- 81cdce434ff1bd8fa54c832a11dda59af46e79cc Adds a failure signal handler to Abseil. by Derek Mauro <dmauro@google.com>

- 40a973dd1b159e7455dd5fc06ac2d3f494d72c3e Remove test fixture requirement for ExceptionSafetyTester... by Abseil Team <absl-team@google.com>

GitOrigin-RevId: 81cdce434ff1bd8fa54c832a11dda59af46e79cc
Change-Id: Ia9fca98e38f229b68f7ec45600dee1bbd5dcff33
This commit is contained in:
Abseil Team 2018-04-26 06:47:58 -07:00 committed by Derek Mauro
parent ea0e750e52
commit 28f5b89070
8 changed files with 792 additions and 105 deletions

View file

@ -41,15 +41,7 @@ void ExpectNoThrow(const F& f) {
} }
} }
class ThrowingValueTest : public ::testing::Test { TEST(ThrowingValueTest, Throws) {
protected:
void SetUp() override { UnsetCountdown(); }
private:
ConstructorTracker clouseau_;
};
TEST_F(ThrowingValueTest, Throws) {
SetCountdown(); SetCountdown();
EXPECT_THROW(ThrowingValue<> bomb, TestException); EXPECT_THROW(ThrowingValue<> bomb, TestException);
@ -60,6 +52,8 @@ TEST_F(ThrowingValueTest, Throws) {
ExpectNoThrow([]() { ThrowingValue<> bomb; }); ExpectNoThrow([]() { ThrowingValue<> bomb; });
ExpectNoThrow([]() { ThrowingValue<> bomb; }); ExpectNoThrow([]() { ThrowingValue<> bomb; });
EXPECT_THROW(ThrowingValue<> bomb, TestException); EXPECT_THROW(ThrowingValue<> bomb, TestException);
UnsetCountdown();
} }
// Tests that an operation throws when the countdown is at 0, doesn't throw when // Tests that an operation throws when the countdown is at 0, doesn't throw when
@ -67,7 +61,6 @@ TEST_F(ThrowingValueTest, Throws) {
// ThrowingValue if it throws // ThrowingValue if it throws
template <typename F> template <typename F>
void TestOp(const F& f) { void TestOp(const F& f) {
UnsetCountdown();
ExpectNoThrow(f); ExpectNoThrow(f);
SetCountdown(); SetCountdown();
@ -75,7 +68,7 @@ void TestOp(const F& f) {
UnsetCountdown(); UnsetCountdown();
} }
TEST_F(ThrowingValueTest, ThrowingCtors) { TEST(ThrowingValueTest, ThrowingCtors) {
ThrowingValue<> bomb; ThrowingValue<> bomb;
TestOp([]() { ThrowingValue<> bomb(1); }); TestOp([]() { ThrowingValue<> bomb(1); });
@ -83,14 +76,14 @@ TEST_F(ThrowingValueTest, ThrowingCtors) {
TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); }); TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); });
} }
TEST_F(ThrowingValueTest, ThrowingAssignment) { TEST(ThrowingValueTest, ThrowingAssignment) {
ThrowingValue<> bomb, bomb1; ThrowingValue<> bomb, bomb1;
TestOp([&]() { bomb = bomb1; }); TestOp([&]() { bomb = bomb1; });
TestOp([&]() { bomb = std::move(bomb1); }); TestOp([&]() { bomb = std::move(bomb1); });
} }
TEST_F(ThrowingValueTest, ThrowingComparisons) { TEST(ThrowingValueTest, ThrowingComparisons) {
ThrowingValue<> bomb1, bomb2; ThrowingValue<> bomb1, bomb2;
TestOp([&]() { return bomb1 == bomb2; }); TestOp([&]() { return bomb1 == bomb2; });
TestOp([&]() { return bomb1 != bomb2; }); TestOp([&]() { return bomb1 != bomb2; });
@ -100,7 +93,7 @@ TEST_F(ThrowingValueTest, ThrowingComparisons) {
TestOp([&]() { return bomb1 >= bomb2; }); TestOp([&]() { return bomb1 >= bomb2; });
} }
TEST_F(ThrowingValueTest, ThrowingArithmeticOps) { TEST(ThrowingValueTest, ThrowingArithmeticOps) {
ThrowingValue<> bomb1(1), bomb2(2); ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&bomb1]() { +bomb1; }); TestOp([&bomb1]() { +bomb1; });
@ -118,7 +111,7 @@ TEST_F(ThrowingValueTest, ThrowingArithmeticOps) {
TestOp([&]() { bomb1 >> 1; }); TestOp([&]() { bomb1 >> 1; });
} }
TEST_F(ThrowingValueTest, ThrowingLogicalOps) { TEST(ThrowingValueTest, ThrowingLogicalOps) {
ThrowingValue<> bomb1, bomb2; ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { !bomb1; }); TestOp([&bomb1]() { !bomb1; });
@ -126,7 +119,7 @@ TEST_F(ThrowingValueTest, ThrowingLogicalOps) {
TestOp([&]() { bomb1 || bomb2; }); TestOp([&]() { bomb1 || bomb2; });
} }
TEST_F(ThrowingValueTest, ThrowingBitwiseOps) { TEST(ThrowingValueTest, ThrowingBitwiseOps) {
ThrowingValue<> bomb1, bomb2; ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { ~bomb1; }); TestOp([&bomb1]() { ~bomb1; });
@ -135,7 +128,7 @@ TEST_F(ThrowingValueTest, ThrowingBitwiseOps) {
TestOp([&]() { bomb1 ^ bomb2; }); TestOp([&]() { bomb1 ^ bomb2; });
} }
TEST_F(ThrowingValueTest, ThrowingCompoundAssignmentOps) { TEST(ThrowingValueTest, ThrowingCompoundAssignmentOps) {
ThrowingValue<> bomb1(1), bomb2(2); ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&]() { bomb1 += bomb2; }); TestOp([&]() { bomb1 += bomb2; });
@ -149,7 +142,7 @@ TEST_F(ThrowingValueTest, ThrowingCompoundAssignmentOps) {
TestOp([&]() { bomb1 *= bomb2; }); TestOp([&]() { bomb1 *= bomb2; });
} }
TEST_F(ThrowingValueTest, ThrowingStreamOps) { TEST(ThrowingValueTest, ThrowingStreamOps) {
ThrowingValue<> bomb; ThrowingValue<> bomb;
TestOp([&]() { std::cin >> bomb; }); TestOp([&]() { std::cin >> bomb; });
@ -158,7 +151,6 @@ TEST_F(ThrowingValueTest, ThrowingStreamOps) {
template <typename F> template <typename F>
void TestAllocatingOp(const F& f) { void TestAllocatingOp(const F& f) {
UnsetCountdown();
ExpectNoThrow(f); ExpectNoThrow(f);
SetCountdown(); SetCountdown();
@ -166,32 +158,34 @@ void TestAllocatingOp(const F& f) {
UnsetCountdown(); UnsetCountdown();
} }
TEST_F(ThrowingValueTest, ThrowingAllocatingOps) { TEST(ThrowingValueTest, ThrowingAllocatingOps) {
// make_unique calls unqualified operator new, so these exercise the // make_unique calls unqualified operator new, so these exercise the
