Solve InterviewCake's second-largest-item-in-bst
Return a function that returns the second largest item in a binary search tree (i.e. BST). A BST is a tree where each node has no more than two children (i.e. one left child and one right child). All of the values in a BST's left subtree must be less than the value of the root node; all of the values in a BST's right subtree must be greater than the value of the root node; both left and right subtrees must also be BSTs themselves. I solved this problem thrice -- improving the performance profile each time. The final solution has a runtime complexity of O(n) and a spacetime complexity of O(1).
This commit is contained in:
parent
56d8d1d7b2
commit
319652fe08
2 changed files with 221 additions and 2 deletions
219
scratch/deepmind/part_two/second-largest-item-in-bst.ts
Normal file
219
scratch/deepmind/part_two/second-largest-item-in-bst.ts
Normal file
|
@ -0,0 +1,219 @@
|
|||
/*******************************************************************************
|
||||
* Setup
|
||||
******************************************************************************/
|
||||
|
||||
interface BinaryTreeNode {
|
||||
value: number;
|
||||
left: BinaryTreeNode;
|
||||
right: BinaryTreeNode;
|
||||
}
|
||||
|
||||
class BinaryTreeNode {
|
||||
constructor(value: number) {
|
||||
this.value = value;
|
||||
this.left = null;
|
||||
this.right = null;
|
||||
}
|
||||
|
||||
insertLeft(value: number): BinaryTreeNode {
|
||||
this.left = new BinaryTreeNode(value);
|
||||
return this.left;
|
||||
}
|
||||
|
||||
insertRight(value: number): BinaryTreeNode {
|
||||
this.right = new BinaryTreeNode(value);
|
||||
return this.right;
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* First solution
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* I first solved this problem using O(n) space and O(n*log(n))
|
||||
* time. InterviewCake informs me that we can improve both the time and the
|
||||
* space performance.
|
||||
*/
|
||||
function findSecondLargest_first(node: BinaryTreeNode): number {
|
||||
const stack: Array<BinaryTreeNode> = [];
|
||||
const xs: Array<number> = [];
|
||||
stack.push(node);
|
||||
|
||||
while (stack.length > 0) {
|
||||
const node = stack.pop()
|
||||
|
||||
xs.push(node.value);
|
||||
|
||||
if (node.left) {
|
||||
stack.push(node.left);
|
||||
}
|
||||
if (node.right) {
|
||||
stack.push(node.right);
|
||||
}
|
||||
}
|
||||
|
||||
xs.sort();
|
||||
|
||||
if (xs.length < 2) {
|
||||
throw new Error('Cannot find the second largest element in a BST with fewer than two elements.');
|
||||
} else {
|
||||
return xs[xs.length - 2];
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Second solution
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* My second solution accumulates a list of the values in the tree using an
|
||||
* in-order traversal. This reduces the runtime costs from O(n*log(n)) from the
|
||||
* previous solution to O(n). The memory cost is still O(n), which InterviewCake
|
||||
* informs me can be reduced to O(1).
|
||||
*/
|
||||
function findSecondLargest_second(node: BinaryTreeNode): number {
|
||||
const xs: Array<number> = accumulateInorder(node);
|
||||
|
||||
if (xs.length < 2) {
|
||||
throw new Error('Cannot find the second largest element in a BST with fewer than two elements.');
|
||||
} else {
|
||||
return xs[xs.length - 2];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an array containing the values of the tree, `node`, sorted in-order
|
||||
* (i.e. from smallest-to-largest).
|
||||
*/
|
||||
function accumulateInorder(node: BinaryTreeNode): Array<number> {
|
||||
let result = [];
|
||||
|
||||
if (node.left) {
|
||||
result = result.concat(accumulateInorder(node.left));
|
||||
}
|
||||
result.push(node.value)
|
||||
if (node.right) {
|
||||
result = result.concat(accumulateInorder(node.right));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Third solution
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* Returns the largest number in a BST.
