Export of internal Abseil changes.

--
ac7508120c60dfe689c40929e416b6a486f83ee3 by Gennadiy Rozental <rogeeff@google.com>:

Internal change

PiperOrigin-RevId: 206912089

--
bd709faba88565367b6d337466e6456481b5f3e8 by Matt Calabrese <calabrese@google.com>:

Implement `std::experimental::is_detected` in type_traits internals and move `is_detected_convertible` from variant's internals to type_traits internals. This is in preparation of creating workarounds for broken standard traits.

PiperOrigin-RevId: 206825598

--
0dbddea569370eb9b6348cee172d1874f9046eb4 by Jorg Brown <jorg@google.com>:

Support users who turn on floating-point conversion warnings

PiperOrigin-RevId: 206813209

--
30991f757c8f0100584619d8a9c41897d029f112 by Jorg Brown <jorg@google.com>:

Speed up the absl::Seconds() function for floating-point values, roughly by 4.5x, since
we can take advantage of the fact that we're just taking a floating-point number and
splitting it into its integral and fractional parts.

PiperOrigin-RevId: 206806270

--
6883837176838aa5a517e7a8cb4c99afd24c0d12 by Jon Cohen <cohenjon@google.com>:

Remove the DISABLE_INSTALL from absl_container.  It doesn't do anything.

PiperOrigin-RevId: 206802544

--
92ab14fed06e6dd1f01a0284bd7f95d3e2c0c3d8 by Jon Cohen <cohenjon@google.com>:

Internal change

PiperOrigin-RevId: 206776244

--
17b76c7f364ac562d9e0faeca0320f63aa3fdb85 by Jorg Brown <jorg@google.com>:

Fix absl/strings:numbers_test flakiness due to exceeding the 1-minute timeout

PiperOrigin-RevId: 206763175

--
6637843f2e198b8efd90e5577fbc86bdea43b2cc by Abseil Team <absl-team@google.com>:

Adds templated allocator to absl::FixedArray with corresponding tests

PiperOrigin-RevId: 206354178

--
bced22f81add828c9b4c60eb45554d36c22e2f96 by Abseil Team <absl-team@google.com>:

Adds templated allocator to absl::FixedArray with corresponding tests

PiperOrigin-RevId: 206347377

--
75be14a71d2d5e335812d5b7670120271fb5bd79 by Abseil Team <absl-team@google.com>:

Internal change.

PiperOrigin-RevId: 206326935

--
6929e43f4c7898b1f51e441911a19092a06fbf97 by Abseil Team <absl-team@google.com>:

Adds templated allocator to absl::FixedArray with corresponding tests

PiperOrigin-RevId: 206326368

--
55ae34b75ff029eb267f9519e577bab8a575b487 by Abseil Team <absl-team@google.com>:

Internal change.

PiperOrigin-RevId: 206233448

--
6950a8ccddf35d451eec2d02cd28a797c8b7cf6a by Matt Kulukundis <kfm@google.com>:

Internal change

PiperOrigin-RevId: 206035613
GitOrigin-RevId: ac7508120c60dfe689c40929e416b6a486f83ee3
Change-Id: I675605abbedab6b3ac9aa82195cbd059ff7c82b1
This commit is contained in:
Abseil Team 2018-08-01 04:34:12 -07:00 committed by Derek Mauro
parent 9acad869d2
commit 2125e6444a
17 changed files with 1066 additions and 237 deletions

View file

@ -25,11 +25,31 @@ package(default_visibility = ["//visibility:public"])
licenses(["notice"]) # Apache 2.0
cc_library(
name = "compressed_tuple",
hdrs = ["internal/compressed_tuple.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
"//absl/utility",
],
)
cc_test(
name = "compressed_tuple_test",
srcs = ["internal/compressed_tuple_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":compressed_tuple",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "fixed_array",
hdrs = ["fixed_array.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [
":compressed_tuple",
"//absl/algorithm",
"//absl/base:core_headers",
"//absl/base:dynamic_annotations",

