace absl {
namespace { namespace {
inline cctz::time_point<cctz::sys_seconds> unix_epoch() { inline cctz::time_point<cctz::seconds> unix_epoch() {
return std::chrono::time_point_cast<cctz::sys_seconds>( return std::chrono::time_point_cast<cctz::seconds>(
std::chrono::system_clock::from_time_t(0)); std::chrono::system_clock::from_time_t(0));
} }
@ -110,12 +110,12 @@ inline TimeConversion InfinitePastTimeConversion() {
// Makes a Time from sec, overflowing to InfiniteFuture/InfinitePast as // Makes a Time from sec, overflowing to InfiniteFuture/InfinitePast as
// necessary. If sec is min/max, then consult cs+tz to check for overlow. // necessary. If sec is min/max, then consult cs+tz to check for overlow.
Time MakeTimeWithOverflow(const cctz::time_point<cctz::sys_seconds>& sec, Time MakeTimeWithOverflow(const cctz::time_point<cctz::seconds>& sec,
const cctz::civil_second& cs, const cctz::civil_second& cs,
const cctz::time_zone& tz, const cctz::time_zone& tz,
bool* normalized = nullptr) { bool* normalized = nullptr) {
const auto max = cctz::time_point<cctz::sys_seconds>::max(); const auto max = cctz::time_point<cctz::seconds>::max();
const auto min = cctz::time_point<cctz::sys_seconds>::min(); const auto min = cctz::time_point<cctz::seconds>::min();
if (sec == max) { if (sec == max) {
const auto al = tz.lookup(max); const auto al = tz.lookup(max);
if (cs > al.cs) { if (cs > al.cs) {
@ -174,8 +174,7 @@ absl::Time::Breakdown Time::In(absl::TimeZone tz) const {
if (*this == absl::InfiniteFuture()) return absl::InfiniteFutureBreakdown(); if (*this == absl::InfiniteFuture()) return absl::InfiniteFutureBreakdown();
if (*this == absl::InfinitePast()) return absl::InfinitePastBreakdown(); if (*this == absl::InfinitePast()) return absl::InfinitePastBreakdown();
const auto tp = const auto tp = unix_epoch() + cctz::seconds(time_internal::GetRepHi(rep_));
unix_epoch() + cctz::sys_seconds(time_internal::GetRepHi(rep_));
const auto al = cctz::time_zone(tz).lookup(tp); const auto al = cctz::time_zone(tz).lookup(tp);
const auto cs = al.cs; const auto cs = al.cs;
const auto cd = cctz::civil_day(cs); const auto cd = cctz::civil_day(cs);

View file

@ -59,7 +59,7 @@ TEST(TimeZone, DefaultTimeZones) {
TEST(TimeZone, FixedTimeZone) { TEST(TimeZone, FixedTimeZone) {
const absl::TimeZone tz = absl::FixedTimeZone(123); const absl::TimeZone tz = absl::FixedTimeZone(123);
const cctz::time_zone cz = cctz::fixed_time_zone(cctz::sys_seconds(123)); const cctz::time_zone cz = cctz::fixed_time_zone(cctz::seconds(123));
EXPECT_EQ(tz, absl::TimeZone(cz)); EXPECT_EQ(tz, absl::TimeZone(cz));
} }

View file

@ -579,12 +579,9 @@ struct VariantCoreAccess {
self.index_ = other.index(); self.index_ = other.index();
} }
// Access a variant alternative, assuming the index is correct.
template <std::size_t I, class Variant> template <std::size_t I, class Variant>
static VariantAccessResult<I, Variant> Access(Variant&& self) { static VariantAccessResult<I, Variant> Access(Variant&& self) {
if (ABSL_PREDICT_FALSE(self.index_ != I)) {
TypedThrowBadVariantAccess<VariantAccessResult<I, Variant>>();
}
// This cast instead of invocation of AccessUnion with an rvalue is a // This cast instead of invocation of AccessUnion with an rvalue is a
// workaround for msvc. Without this there is a runtime failure when dealing // workaround for msvc. Without this there is a runtime failure when dealing
// with rvalues. // with rvalues.
@ -593,6 +590,16 @@ struct VariantCoreAccess {
variant_internal::AccessUnion(self.state_, SizeT<I>())); variant_internal::AccessUnion(self.state_, SizeT<I>()));
} }
// Access a variant alternative, throwing if the index is incorrect.
template <std::size_t I, class Variant>
static VariantAccessResult<I, Variant> CheckedAccess(Variant&& self) {
if (ABSL_PREDICT_FALSE(self.index_ != I)) {
TypedThrowBadVariantAccess<VariantAccessResult<I, Variant>>();
}
return Access<I>(absl::forward<Variant>(self));
}
// The implementation of the move-assignment operation for a variant. // The implementation of the move-assignment operation for a variant.
template <class VType> template <class VType>
struct MoveAssignVisitor { struct MoveAssignVisitor {