|
||||
*/
|
||||
function findLargest(node: BinaryTreeNode): number {
|
||||
let curr: BinaryTreeNode = node;
|
||||
|
||||
while (curr.right) {
|
||||
curr = curr.right;
|
||||
}
|
||||
|
||||
return curr.value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the second largest number in a BST
|
||||
*/
|
||||
function findSecondLargest(node: BinaryTreeNode): number {
|
||||
let curr = node;
|
||||
let parent = null;
|
||||
|
||||
while (curr.right) {
|
||||
parent = curr;
|
||||
curr = curr.right
|
||||
}
|
||||
|
||||
if (curr.left) {
|
||||
return findLargest(curr.left);
|
||||
}
|
||||
else {
|
||||
return parent.value;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Tests
|
||||
let desc = 'full tree';
|
||||
let treeRoot = new BinaryTreeNode(50);
|
||||
let leftNode = treeRoot.insertLeft(30);
|
||||
leftNode.insertLeft(10);
|
||||
leftNode.insertRight(40);
|
||||
let rightNode = treeRoot.insertRight(70);
|
||||
rightNode.insertLeft(60);
|
||||
rightNode.insertRight(80);
|
||||
assertEquals(findSecondLargest(treeRoot), 70, desc);
|
||||
|
||||
desc = 'largest has a left child';
|
||||
treeRoot = new BinaryTreeNode(50);
|
||||
leftNode = treeRoot.insertLeft(30);
|
||||
leftNode.insertLeft(10);
|
||||
leftNode.insertRight(40);
|
||||
rightNode = treeRoot.insertRight(70);
|
||||
rightNode.insertLeft(60);
|
||||
assertEquals(findSecondLargest(treeRoot), 60, desc);
|
||||
|
||||
desc = 'largest has a left subtree';
|
||||
treeRoot = new BinaryTreeNode(50);
|
||||
leftNode = treeRoot.insertLeft(30);
|
||||
leftNode.insertLeft(10);
|
||||
leftNode.insertRight(40);
|
||||
rightNode = treeRoot.insertRight(70);
|
||||
leftNode = rightNode.insertLeft(60);
|
||||
leftNode.insertRight(65);
|
||||
leftNode = leftNode.insertLeft(55);
|
||||
leftNode.insertRight(58);
|
||||
assertEquals(findSecondLargest(treeRoot), 65, desc);
|
||||
|
||||
desc = 'second largest is root node';
|
||||
treeRoot = new BinaryTreeNode(50);
|
||||
leftNode = treeRoot.insertLeft(30);
|
||||
leftNode.insertLeft(10);
|
||||
leftNode.insertRight(40);
|
||||
rightNode = treeRoot.insertRight(70);
|
||||
assertEquals(findSecondLargest(treeRoot), 50, desc);
|
||||
|
||||
desc = 'descending linked list';
|
||||
treeRoot = new BinaryTreeNode(50);
|
||||
leftNode = treeRoot.insertLeft(40);
|
||||
leftNode = leftNode.insertLeft(30);
|
||||
leftNode = leftNode.insertLeft(20);
|
||||
leftNode = leftNode.insertLeft(10);
|
||||
assertEquals(findSecondLargest(treeRoot), 40, desc);
|
||||
|
||||
desc = 'ascending linked list';
|
||||
treeRoot = new BinaryTreeNode(50);
|
||||
rightNode = treeRoot.insertRight(60);
|
||||
rightNode = rightNode.insertRight(70);
|
||||
rightNode = rightNode.insertRight(80);
|
||||
assertEquals(findSecondLargest(treeRoot), 70, desc);
|
||||
|
||||
desc = 'one node tree';
|
||||
treeRoot = new BinaryTreeNode(50);
|
||||
assertThrowsError(() => findSecondLargest(treeRoot), desc);
|
||||
|
||||
desc = 'when tree is empty';
|
||||
treeRoot = null;
|
||||
assertThrowsError(() => findSecondLargest(treeRoot), desc);
|
||||
|
||||
function assertEquals(a, b, desc) {
|
||||
if (a === b) {
|
||||
console.log(`${desc} ... PASS`);
|
||||
} else {
|
||||
console.log(`${desc} ... FAIL: ${a} != ${b}`)
|
||||
}
|
||||
}
|
||||
|
||||
function assertThrowsError(func, desc) {
|
||||
try {
|
||||
func();
|
||||
console.log(`${desc} ... FAIL`);
|
||||
} catch (e) {
|
||||
console.log(`${desc} ... PASS`);
|
||||
}
|
||||
}
|
|
@ -23,7 +23,7 @@
|
|||
* Trees and graphs
|
||||
** DONE Balanced Binary Tree
|
||||
** DONE Binary Search Tree Checker
|
||||
** TODO 2nd Largest Item in a Binary Search Tree
|
||||
** DONE 2nd Largest Item in a Binary Search Tree
|
||||
** TODO Graph Coloring
|
||||
** TODO MeshMessage
|
||||
** TODO Find Repeat, Space Edition BEAST MODE
|
||||
|
@ -34,7 +34,7 @@
|
|||
** TODO The Cake Thief
|
||||
** DONE Balanced Binary Tree
|
||||
** DONE Binary Search Tree Checker
|
||||
** TODO 2nd Largest Item in a Binary Search Tree
|
||||
** DONE 2nd Largest Item in a Binary Search Tree
|
||||
* Queues and stacks
|
||||
** TODO Largest Stack
|
||||
** TODO Implement A Queue With Two Stacks
|
||||
|
|
Loading…
Reference in a new issue