View file

@ -52,7 +52,6 @@ absl_library(
${TEST_INSTANCE_TRACKER_LIB_SRC}
PUBLIC_LIBRARIES
absl::container
DISABLE_INSTALL
)

View file

@ -47,6 +47,7 @@
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/memory/memory.h"
namespace absl {
@ -76,73 +77,99 @@ constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
// heap allocation, it will do so with global `::operator new[]()` and
// `::operator delete[]()`, even if T provides class-scope overrides for these
// operators.
template <typename T, size_t inlined = kFixedArrayUseDefault>
template <typename T, size_t N = kFixedArrayUseDefault,
typename A = std::allocator<T>>
class FixedArray {
static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
"Arrays with unknown bounds cannot be used with FixedArray.");
static constexpr size_t kInlineBytesDefault = 256;
using AllocatorTraits = std::allocator_traits<A>;
// std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
// but this seems to be mostly pedantic.
template <typename Iterator>
using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
typename std::iterator_traits<Iterator>::iterator_category,
std::forward_iterator_tag>::value>;
static constexpr bool NoexceptCopyable() {
return std::is_nothrow_copy_constructible<StorageElement>::value &&
absl::allocator_is_nothrow<allocator_type>::value;
}
static constexpr bool NoexceptMovable() {
return std::is_nothrow_move_constructible<StorageElement>::value &&
absl::allocator_is_nothrow<allocator_type>::value;
}
static constexpr bool DefaultConstructorIsNonTrivial() {
return !absl::is_trivially_default_constructible<StorageElement>::value;
}
public:
using value_type = T;
using iterator = T*;
using const_iterator = const T*;
using allocator_type = typename AllocatorTraits::allocator_type;
using value_type = typename allocator_type::value_type;
using pointer = typename allocator_type::pointer;
using const_pointer = typename allocator_type::const_pointer;
using reference = typename allocator_type::reference;
using const_reference = typename allocator_type::const_reference;
using size_type = typename allocator_type::size_type;
using difference_type = typename allocator_type::difference_type;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using difference_type = ptrdiff_t;
using size_type = size_t;
static constexpr size_type inline_elements =
inlined == kFixedArrayUseDefault
? kInlineBytesDefault / sizeof(value_type)
: inlined;
(N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
: static_cast<size_type>(N));
FixedArray(const FixedArray& other)
: FixedArray(other.begin(), other.end()) {}
FixedArray(
const FixedArray& other,
const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
: FixedArray(other.begin(), other.end(), a) {}
FixedArray(FixedArray&& other) noexcept(
absl::conjunction<absl::allocator_is_nothrow<std::allocator<value_type>>,
std::is_nothrow_move_constructible<value_type>>::value)
FixedArray(
FixedArray&& other,
const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
: FixedArray(std::make_move_iterator(other.begin()),
std::make_move_iterator(other.end())) {}
std::make_move_iterator(other.end()), a) {}
// Creates an array object that can store `n` elements.