View file

@ -290,7 +290,7 @@ constexpr bool holds_alternative(const variant<Types...>& v) noexcept {
// Overload for getting a variant's lvalue by type. // Overload for getting a variant's lvalue by type.
template <class T, class... Types> template <class T, class... Types>
constexpr T& get(variant<Types...>& v) { // NOLINT constexpr T& get(variant<Types...>& v) { // NOLINT
return variant_internal::VariantCoreAccess::Access< return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(v); variant_internal::IndexOf<T, Types...>::value>(v);
} }
@ -298,14 +298,14 @@ constexpr T& get(variant<Types...>& v) { // NOLINT
// Note: `absl::move()` is required to allow use of constexpr in C++11. // Note: `absl::move()` is required to allow use of constexpr in C++11.
template <class T, class... Types> template <class T, class... Types>
constexpr T&& get(variant<Types...>&& v) { constexpr T&& get(variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::Access< return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(absl::move(v)); variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
} }
// Overload for getting a variant's const lvalue by type. // Overload for getting a variant's const lvalue by type.
template <class T, class... Types> template <class T, class... Types>
constexpr const T& get(const variant<Types...>& v) { constexpr const T& get(const variant<Types...>& v) {
return variant_internal::VariantCoreAccess::Access< return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(v); variant_internal::IndexOf<T, Types...>::value>(v);
} }
@ -313,7 +313,7 @@ constexpr const T& get(const variant<Types...>& v) {
// Note: `absl::move()` is required to allow use of constexpr in C++11. // Note: `absl::move()` is required to allow use of constexpr in C++11.
template <class T, class... Types> template <class T, class... Types>
constexpr const T&& get(const variant<Types...>&& v) { constexpr const T&& get(const variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::Access< return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(absl::move(v)); variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
} }
@ -321,7 +321,7 @@ constexpr const T&& get(const variant<Types...>&& v) {
template <std::size_t I, class... Types> template <std::size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get( constexpr variant_alternative_t<I, variant<Types...>>& get(
variant<Types...>& v) { // NOLINT variant<Types...>& v) { // NOLINT
return variant_internal::VariantCoreAccess::Access<I>(v); return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
} }
// Overload for getting a variant's rvalue by index. // Overload for getting a variant's rvalue by index.
@ -329,14 +329,14 @@ constexpr variant_alternative_t<I, variant<Types...>>& get(
template <std::size_t I, class... Types> template <std::size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get( constexpr variant_alternative_t<I, variant<Types...>>&& get(
variant<Types...>&& v) { variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::Access<I>(absl::move(v)); return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
} }
// Overload for getting a variant's const lvalue by index. // Overload for getting a variant's const lvalue by index.
template <std::size_t I, class... Types> template <std::size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get( constexpr const variant_alternative_t<I, variant<Types...>>& get(
const variant<Types...>& v) { const variant<Types...>& v) {
return variant_internal::VariantCoreAccess::Access<I>(v); return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
} }
// Overload for getting a variant's const rvalue by index. // Overload for getting a variant's const rvalue by index.
@ -344,7 +344,7 @@ constexpr const variant_alternative_t<I, variant<Types...>>& get(
template <std::size_t I, class... Types> template <std::size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get( constexpr const variant_alternative_t<I, variant<Types...>>&& get(
const variant<Types...>&& v) { const variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::Access<I>(absl::move(v)); return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
} }
// get_if() // get_if()
@ -362,7 +362,9 @@ constexpr const variant_alternative_t<I, variant<Types...>>&& get(
template <std::size_t I, class... Types> template <std::size_t I, class... Types>
constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>> constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>>
get_if(variant<Types...>* v) noexcept { get_if(variant<Types...>* v) noexcept {
return (v != nullptr && v->index() == I) ? std::addressof(absl::get<I>(*v)) return (v != nullptr && v->index() == I)
? std::addressof(
variant_internal::VariantCoreAccess::Access<I>(*v))
: nullptr; : nullptr;
} }
@ -371,7 +373,9 @@ get_if(variant<Types...>* v) noexcept {
template <std::size_t I, class... Types> template <std::size_t I, class... Types>
constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>> constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>* v) noexcept { get_if(const variant<Types...>* v) noexcept {
return (v != nullptr && v->index() == I) ? std::addressof(absl::get<I>(*v)) return (v != nullptr && v->index() == I)
? std::addressof(
variant_internal::VariantCoreAccess::Access<I>(*v))
: nullptr; : nullptr;
} }