// ThrowingValue overloads. // ThrowingValue overloads.
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>>(1); }); TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>>(1); });
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); }); TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); });
} }
TEST_F(ThrowingValueTest, NonThrowingMoveCtor) { TEST(ThrowingValueTest, NonThrowingMoveCtor) {
ThrowingValue<NoThrow::kMoveCtor> nothrow_ctor; ThrowingValue<NoThrow::kMoveCtor> nothrow_ctor;
SetCountdown(); SetCountdown();
ExpectNoThrow([&nothrow_ctor]() { ExpectNoThrow([&nothrow_ctor]() {
ThrowingValue<NoThrow::kMoveCtor> nothrow1 = std::move(nothrow_ctor); ThrowingValue<NoThrow::kMoveCtor> nothrow1 = std::move(nothrow_ctor);
}); });
UnsetCountdown();
} }
TEST_F(ThrowingValueTest, NonThrowingMoveAssign) { TEST(ThrowingValueTest, NonThrowingMoveAssign) {
ThrowingValue<NoThrow::kMoveAssign> nothrow_assign1, nothrow_assign2; ThrowingValue<NoThrow::kMoveAssign> nothrow_assign1, nothrow_assign2;
SetCountdown(); SetCountdown();
ExpectNoThrow([&nothrow_assign1, &nothrow_assign2]() { ExpectNoThrow([&nothrow_assign1, &nothrow_assign2]() {
nothrow_assign1 = std::move(nothrow_assign2); nothrow_assign1 = std::move(nothrow_assign2);
}); });
UnsetCountdown();
} }
TEST_F(ThrowingValueTest, ThrowingSwap) { TEST(ThrowingValueTest, ThrowingSwap) {
ThrowingValue<> bomb1, bomb2; ThrowingValue<> bomb1, bomb2;
TestOp([&]() { std::swap(bomb1, bomb2); }); TestOp([&]() { std::swap(bomb1, bomb2); });
@ -202,12 +196,12 @@ TEST_F(ThrowingValueTest, ThrowingSwap) {
TestOp([&]() { std::swap(bomb5, bomb6); }); TestOp([&]() { std::swap(bomb5, bomb6); });
} }
TEST_F(ThrowingValueTest, NonThrowingSwap) { TEST(ThrowingValueTest, NonThrowingSwap) {
ThrowingValue<NoThrow::kMoveAssign | NoThrow::kMoveCtor> bomb1, bomb2; ThrowingValue<NoThrow::kMoveAssign | NoThrow::kMoveCtor> bomb1, bomb2;
ExpectNoThrow([&]() { std::swap(bomb1, bomb2); }); ExpectNoThrow([&]() { std::swap(bomb1, bomb2); });
} }
TEST_F(ThrowingValueTest, NonThrowingAllocation) { TEST(ThrowingValueTest, NonThrowingAllocation) {
ThrowingValue<NoThrow::kAllocation>* allocated; ThrowingValue<NoThrow::kAllocation>* allocated;
ThrowingValue<NoThrow::kAllocation>* array; ThrowingValue<NoThrow::kAllocation>* array;
@ -221,7 +215,7 @@ TEST_F(ThrowingValueTest, NonThrowingAllocation) {
}); });
} }
TEST_F(ThrowingValueTest, NonThrowingDelete) { TEST(ThrowingValueTest, NonThrowingDelete) {
auto* allocated = new ThrowingValue<>(1); auto* allocated = new ThrowingValue<>(1);
auto* array = new ThrowingValue<>[2]; auto* array = new ThrowingValue<>[2];
@ -229,12 +223,14 @@ TEST_F(ThrowingValueTest, NonThrowingDelete) {
ExpectNoThrow([allocated]() { delete allocated; }); ExpectNoThrow([allocated]() { delete allocated; });
SetCountdown(); SetCountdown();
ExpectNoThrow([array]() { delete[] array; }); ExpectNoThrow([array]() { delete[] array; });
UnsetCountdown();
} }
using Storage = using Storage =
absl::aligned_storage_t<sizeof(ThrowingValue<>), alignof(ThrowingValue<>)>; absl::aligned_storage_t<sizeof(ThrowingValue<>), alignof(ThrowingValue<>)>;
TEST_F(ThrowingValueTest, NonThrowingPlacementDelete) { TEST(ThrowingValueTest, NonThrowingPlacementDelete) {
constexpr int kArrayLen = 2; constexpr int kArrayLen = 2;
// We intentionally create extra space to store the tag allocated by placement // We intentionally create extra space to store the tag allocated by placement
// new[]. // new[].
@ -256,16 +252,19 @@ TEST_F(ThrowingValueTest, NonThrowingPlacementDelete) {
for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>(); for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>();
ThrowingValue<>::operator delete[](placed_array, &array_buf); ThrowingValue<>::operator delete[](placed_array, &array_buf);
}); });
UnsetCountdown();
} }
TEST_F(ThrowingValueTest, NonThrowingDestructor) { TEST(ThrowingValueTest, NonThrowingDestructor) {
auto* allocated = new ThrowingValue<>(); auto* allocated = new ThrowingValue<>();
SetCountdown(); SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; }); ExpectNoThrow([allocated]() { delete allocated; });
UnsetCountdown();
} }
TEST(ThrowingBoolTest, ThrowingBool) { TEST(ThrowingBoolTest, ThrowingBool) {
UnsetCountdown();
ThrowingBool t = true; ThrowingBool t = true;
// Test that it's contextually convertible to bool // Test that it's contextually convertible to bool
@ -276,15 +275,7 @@ TEST(ThrowingBoolTest, ThrowingBool) {
TestOp([&]() { (void)!t; }); TestOp([&]() { (void)!t; });
} }
class ThrowingAllocatorTest : public ::testing::Test { TEST(ThrowingAllocatorTest, MemoryManagement) {
protected:
void SetUp() override { UnsetCountdown(); }
private:
ConstructorTracker borlu_;
};
TEST_F(ThrowingAllocatorTest, MemoryManagement) {
// Just exercise the memory management capabilities under LSan to make sure we // Just exercise the memory management capabilities under LSan to make sure we
// don't leak. // don't leak.
ThrowingAllocator<int> int_alloc; ThrowingAllocator<int> int_alloc;
@ -300,7 +291,7 @@ TEST_F(ThrowingAllocatorTest, MemoryManagement) {
ef_alloc.deallocate(ef_array, 2); ef_alloc.deallocate(ef_array, 2);
} }
TEST_F(ThrowingAllocatorTest, CallsGlobalNew) { TEST(ThrowingAllocatorTest, CallsGlobalNew) {
ThrowingAllocator<ThrowingValue<>, NoThrow::kNoThrow> nothrow_alloc; ThrowingAllocator<ThrowingValue<>, NoThrow::kNoThrow> nothrow_alloc;
ThrowingValue<>* ptr; ThrowingValue<>* ptr;