// Note that trivially constructible elements will be uninitialized.
explicit FixedArray(size_type n) : storage_(n) {
absl::memory_internal::uninitialized_default_construct_n(storage_.begin(),
size());
explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
: storage_(n, a) {
if (DefaultConstructorIsNonTrivial()) {
memory_internal::ConstructStorage(storage_.alloc(), storage_.begin(),
storage_.end());
}
}
// Creates an array initialized with `n` copies of `val`.
FixedArray(size_type n, const value_type& val) : storage_(n) {
std::uninitialized_fill_n(data(), size(), val);
FixedArray(size_type n, const value_type& val,
const allocator_type& a = allocator_type())
: storage_(n, a) {
memory_internal::ConstructStorage(storage_.alloc(), storage_.begin(),
storage_.end(), val);
}
// Creates an array initialized with the size and contents of `init_list`.
FixedArray(std::initializer_list<value_type> init_list,
const allocator_type& a = allocator_type())
: FixedArray(init_list.begin(), init_list.end(), a) {}
// Creates an array initialized with the elements from the input
// range. The array's size will always be `std::distance(first, last)`.
// REQUIRES: Iterator must be a forward_iterator or better.
template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
FixedArray(Iterator first, Iterator last)
: storage_(std::distance(first, last)) {
std::uninitialized_copy(first, last, data());
FixedArray(Iterator first, Iterator last,
const allocator_type& a = allocator_type())
: storage_(std::distance(first, last), a) {
memory_internal::CopyToStorageFromRange(storage_.alloc(), storage_.begin(),
first, last);
}
FixedArray(std::initializer_list<value_type> init_list)
: FixedArray(init_list.begin(), init_list.end()) {}
~FixedArray() noexcept {
for (const StorageElement& cur : storage_) {
cur.~StorageElement();
for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
AllocatorTraits::destroy(*storage_.alloc(), cur);
}
}
@ -332,7 +359,6 @@ class FixedArray {
friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
return !(lhs < rhs);
}
private:
// StorageElement
//
@ -364,6 +390,8 @@ class FixedArray {
using StorageElement =
absl::conditional_t<std::is_array<value_type>::value,
StorageElementWrapper<value_type>, value_type>;
using StorageElementBuffer =
absl::aligned_storage_t<sizeof(StorageElement), alignof(StorageElement)>;
static pointer AsValueType(pointer ptr) { return ptr; }
static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
@ -374,9 +402,6 @@ class FixedArray {
static_assert(alignof(StorageElement) == alignof(value_type), "");
struct NonEmptyInlinedStorage {
using StorageElementBuffer =
absl::aligned_storage_t<sizeof(StorageElement),
alignof(StorageElement)>;
StorageElement* data() {
return reinterpret_cast<StorageElement*>(inlined_storage_.data());
}
@ -386,8 +411,8 @@ class FixedArray {
void* RedzoneEnd() { return &redzone_end_ + 1; }
#endif // ADDRESS_SANITIZER
void AnnotateConstruct(size_t);
void AnnotateDestruct(size_t);
void AnnotateConstruct(size_type);
void AnnotateDestruct(size_type);
ADDRESS_SANITIZER_REDZONE(redzone_begin_);
std::array<StorageElementBuffer, inline_elements> inlined_storage_;
@ -396,8 +421,8 @@ class FixedArray {
struct EmptyInlinedStorage {
StorageElement* data() { return nullptr; }
void AnnotateConstruct(size_t) {}
void AnnotateDestruct(size_t) {}
void AnnotateConstruct(size_type) {}
void AnnotateDestruct(size_type) {}
};
using InlinedStorage =
@ -414,48 +439,57 @@ class FixedArray {
//
class Storage : public InlinedStorage {
public:
explicit Storage(size_type n) : data_(CreateStorage(n)), size_(n) {}
Storage(size_type n, const allocator_type& a)
: size_alloc_(n, a), data_(InitializeData()) {}
~Storage() noexcept {
if (UsingInlinedStorage(size())) {
this->AnnotateDestruct(size());
InlinedStorage::AnnotateDestruct(size());
} else {
std::allocator<StorageElement>().deallocate(begin(), size());
AllocatorTraits::deallocate(*alloc(), AsValueType(begin()), size());
}
}
size_type size() const { return size_; }
size_type size() const { return size_alloc_.template get<0>(); }
StorageElement* begin() const { return data_; }
StorageElement* end() const { return begin() + size(); }
allocator_type* alloc() {
return std::addressof(size_alloc_.template get<1>());
}
private:
static bool UsingInlinedStorage(size_type n) {
return n <= inline_elements;
}
StorageElement* CreateStorage(size_type n) {
if (UsingInlinedStorage(n)) {
this->AnnotateConstruct(n);
StorageElement* InitializeData() {
if (UsingInlinedStorage(size())) {
InlinedStorage::AnnotateConstruct(size());
return InlinedStorage::data();
} else {
return std::allocator<StorageElement>().allocate(n);
return reinterpret_cast<StorageElement*>(
AllocatorTraits::allocate(*alloc(), size()));
}
}
StorageElement* const data_;
const size_type size_;
// `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
StorageElement* data_;
};
const Storage storage_;
Storage storage_;
};
template <typename T, size_t N>
constexpr size_t FixedArray<T, N>::inline_elements;
template <typename T, size_t N, typename A>
constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
template <typename T, size_t N>
constexpr size_t FixedArray<T, N>::kInlineBytesDefault;
template <typename T, size_t N, typename A>
constexpr typename FixedArray<T, N, A>::size_type
FixedArray<T, N, A>::inline_elements;
template <typename T, size_t N>
void FixedArray<T, N>::NonEmptyInlinedStorage::AnnotateConstruct(size_t n) {
template <typename T, size_t N, typename A>
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
typename FixedArray<T, N, A>::size_type n) {
#ifdef ADDRESS_SANITIZER
if (!n) return;
ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n);
@ -464,8 +498,9 @@ void FixedArray<T, N>::NonEmptyInlinedStorage::AnnotateConstruct(size_t n) {
static_cast<void>(n); // Mark used when not in asan mode
}
template <typename T, size_t N>
void FixedArray<T, N>::NonEmptyInlinedStorage::AnnotateDestruct(size_t n) {
template <typename T, size_t N, typename A>
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
typename FixedArray<T, N, A>::size_type n) {
#ifdef ADDRESS_SANITIZER
if (!n) return;
ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd());
@ -473,6 +508,5 @@ void FixedArray<T, N>::NonEmptyInlinedStorage::AnnotateDestruct(size_t n) {
#endif // ADDRESS_SANITIZER
static_cast<void>(n); // Mark used when not in asan mode
}
} // namespace absl
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_