@ -308,9 +299,11 @@ TEST_F(ThrowingAllocatorTest, CallsGlobalNew) {
// This will only throw if ThrowingValue::new is called. // This will only throw if ThrowingValue::new is called.
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); }); ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); });
nothrow_alloc.deallocate(ptr, 1); nothrow_alloc.deallocate(ptr, 1);
UnsetCountdown();
} }
TEST_F(ThrowingAllocatorTest, ThrowingConstructors) { TEST(ThrowingAllocatorTest, ThrowingConstructors) {
ThrowingAllocator<int> int_alloc; ThrowingAllocator<int> int_alloc;
int* ip = nullptr; int* ip = nullptr;
@ -323,22 +316,27 @@ TEST_F(ThrowingAllocatorTest, ThrowingConstructors) {
EXPECT_THROW(int_alloc.construct(ip, 2), TestException); EXPECT_THROW(int_alloc.construct(ip, 2), TestException);
EXPECT_EQ(*ip, 1); EXPECT_EQ(*ip, 1);
int_alloc.deallocate(ip, 1); int_alloc.deallocate(ip, 1);
UnsetCountdown();
} }
TEST_F(ThrowingAllocatorTest, NonThrowingConstruction) { TEST(ThrowingAllocatorTest, NonThrowingConstruction) {
{ {
ThrowingAllocator<int, NoThrow::kNoThrow> int_alloc; ThrowingAllocator<int, NoThrow::kNoThrow> int_alloc;
int* ip = nullptr; int* ip = nullptr;
SetCountdown(); SetCountdown();
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
SetCountdown(); SetCountdown();
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2); EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1); int_alloc.deallocate(ip, 1);
UnsetCountdown();
} }
UnsetCountdown();
{ {
ThrowingAllocator<int> int_alloc; ThrowingAllocator<int> int_alloc;
int* ip = nullptr; int* ip = nullptr;
@ -348,37 +346,44 @@ TEST_F(ThrowingAllocatorTest, NonThrowingConstruction) {
int_alloc.deallocate(ip, 1); int_alloc.deallocate(ip, 1);
} }
UnsetCountdown();
{ {
ThrowingAllocator<ThrowingValue<NoThrow::kIntCtor>, NoThrow::kNoThrow> ThrowingAllocator<ThrowingValue<NoThrow::kIntCtor>, NoThrow::kNoThrow>
ef_alloc; ef_alloc;
ThrowingValue<NoThrow::kIntCtor>* efp; ThrowingValue<NoThrow::kIntCtor>* efp;
SetCountdown(); SetCountdown();
ExpectNoThrow([&]() { efp = ef_alloc.allocate(1); }); ExpectNoThrow([&]() { efp = ef_alloc.allocate(1); });
SetCountdown(); SetCountdown();
ExpectNoThrow([&]() { ef_alloc.construct(efp, 2); }); ExpectNoThrow([&]() { ef_alloc.construct(efp, 2); });
EXPECT_EQ(efp->Get(), 2); EXPECT_EQ(efp->Get(), 2);
ef_alloc.destroy(efp); ef_alloc.destroy(efp);
ef_alloc.deallocate(efp, 1); ef_alloc.deallocate(efp, 1);
UnsetCountdown();
} }
UnsetCountdown();
{ {
ThrowingAllocator<int> a; ThrowingAllocator<int> a;
SetCountdown(); SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; }); ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; });
SetCountdown(); SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); }); ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); });
UnsetCountdown();
} }
} }
TEST_F(ThrowingAllocatorTest, ThrowingAllocatorConstruction) { TEST(ThrowingAllocatorTest, ThrowingAllocatorConstruction) {
ThrowingAllocator<int> a; ThrowingAllocator<int> a;
TestOp([]() { ThrowingAllocator<int> a; }); TestOp([]() { ThrowingAllocator<int> a; });
TestOp([&]() { a.select_on_container_copy_construction(); }); TestOp([&]() { a.select_on_container_copy_construction(); });
} }
TEST_F(ThrowingAllocatorTest, State) { TEST(ThrowingAllocatorTest, State) {
ThrowingAllocator<int> a1, a2; ThrowingAllocator<int> a1, a2;
EXPECT_NE(a1, a2); EXPECT_NE(a1, a2);
@ -390,13 +395,13 @@ TEST_F(ThrowingAllocatorTest, State) {
EXPECT_EQ(a3, a1); EXPECT_EQ(a3, a1);
} }
TEST_F(ThrowingAllocatorTest, InVector) { TEST(ThrowingAllocatorTest, InVector) {
std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v; std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v;
for (int i = 0; i < 20; ++i) v.push_back({}); for (int i = 0; i < 20; ++i) v.push_back({});
for (int i = 0; i < 20; ++i) v.pop_back(); for (int i = 0; i < 20; ++i) v.pop_back();
} }
TEST_F(ThrowingAllocatorTest, InList) { TEST(ThrowingAllocatorTest, InList) {
std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l; std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l;
for (int i = 0; i < 20; ++i) l.push_back({}); for (int i = 0; i < 20; ++i) l.push_back({});
for (int i = 0; i < 20; ++i) l.pop_back(); for (int i = 0; i < 20; ++i) l.pop_back();
@ -772,19 +777,28 @@ struct Tracked : private exceptions_internal::TrackedObject {
Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {} Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {}
}; };
TEST(ConstructorTrackerTest, Pass) { TEST(ConstructorTrackerTest, CreatedBefore) {
ConstructorTracker javert; Tracked a, b, c;
Tracked t; exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
} }
TEST(ConstructorTrackerTest, NotDestroyed) { TEST(ConstructorTrackerTest, CreatedAfter) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
Tracked a, b, c;
}
TEST(ConstructorTrackerTest, NotDestroyedAfter) {
absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage; absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage;
EXPECT_NONFATAL_FAILURE( EXPECT_NONFATAL_FAILURE(
{ {
ConstructorTracker gadget; exceptions_internal::ConstructorTracker ct(
exceptions_internal::countdown);
new (&storage) Tracked; new (&storage) Tracked;
}, },
"not destroyed"); "not destroyed");
// Manual destruction of the Tracked instance is not required because
// ~ConstructorTracker() handles that automatically when a leak is found
} }
TEST(ConstructorTrackerTest, DestroyedTwice) { TEST(ConstructorTrackerTest, DestroyedTwice) {