View file

@ -15,9 +15,11 @@
#include "absl/container/fixed_array.h"
#include <stdio.h>
#include <cstring>
#include <list>
#include <memory>
#include <numeric>
#include <scoped_allocator>
#include <stdexcept>
#include <string>
#include <vector>
@ -607,6 +609,216 @@ TEST(FixedArrayTest, Fill) {
empty.fill(fill_val);
}
// TODO(johnsoncj): Investigate InlinedStorage default initialization in GCC 4.x
#ifndef __GNUC__
TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) {
using T = char;
constexpr auto capacity = 10;
using FixedArrType = absl::FixedArray<T, capacity>;
using FixedArrBuffType =
absl::aligned_storage_t<sizeof(FixedArrType), alignof(FixedArrType)>;
constexpr auto scrubbed_bits = 0x95;
constexpr auto length = capacity / 2;
FixedArrBuffType buff;
std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrBuffType));
FixedArrType* arr =
::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length);
EXPECT_THAT(*arr, testing::Each(scrubbed_bits));
arr->~FixedArrType();
}
#endif // __GNUC__
// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator : public std::allocator<T> {
public:
using Alloc = std::allocator<T>;
using pointer = typename Alloc::pointer;
using size_type = typename Alloc::size_type;
CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {}
explicit CountingAllocator(int64_t* b)
: bytes_used_(b), instance_count_(nullptr) {}
CountingAllocator(int64_t* b, int64_t* a)
: bytes_used_(b), instance_count_(a) {}
template <typename U>
explicit CountingAllocator(const CountingAllocator<U>& x)
: Alloc(x),
bytes_used_(x.bytes_used_),
instance_count_(x.instance_count_) {}
pointer allocate(size_type n, const void* const hint = nullptr) {
assert(bytes_used_ != nullptr);
*bytes_used_ += n * sizeof(T);
return Alloc::allocate(n, hint);
}
void deallocate(pointer p, size_type n) {
Alloc::deallocate(p, n);
assert(bytes_used_ != nullptr);
*bytes_used_ -= n * sizeof(T);
}
template <typename... Args>
void construct(pointer p, Args&&... args) {
Alloc::construct(p, absl::forward<Args>(args)...);
if (instance_count_) {
*instance_count_ += 1;
}
}
void destroy(pointer p) {
Alloc::destroy(p);
if (instance_count_) {
*instance_count_ -= 1;
}
}
template <typename U>
class rebind {
public:
using other = CountingAllocator<U>;
};
int64_t* bytes_used_;
int64_t* instance_count_;
};
TEST(AllocatorSupportTest, CountInlineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated = 0;
int64_t active_instances = 0;
{
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
Alloc alloc(&allocated, &active_instances);
AllocFxdArr arr(ia, ia + inlined_size, alloc);
static_cast<void>(arr);
}
EXPECT_EQ(allocated, 0);
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, CountOutoflineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated = 0;
int64_t active_instances = 0;
{
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
Alloc alloc(&allocated, &active_instances);
AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
EXPECT_EQ(allocated, arr.size() * sizeof(int));
static_cast<void>(arr);
}
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, CountCopyInlineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated1 = 0;
int64_t allocated2 = 0;
int64_t active_instances = 0;
Alloc alloc(&allocated1, &active_instances);
Alloc alloc2(&allocated2, &active_instances);
{
int initial_value = 1;
AllocFxdArr arr1(inlined_size / 2, initial_value, alloc);
EXPECT_EQ(allocated1, 0);
AllocFxdArr arr2(arr1, alloc2);
EXPECT_EQ(allocated2, 0);
static_cast<void>(arr1);
static_cast<void>(arr2);
}
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated1 = 0;
int64_t allocated2 = 0;
int64_t active_instances = 0;
Alloc alloc(&allocated1, &active_instances);
Alloc alloc2(&allocated2, &active_instances);
{
int initial_value = 1;
AllocFxdArr arr1(inlined_size * 2, initial_value, alloc);
EXPECT_EQ(allocated1, arr1.size() * sizeof(int));
AllocFxdArr arr2(arr1, alloc2);
EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int));
static_cast<void>(arr1);
static_cast<void>(arr2);
}
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, SizeValAllocConstructor) {
using testing::AllOf;
using testing::Each;
using testing::SizeIs;
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
{
auto len = inlined_size / 2;
auto val = 0;
int64_t allocated = 0;
AllocFxdArr arr(len, val, Alloc(&allocated));
EXPECT_EQ(allocated, 0);
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
}
{
auto len = inlined_size * 2;
auto val = 0;
int64_t allocated = 0;
AllocFxdArr arr(len, val, Alloc(&allocated));
EXPECT_EQ(allocated, len * sizeof(int));
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
}
}
#ifdef ADDRESS_SANITIZER
TEST(FixedArrayTest, AddressSanitizerAnnotations1) {
absl::FixedArray<int, 32> a(10);
@ -655,5 +867,4 @@ TEST(FixedArrayTest, AddressSanitizerAnnotations4) {
EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow");
}
#endif // ADDRESS_SANITIZER
} // namespace