View file

@ -37,8 +37,6 @@
namespace absl { namespace absl {
struct ConstructorTracker;
// A configuration enum for Throwing*. Operations whose flags are set will // A configuration enum for Throwing*. Operations whose flags are set will
// throw, everything else won't. This isn't meant to be exhaustive, more flags // throw, everything else won't. This isn't meant to be exhaustive, more flags
// can always be made in the future. // can always be made in the future.
@ -105,6 +103,8 @@ void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false);
testing::AssertionResult FailureMessage(const TestException& e, testing::AssertionResult FailureMessage(const TestException& e,
int countdown) noexcept; int countdown) noexcept;
class ConstructorTracker;
class TrackedObject { class TrackedObject {
public: public:
TrackedObject(const TrackedObject&) = delete; TrackedObject(const TrackedObject&) = delete;
@ -112,26 +112,56 @@ class TrackedObject {
protected: protected:
explicit TrackedObject(const char* child_ctor) { explicit TrackedObject(const char* child_ctor) {
if (!GetAllocs().emplace(this, child_ctor).second) { if (!GetInstanceMap().emplace(this, child_ctor).second) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this) ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " re-constructed in ctor " << child_ctor; << " re-constructed in ctor " << child_ctor;
} }
} }
static std::unordered_map<TrackedObject*, absl::string_view>& GetAllocs() {
static auto* m =
new std::unordered_map<TrackedObject*, absl::string_view>();
return *m;
}
~TrackedObject() noexcept { ~TrackedObject() noexcept {
if (GetAllocs().erase(this) == 0) { if (GetInstanceMap().erase(this) == 0) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this) ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " destroyed improperly"; << " destroyed improperly";
} }
} }
friend struct ::absl::ConstructorTracker; private:
using InstanceMap = std::unordered_map<TrackedObject*, absl::string_view>;
static InstanceMap& GetInstanceMap() {
static auto* instance_map = new InstanceMap();
return *instance_map;
}
friend class ConstructorTracker;
};
// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. This allows us to safely "leak" TrackedObjects, as
// ConstructorTracker will destroy everything left over in its destructor.
class ConstructorTracker {
public:
explicit ConstructorTracker(int c)
: init_count_(c), init_instances_(TrackedObject::GetInstanceMap()) {}
~ConstructorTracker() {
auto& cur_instances = TrackedObject::GetInstanceMap();
for (auto it = cur_instances.begin(); it != cur_instances.end();) {
if (init_instances_.count(it->first) == 0) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(it->first)
<< " constructed from " << it->second
<< " where the exception countdown was set to "
<< init_count_ << " was not destroyed";
// Erasing an item inside an unordered_map invalidates the existing
// iterator. A new one is returned for iteration to continue.
it = cur_instances.erase(it);
} else {
++it;
}
}
}
private:
int init_count_;
TrackedObject::InstanceMap init_instances_;
}; };
template <typename Factory, typename Operation, typename Invariant> template <typename Factory, typename Operation, typename Invariant>
@ -707,37 +737,21 @@ class ThrowingAllocator : private exceptions_internal::TrackedObject {
template <typename T, NoThrow Throws> template <typename T, NoThrow Throws>
int ThrowingAllocator<T, Throws>::next_id_ = 0; int ThrowingAllocator<T, Throws>::next_id_ = 0;
// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. Place this as a member variable in a test fixture to ensure
// that every ThrowingValue was constructed and destroyed correctly. This also
// allows us to safely "leak" TrackedObjects, as ConstructorTracker will destroy
// everything left over in its destructor.
struct ConstructorTracker {
ConstructorTracker() = default;
~ConstructorTracker() {
auto& allocs = exceptions_internal::TrackedObject::GetAllocs();
for (const auto& kv : allocs) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(kv.first)
<< " constructed from " << kv.second << " not destroyed";
}
allocs.clear();
}
};
// Tests for resource leaks by attempting to construct a T using args repeatedly // Tests for resource leaks by attempting to construct a T using args repeatedly
// until successful, using the countdown method. Side effects can then be // until successful, using the countdown method. Side effects can then be
// tested for resource leaks. If a ConstructorTracker is present in the test // tested for resource leaks.
// fixture, then this will also test that memory resources are not leaked as
// long as T allocates TrackedObjects.
template <typename T, typename... Args> template <typename T, typename... Args>
T TestThrowingCtor(Args&&... args) { void TestThrowingCtor(Args&&... args) {
struct Cleanup { struct Cleanup {
~Cleanup() { exceptions_internal::UnsetCountdown(); } ~Cleanup() { exceptions_internal::UnsetCountdown(); }
} c; } c;
for (int count = 0;; ++count) { for (int count = 0;; ++count) {
exceptions_internal::ConstructorTracker ct(count);
exceptions_internal::SetCountdown(count); exceptions_internal::SetCountdown(count);
try { try {
return T(std::forward<Args>(args)...); T temp(std::forward<Args>(args)...);
static_cast<void>(temp);
break;
} catch (const exceptions_internal::TestException&) { } catch (const exceptions_internal::TestException&) {
} }
} }
@ -934,6 +948,8 @@ class ExceptionSafetyTester {
// Starting from 0 and counting upwards until one of the exit conditions is // Starting from 0 and counting upwards until one of the exit conditions is
// hit... // hit...
for (int count = 0;; ++count) { for (int count = 0;; ++count) {
exceptions_internal::ConstructorTracker ct(count);
// Run the full exception safety test algorithm for the current countdown // Run the full exception safety test algorithm for the current countdown
auto reduced_res = auto reduced_res =
TestAllInvariantsAtCountdown(factory_, selected_operation, count, TestAllInvariantsAtCountdown(factory_, selected_operation, count,

View file

@ -94,6 +94,38 @@ cc_library(
], ],
) )
cc_library(
name = "failure_signal_handler",
srcs = ["failure_signal_handler.cc"],
hdrs = ["failure_signal_handler.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":examine_stack",
":stacktrace",
"//absl/base",
"//absl/base:config",
"//absl/base:core_headers",
],
)
cc_test(
name = "failure_signal_handler_test",
srcs = ["failure_signal_handler_test.cc"],
copts = ABSL_TEST_COPTS,
linkopts = select({
"//absl:windows": [],
"//conditions:default": ["-pthread"],
}),
deps = [
":failure_signal_handler",
":stacktrace",
":symbolize",
"//absl/base",
"//absl/strings",
"@com_google_googletest//:gtest",
],
)
cc_library( cc_library(
name = "debugging_internal", name = "debugging_internal",
srcs = [ srcs = [

View file

@ -15,6 +15,7 @@
# #
list(APPEND DEBUGGING_PUBLIC_HEADERS list(APPEND DEBUGGING_PUBLIC_HEADERS
"failure_signal_handler.h"
"leak_check.h" "leak_check.h"
"stacktrace.h" "stacktrace.h"
"symbolize.h" "symbolize.h"
@ -51,6 +52,11 @@ list(APPEND SYMBOLIZE_SRC
${DEBUGGING_INTERNAL_HEADERS} ${DEBUGGING_INTERNAL_HEADERS}
) )
list(APPEND FAILURE_SIGNAL_HANDLER_SRC
"failure_signal_handler.cc"
${DEBUGGING_PUBLIC_HEADERS}
)
list(APPEND EXAMINE_STACK_SRC list(APPEND EXAMINE_STACK_SRC
"internal/examine_stack.cc" "internal/examine_stack.cc"
${DEBUGGING_PUBLIC_HEADERS} ${DEBUGGING_PUBLIC_HEADERS}
@ -75,6 +81,17 @@ absl_library(
symbolize symbolize
) )
absl_library(
TARGET
absl_failure_signal_handler
SOURCES
${FAILURE_SIGNAL_HANDLER_SRC}
PUBLIC_LIBRARIES
absl_base absl_synchronization
EXPORT_NAME
failure_signal_handler
)
# Internal-only. Projects external to Abseil should not depend # Internal-only. Projects external to Abseil should not depend
# directly on this library. # directly on this library.
absl_library( absl_library(
@ -163,6 +180,17 @@ absl_test(
absl_symbolize absl_stack_consumption absl_symbolize absl_stack_consumption
) )
list(APPEND FAILURE_SIGNAL_HANDLER_TEST_SRC "failure_signal_handler_test.cc")
absl_test(
TARGET
failure_signal_handler_test
SOURCES
${FAILURE_SIGNAL_HANDLER_TEST_SRC}
PUBLIC_LIBRARIES
absl_examine_stack absl_stacktrace absl_symbolize
)
# test leak_check_test # test leak_check_test
list(APPEND LEAK_CHECK_TEST_SRC "leak_check_test.cc") list(APPEND LEAK_CHECK_TEST_SRC "leak_check_test.cc")