View file

@ -0,0 +1,175 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Helper class to perform the Empty Base Optimization.
// Ts can contain classes and non-classes, empty or not. For the ones that
// are empty classes, we perform the optimization. If all types in Ts are empty
// classes, then CompressedTuple<Ts...> is itself an empty class.
//
// To access the members, use member get<N>() function.
//
// Eg:
// absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2,
// t3);
// assert(value.get<0>() == 7);
// T1& t1 = value.get<1>();
// const T2& t2 = value.get<2>();
// ...
//
// http://en.cppreference.com/w/cpp/language/ebo
#ifndef ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_
#define ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/utility/utility.h"
#ifdef _MSC_VER
// We need to mark these classes with this declspec to ensure that
// CompressedTuple happens.
#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases)
#else // _MSC_VER
#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
#endif // _MSC_VER
namespace absl {
namespace container_internal {
template <typename... Ts>
class CompressedTuple;
namespace internal_compressed_tuple {
template <typename D, size_t I>
struct Elem;
template <typename... B, size_t I>
struct Elem<CompressedTuple<B...>, I>
: std::tuple_element<I, std::tuple<B...>> {};
template <typename D, size_t I>
using ElemT = typename Elem<D, I>::type;
// Use the __is_final intrinsic if available. Where it's not available, classes
// declared with the 'final' specifier cannot be used as CompressedTuple
// elements.
// TODO(sbenza): Replace this with std::is_final in C++14.
template <typename T>
constexpr bool IsFinal() {
#if defined(__clang__) || defined(__GNUC__)
return __is_final(T);
#else
return false;
#endif
}
template <typename T>
constexpr bool ShouldUseBase() {
return std::is_class<T>::value && std::is_empty<T>::value && !IsFinal<T>();
}
// The storage class provides two specializations:
// - For empty classes, it stores T as a base class.
// - For everything else, it stores T as a member.
template <typename D, size_t I, bool = ShouldUseBase<ElemT<D, I>>()>
struct Storage {
using T = ElemT<D, I>;
T value;
constexpr Storage() = default;
explicit constexpr Storage(T&& v) : value(absl::forward<T>(v)) {}
constexpr const T& get() const { return value; }
T& get() { return value; }
};
template <typename D, size_t I>
struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC Storage<D, I, true>
: ElemT<D, I> {
using T = internal_compressed_tuple::ElemT<D, I>;
constexpr Storage() = default;
explicit constexpr Storage(T&& v) : T(absl::forward<T>(v)) {}
constexpr const T& get() const { return *this; }
T& get() { return *this; }
};
template <typename D, typename I>
struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl;
template <typename... Ts, size_t... I>
struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
CompressedTupleImpl<CompressedTuple<Ts...>, absl::index_sequence<I...>>
// We use the dummy identity function through std::integral_constant to
// convince MSVC of accepting and expanding I in that context. Without it
// you would get:
// error C3548: 'I': parameter pack cannot be used in this context
: Storage<CompressedTuple<Ts...>,
std::integral_constant<size_t, I>::value>... {
constexpr CompressedTupleImpl() = default;
explicit constexpr CompressedTupleImpl(Ts&&... args)
: Storage<CompressedTuple<Ts...>, I>(absl::forward<Ts>(args))... {}
};
} // namespace internal_compressed_tuple
// Helper class to perform the Empty Base Class Optimization.
// Ts can contain classes and non-classes, empty or not. For the ones that
// are empty classes, we perform the CompressedTuple. If all types in Ts are
// empty classes, then CompressedTuple<Ts...> is itself an empty class.
//
// To access the members, use member .get<N>() function.
//
// Eg:
// absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2,
// t3);
// assert(value.get<0>() == 7);
// T1& t1 = value.get<1>();
// const T2& t2 = value.get<2>();
// ...
//
// http://en.cppreference.com/w/cpp/language/ebo
template <typename... Ts>
class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple
: private internal_compressed_tuple::CompressedTupleImpl<
CompressedTuple<Ts...>, absl::index_sequence_for<Ts...>> {
private:
template <int I>
using ElemT = internal_compressed_tuple::ElemT<CompressedTuple, I>;
public:
constexpr CompressedTuple() = default;
explicit constexpr CompressedTuple(Ts... base)
: CompressedTuple::CompressedTupleImpl(absl::forward<Ts>(base)...) {}
template <int I>
ElemT<I>& get() {
return internal_compressed_tuple::Storage<CompressedTuple, I>::get();
}
template <int I>
constexpr const ElemT<I>& get() const {
return internal_compressed_tuple::Storage<CompressedTuple, I>::get();
}
};
// Explicit specialization for a zero-element tuple
// (needed to avoid ambiguous overloads for the default constructor).
template <>
class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple<> {};
} // namespace container_internal
} // namespace absl
#undef ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
#endif // ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_