View file

@ -0,0 +1,351 @@
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "absl/debugging/failure_signal_handler.h"
#include "absl/base/config.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
#ifdef ABSL_HAVE_MMAP
#include <sys/mman.h>
#endif
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <csignal>
#include <cstring>
#include <ctime>
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/debugging/internal/examine_stack.h"
#include "absl/debugging/stacktrace.h"
#ifndef _WIN32
#define ABSL_HAVE_SIGACTION
#endif
namespace absl {
ABSL_CONST_INIT static FailureSignalHandlerOptions fsh_options;
// Resets the signal handler for signo to the default action for that
// signal, then raises the signal.
static void RaiseToDefaultHandler(int signo) {
signal(signo, SIG_DFL);
raise(signo);
}
struct FailureSignalData {
const int signo;
const char* const as_string;
#ifdef ABSL_HAVE_SIGACTION
struct sigaction previous_action;
// StructSigaction is used to silence -Wmissing-field-initializers.
using StructSigaction = struct sigaction;
#define FSD_PREVIOUS_INIT FailureSignalData::StructSigaction()
#else
void (*previous_handler)(int);
#define FSD_PREVIOUS_INIT SIG_DFL
#endif
};
ABSL_CONST_INIT static FailureSignalData failure_signal_data[] = {
{SIGSEGV, "SIGSEGV", FSD_PREVIOUS_INIT},
{SIGILL, "SIGILL", FSD_PREVIOUS_INIT},
{SIGFPE, "SIGFPE", FSD_PREVIOUS_INIT},
{SIGABRT, "SIGABRT", FSD_PREVIOUS_INIT},
{SIGTERM, "SIGTERM", FSD_PREVIOUS_INIT},
#ifndef _WIN32
{SIGBUS, "SIGBUS", FSD_PREVIOUS_INIT},
{SIGTRAP, "SIGTRAP", FSD_PREVIOUS_INIT},
#endif
};
#undef FSD_PREVIOUS_INIT
static void RaiseToPreviousHandler(int signo) {
// Search for the previous handler.
for (const auto& it : failure_signal_data) {
if (it.signo == signo) {
#ifdef ABSL_HAVE_SIGACTION
sigaction(signo, &it.previous_action, nullptr);
#else
signal(signo, it.previous_handler);
#endif
raise(signo);
return;
}
}
// Not found, use the default handler.
RaiseToDefaultHandler(signo);
}
namespace debugging_internal {
const char* FailureSignalToString(int signo) {
for (const auto& it : failure_signal_data) {
if (it.signo == signo) {
return it.as_string;
}
}
return "";
}
} // namespace debugging_internal
#ifndef _WIN32
static bool SetupAlternateStackOnce() {
const size_t page_mask = getpagesize() - 1;
size_t stack_size = (std::max(SIGSTKSZ, 65536) + page_mask) & ~page_mask;
#if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \
defined(THREAD_SANITIZER)
// Account for sanitizer instrumentation requiring additional stack space.
stack_size *= 5;
#endif
stack_t sigstk;
memset(&sigstk, 0, sizeof(sigstk));
sigstk.ss_size = stack_size;
#ifdef ABSL_HAVE_MMAP
#ifndef MAP_STACK
#define MAP_STACK 0
#endif
sigstk.ss_sp = mmap(nullptr, sigstk.ss_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
if (sigstk.ss_sp == MAP_FAILED) {
ABSL_RAW_LOG(FATAL, "mmap() for alternate signal stack failed");
}
#else
sigstk.ss_sp = malloc(sigstk.ss_size);
if (sigstk.ss_sp == nullptr) {
ABSL_RAW_LOG(FATAL, "malloc() for alternate signal stack failed");
}
#endif
if (sigaltstack(&sigstk, nullptr) != 0) {
ABSL_RAW_LOG(FATAL, "sigaltstack() failed with errno=%d", errno);
}
return true;
}
#endif
// Sets up an alternate stack for signal handlers once.
// Returns the appropriate flag for sig_action.sa_flags
// if the system supports using an alternate stack.
static int MaybeSetupAlternateStack() {
#ifndef _WIN32
ABSL_ATTRIBUTE_UNUSED static const bool kOnce = SetupAlternateStackOnce();
return SA_ONSTACK;
#endif
return 0;
}
#ifdef ABSL_HAVE_SIGACTION
static void InstallOneFailureHandler(FailureSignalData* data,
void (*handler)(int, siginfo_t*, void*)) {
struct sigaction act;
memset(&act, 0, sizeof(act));
sigemptyset(&act.sa_mask);
act.sa_flags |= SA_SIGINFO;
// SA_NODEFER is required to handle SIGABRT from
// ImmediateAbortSignalHandler().
act.sa_flags |= SA_NODEFER;
if (fsh_options.use_alternate_stack) {
act.sa_flags |= MaybeSetupAlternateStack();
}
act.sa_sigaction = handler;
ABSL_RAW_CHECK(sigaction(data->signo, &act, &data->previous_action) == 0,
"sigaction() failed");
}
#else
static void InstallOneFailureHandler(FailureSignalData* data,
void (*handler)(int)) {
data->previous_handler = signal(data->signo, handler);
ABSL_RAW_CHECK(data->previous_handler != SIG_ERR, "signal() failed");
}
#endif
static void WriteToStderr(const char* data) {
int old_errno = errno;
absl::raw_logging_internal::SafeWriteToStderr(data, strlen(data));
errno = old_errno;
}
static void WriteSignalMessage(int signo, void (*writerfn)(const char*)) {
char buf[64];
const char* const signal_string =
debugging_internal::FailureSignalToString(signo);
if (signal_string != nullptr && signal_string[0] != '\0') {
snprintf(buf, sizeof(buf), "*** %s received at time=%ld ***\n",
signal_string,
static_cast<long>(time(nullptr))); // NOLINT(runtime/int)
} else {
snprintf(buf, sizeof(buf), "*** Signal %d received at time=%ld ***\n",
signo, static_cast<long>(time(nullptr))); // NOLINT(runtime/int)
}
writerfn(buf);
}
// `void*` might not be big enough to store `void(*)(const char*)`.
struct WriterFnStruct {
void (*writerfn)(const char*);
};
// Many of the absl::debugging_internal::Dump* functions in
// examine_stack.h take a writer function pointer that has a void* arg
// for historical reasons. failure_signal_handler_writer only takes a
// data pointer. This function converts between these types.
static void WriterFnWrapper(const char* data, void* arg) {
static_cast<WriterFnStruct*>(arg)->writerfn(data);
}
// Convenient wrapper around DumpPCAndFrameSizesAndStackTrace() for signal
// handlers. "noinline" so that GetStackFrames() skips the top-most stack
// frame for this function.
ABSL_ATTRIBUTE_NOINLINE static void WriteStackTrace(
void* ucontext, bool symbolize_stacktrace,
void (*writerfn)(const char*, void*), void* writerfn_arg) {
constexpr int kNumStackFrames = 32;
void* stack[kNumStackFrames];
int frame_sizes[kNumStackFrames];
int min_dropped_frames;
int depth = absl::GetStackFramesWithContext(
stack, frame_sizes, kNumStackFrames,
1, // Do not include this function in stack trace.
ucontext, &min_dropped_frames);
absl::debugging_internal::DumpPCAndFrameSizesAndStackTrace(
absl::debugging_internal::GetProgramCounter(ucontext), stack, frame_sizes,
depth, min_dropped_frames, symbolize_stacktrace, writerfn, writerfn_arg);
}
// Called by FailureSignalHandler() to write the failure info. It is
// called once with writerfn set to WriteToStderr() and then possibly
// with writerfn set to the user provided function.
static void WriteFailureInfo(int signo, void* ucontext,
void (*writerfn)(const char*)) {
WriterFnStruct writerfn_struct{writerfn};
WriteSignalMessage(signo, writerfn);
WriteStackTrace(ucontext, fsh_options.symbolize_stacktrace, WriterFnWrapper,
&writerfn_struct);
}
// absl::SleepFor() can't be used here since AbslInternalSleepFor()
// may be overridden to do something that isn't async-signal-safe on
// some platforms.
static void PortableSleepForSeconds(int seconds) {
#ifdef _WIN32
Sleep(seconds * 1000);
#else
struct timespec sleep_time;
sleep_time.tv_sec = seconds;
sleep_time.tv_nsec = 0;
while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {}
#endif
}
#ifdef ABSL_HAVE_ALARM
// FailureSignalHandler() installs this as a signal handler for
// SIGALRM, then sets an alarm to be delivered to the program after a
// set amount of time. If FailureSignalHandler() hangs for more than
// the alarm timeout, ImmediateAbortSignalHandler() will abort the
// program.
static void ImmediateAbortSignalHandler(int) {
RaiseToDefaultHandler(SIGABRT);
}
#endif
// absl::base_internal::GetTID() returns pid_t on most platforms, but
// returns absl::base_internal::pid_t on Windows.
using GetTidType = decltype(absl::base_internal::GetTID());
ABSL_CONST_INIT static std::atomic<GetTidType> failed_tid(0);
#ifndef ABSL_HAVE_SIGACTION
static void FailureSignalHandler(int signo) {
void* ucontext = nullptr;
#else
static void FailureSignalHandler(int signo, siginfo_t*,
void* ucontext) {
#endif
const GetTidType this_tid = absl::base_internal::GetTID();
GetTidType previous_failed_tid = 0;
if (!failed_tid.compare_exchange_strong(
previous_failed_tid, static_cast<intptr_t>(this_tid),
std::memory_order_acq_rel, std::memory_order_relaxed)) {
ABSL_RAW_LOG(
ERROR,
"Signal %d raised at PC=%p while already in FailureSignalHandler()",
signo, absl::debugging_internal::GetProgramCounter(ucontext));
if (this_tid != previous_failed_tid) {
// Another thread is already in FailureSignalHandler(), so wait
// a bit for it to finish. If the other thread doesn't kill us,
// we do so after sleeping.
PortableSleepForSeconds(3);
RaiseToDefaultHandler(signo);
// The recursively raised signal may be blocked until we return.
return;
}
}
#ifdef ABSL_HAVE_ALARM
// Set an alarm to abort the program in case this code hangs or deadlocks.
if (fsh_options.alarm_on_failure_secs > 0) {
alarm(0); // Cancel any existing alarms.
signal(SIGALRM, ImmediateAbortSignalHandler);
alarm(fsh_options.alarm_on_failure_secs);
}
#endif
// First write to stderr.
WriteFailureInfo(signo, ucontext, WriteToStderr);
// Riskier code (because it is less likely to be async-signal-safe)
// goes after this point.
if (fsh_options.writerfn != nullptr) {
WriteFailureInfo(signo, ucontext, fsh_options.writerfn);
}
if (fsh_options.call_previous_handler) {
RaiseToPreviousHandler(signo);
} else {
RaiseToDefaultHandler(signo);
}
}
void InstallFailureSignalHandler(const FailureSignalHandlerOptions& options) {
fsh_options = options;
for (auto& it : failure_signal_data) {
InstallOneFailureHandler(&it, FailureSignalHandler);
}
}
} // namespace absl

View file

@ -0,0 +1,103 @@
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This module allows the programmer to install a signal handler that
// dumps useful debugging information (like a stacktrace) on program
// failure. To use this functionality, call
// absl::InstallFailureSignalHandler() very early in your program,
// usually in the first few lines of main():
//
// int main(int argc, char** argv) {
// absl::InitializeSymbolizer(argv[0]);
// absl::FailureSignalHandlerOptions options;
// absl::InstallFailureSignalHandler(options);
// DoSomethingInteresting();
// return 0;
// }
#ifndef ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_
#define ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_
namespace absl {
// Options struct for absl::InstallFailureSignalHandler().
struct FailureSignalHandlerOptions {
// If true, try to symbolize the stacktrace emitted on failure.
bool symbolize_stacktrace = true;
// If true, try to run signal handlers on an alternate stack (if
// supported on the given platform). This is useful in the case
// where the program crashes due to a stack overflow. By running on
// a alternate stack, the signal handler might be able to run even
// when the normal stack space has been exausted. The downside of
// using an alternate stack is that extra memory for the alternate
// stack needs to be pre-allocated.
bool use_alternate_stack = true;
// If positive, FailureSignalHandler() sets an alarm to be delivered
// to the program after this many seconds, which will immediately
// abort the program. This is useful in the potential case where
// FailureSignalHandler() itself is hung or deadlocked.
int alarm_on_failure_secs = 3;
// If false, after absl::FailureSignalHandler() runs, the signal is
// raised to the default handler for that signal (which normally
// terminates the program).
//
// If true, after absl::FailureSignalHandler() runs, it will call
// the previously registered signal handler for the signal that was
// received (if one was registered). This can be used to chain
// signal handlers.
//
// IMPORTANT: If true, the chained fatal signal handlers must not
// try to recover from the fatal signal. Instead, they should
// terminate the program via some mechanism, like raising the
// default handler for the signal, or by calling _exit().
// absl::FailureSignalHandler() may put parts of the Abseil
// library into a state that cannot be recovered from.
bool call_previous_handler = false;
// If not null, this function may be called with a std::string argument
// containing failure data. This function is used as a hook to write
// the failure data to a secondary location, for instance, to a log
// file. This function may also be called with a null data
// argument. This is a hint that this is a good time to flush any
// buffered data before the program may be terminated. Consider
// flushing any buffered data in all calls to this function.
//
// Since this function runs in a signal handler, it should be
// async-signal-safe if possible.
// See http://man7.org/linux/man-pages/man7/signal-safety.7.html
void (*writerfn)(const char*) = nullptr;
};
// Installs a signal handler for the common failure signals SIGSEGV,
// SIGILL, SIGFPE, SIGABRT, SIGTERM, SIGBUG, and SIGTRAP (if they
// exist on the given platform). The signal handler dumps program
// failure data in a unspecified format to stderr. The data dumped by
// the signal handler includes information that may be useful in
// debugging the failure. This may include the program counter, a
// stacktrace, and register information on some systems. Do not rely
// on the exact format of the output; it is subject to change.
void InstallFailureSignalHandler(const FailureSignalHandlerOptions& options);
namespace debugging_internal {
const char* FailureSignalToString(int signo);
} // namespace debugging_internal
} // namespace absl
#endif // ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_

View file

@ -0,0 +1,146 @@
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "absl/debugging/failure_signal_handler.h"
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
namespace {
#if GTEST_HAS_DEATH_TEST
// For the parameterized death tests. GetParam() returns the signal number.
using FailureSignalHandlerDeathTest = ::testing::TestWithParam<int>;
// This function runs in a fork()ed process on most systems.
void InstallHandlerAndRaise(int signo) {
absl::InstallFailureSignalHandler(absl::FailureSignalHandlerOptions());
raise(signo);
}
TEST_P(FailureSignalHandlerDeathTest, AbslFailureSignal) {
const int signo = GetParam();
std::string exit_regex = absl::StrCat(
"\\*\\*\\* ", absl::debugging_internal::FailureSignalToString(signo),
" received at time=");
#ifndef _WIN32
EXPECT_EXIT(InstallHandlerAndRaise(signo), testing::KilledBySignal(signo),
exit_regex);
#else
// Windows doesn't have testing::KilledBySignal().
EXPECT_DEATH(InstallHandlerAndRaise(signo), exit_regex);
#endif
}
ABSL_CONST_INIT FILE* error_file = nullptr;
void WriteToErrorFile(const char* msg) {
if (msg != nullptr) {
ABSL_RAW_CHECK(fwrite(msg, strlen(msg), 1, error_file) == 1,
"fwrite() failed");
}
ABSL_RAW_CHECK(fflush(error_file) == 0, "fflush() failed");
}
std::string GetTmpDir() {
// TEST_TMPDIR is set by Bazel. Try the others when not running under Bazel.
static const char* const kTmpEnvVars[] = {"TEST_TMPDIR", "TMPDIR", "TEMP",
"TEMPDIR", "TMP"};
for (const char* const var : kTmpEnvVars) {
const char* tmp_dir = std::getenv(var);
if (tmp_dir != nullptr) {
return tmp_dir;
}
}
// Try something reasonable.
return "/tmp";
}
// This function runs in a fork()ed process on most systems.
void InstallHandlerWithWriteToFileAndRaise(const char* file, int signo) {
error_file = fopen(file, "w");
ABSL_RAW_CHECK(error_file != nullptr, "Failed create error_file");
absl::FailureSignalHandlerOptions options;
options.writerfn = WriteToErrorFile;
absl::InstallFailureSignalHandler(options);
raise(signo);
}
TEST_P(FailureSignalHandlerDeathTest, AbslFatalSignalsWithWriterFn) {
const int signo = GetParam();
std::string tmp_dir = GetTmpDir();
std::string file = absl::StrCat(tmp_dir, "/signo_", signo);
std::string exit_regex = absl::StrCat(
"\\*\\*\\* ", absl::debugging_internal::FailureSignalToString(signo),
" received at time=");
#ifndef _WIN32
EXPECT_EXIT(InstallHandlerWithWriteToFileAndRaise(file.c_str(), signo),
testing::KilledBySignal(signo), exit_regex);
#else
// Windows doesn't have testing::KilledBySignal().
EXPECT_DEATH(InstallHandlerWithWriteToFileAndRaise(file.c_str(), signo),
exit_regex);
#endif
// Open the file in this process and check its contents.
std::fstream error_output(file);
ASSERT_TRUE(error_output.is_open()) << file;
std::string error_line;
std::getline(error_output, error_line);
EXPECT_TRUE(absl::StartsWith(
error_line,
absl::StrCat("*** ",
absl::debugging_internal::FailureSignalToString(signo),
" received at ")));
if (absl::debugging_internal::StackTraceWorksForTest()) {
std::getline(error_output, error_line);
EXPECT_TRUE(absl::StartsWith(error_line, "PC: "));
}
}
constexpr int kFailureSignals[] = {
SIGSEGV, SIGILL, SIGFPE, SIGABRT, SIGTERM,
#ifndef _WIN32
SIGBUS, SIGTRAP,
#endif
};
INSTANTIATE_TEST_CASE_P(AbslDeathTest, FailureSignalHandlerDeathTest,
::testing::ValuesIn(kFailureSignals));
#endif // GTEST_HAS_DEATH_TEST
} // namespace
int main(int argc, char** argv) {
absl::InitializeSymbolizer(argv[0]);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View file

@ -30,11 +30,6 @@ using ThrowingThrowerVec = std::vector<Thrower, ThrowingAlloc>;
namespace { namespace {
class AnyExceptionSafety : public ::testing::Test {
private:
absl::ConstructorTracker inspector_;
};
testing::AssertionResult AnyInvariants(absl::any* a) { testing::AssertionResult AnyInvariants(absl::any* a) {
using testing::AssertionFailure; using testing::AssertionFailure;
using testing::AssertionSuccess; using testing::AssertionSuccess;
@ -84,22 +79,24 @@ testing::AssertionResult AnyIsEmpty(absl::any* a) {
<< absl::any_cast<Thrower>(*a).Get(); << absl::any_cast<Thrower>(*a).Get();
} }
TEST_F(AnyExceptionSafety, Ctors) { TEST(AnyExceptionSafety, Ctors) {
Thrower val(1); Thrower val(1);
auto with_val = absl::TestThrowingCtor<absl::any>(val); absl::TestThrowingCtor<absl::any>(val);
auto copy = absl::TestThrowingCtor<absl::any>(with_val);
auto in_place = Thrower copy(val);
absl::TestThrowingCtor<absl::any>(absl::in_place_type_t<Thrower>(), 1); absl::TestThrowingCtor<absl::any>(copy);
auto in_place_list = absl::TestThrowingCtor<absl::any>(
absl::in_place_type_t<ThrowerVec>(), ThrowerList{val}); absl::TestThrowingCtor<absl::any>(absl::in_place_type_t<Thrower>(), 1);
auto in_place_list_again =
absl::TestThrowingCtor<absl::any, absl::TestThrowingCtor<absl::any>(absl::in_place_type_t<ThrowerVec>(),
absl::in_place_type_t<ThrowingThrowerVec>, ThrowerList{val});
ThrowerList, ThrowingAlloc>(
absl::in_place_type_t<ThrowingThrowerVec>(), {val}, ThrowingAlloc()); absl::TestThrowingCtor<absl::any, absl::in_place_type_t<ThrowingThrowerVec>,
ThrowerList, ThrowingAlloc>(
absl::in_place_type_t<ThrowingThrowerVec>(), {val}, ThrowingAlloc());
} }
TEST_F(AnyExceptionSafety, Assignment) { TEST(AnyExceptionSafety, Assignment) {
auto original = auto original =
absl::any(absl::in_place_type_t<Thrower>(), 1, absl::no_throw_ctor); absl::any(absl::in_place_type_t<Thrower>(), 1, absl::no_throw_ctor);
auto any_is_strong = [original](absl::any* ap) { auto any_is_strong = [original](absl::any* ap) {
@ -139,7 +136,7 @@ TEST_F(AnyExceptionSafety, Assignment) {
} }
// libstdc++ std::any fails this test // libstdc++ std::any fails this test
#if !defined(ABSL_HAVE_STD_ANY) #if !defined(ABSL_HAVE_STD_ANY)
TEST_F(AnyExceptionSafety, Emplace) { TEST(AnyExceptionSafety, Emplace) {
auto initial_val = auto initial_val =
absl::any{absl::in_place_type_t<Thrower>(), 1, absl::no_throw_ctor}; absl::any{absl::in_place_type_t<Thrower>(), 1, absl::no_throw_ctor};
auto one_tester = absl::MakeExceptionSafetyTester() auto one_tester = absl::MakeExceptionSafetyTester()