View file

@ -0,0 +1,166 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/compressed_tuple.h"
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace absl {
namespace container_internal {
namespace {
template <int>
struct Empty {};
template <typename T>
struct NotEmpty {
T value;
};
template <typename T, typename U>
struct TwoValues {
T value1;
U value2;
};
TEST(CompressedTupleTest, Sizeof) {
EXPECT_EQ(sizeof(int), sizeof(CompressedTuple<int>));
EXPECT_EQ(sizeof(int), sizeof(CompressedTuple<int, Empty<0>>));
EXPECT_EQ(sizeof(int), sizeof(CompressedTuple<int, Empty<0>, Empty<1>>));
EXPECT_EQ(sizeof(int),
sizeof(CompressedTuple<int, Empty<0>, Empty<1>, Empty<2>>));
EXPECT_EQ(sizeof(TwoValues<int, double>),
sizeof(CompressedTuple<int, NotEmpty<double>>));
EXPECT_EQ(sizeof(TwoValues<int, double>),
sizeof(CompressedTuple<int, Empty<0>, NotEmpty<double>>));
EXPECT_EQ(sizeof(TwoValues<int, double>),
sizeof(CompressedTuple<int, Empty<0>, NotEmpty<double>, Empty<1>>));
}
TEST(CompressedTupleTest, Access) {
struct S {
std::string x;
};
CompressedTuple<int, Empty<0>, S> x(7, {}, S{"ABC"});
EXPECT_EQ(sizeof(x), sizeof(TwoValues<int, S>));
EXPECT_EQ(7, x.get<0>());
EXPECT_EQ("ABC", x.get<2>().x);
}
TEST(CompressedTupleTest, NonClasses) {
CompressedTuple<int, const char*> x(7, "ABC");
EXPECT_EQ(7, x.get<0>());
EXPECT_STREQ("ABC", x.get<1>());
}
TEST(CompressedTupleTest, MixClassAndNonClass) {
CompressedTuple<int, const char*, Empty<0>, NotEmpty<double>> x(7, "ABC", {},
{1.25});
struct Mock {
int v;
const char* p;
double d;
};
EXPECT_EQ(sizeof(x), sizeof(Mock));
EXPECT_EQ(7, x.get<0>());
EXPECT_STREQ("ABC", x.get<1>());
EXPECT_EQ(1.25, x.get<3>().value);
}
TEST(CompressedTupleTest, Nested) {
CompressedTuple<int, CompressedTuple<int>,
CompressedTuple<int, CompressedTuple<int>>>
x(1, CompressedTuple<int>(2),
CompressedTuple<int, CompressedTuple<int>>(3, CompressedTuple<int>(4)));
EXPECT_EQ(1, x.get<0>());
EXPECT_EQ(2, x.get<1>().get<0>());
EXPECT_EQ(3, x.get<2>().get<0>());
EXPECT_EQ(4, x.get<2>().get<1>().get<0>());
CompressedTuple<Empty<0>, Empty<0>,
CompressedTuple<Empty<0>, CompressedTuple<Empty<0>>>>
y;
std::set<Empty<0>*> empties{&y.get<0>(), &y.get<1>(), &y.get<2>().get<0>(),
&y.get<2>().get<1>().get<0>()};
#ifdef _MSC_VER
// MSVC has a bug where many instances of the same base class are layed out in
// the same address when using __declspec(empty_bases).
// This will be fixed in a future version of MSVC.
int expected = 1;
#else
int expected = 4;
#endif
EXPECT_EQ(expected, sizeof(y));
EXPECT_EQ(expected, empties.size());
EXPECT_EQ(sizeof(y), sizeof(Empty<0>) * empties.size());
EXPECT_EQ(4 * sizeof(char),
sizeof(CompressedTuple<CompressedTuple<char, char>,
CompressedTuple<char, char>>));
EXPECT_TRUE(
(std::is_empty<CompressedTuple<CompressedTuple<Empty<0>>,
CompressedTuple<Empty<1>>>>::value));
}
TEST(CompressedTupleTest, Reference) {
int i = 7;
std::string s = "Very long std::string that goes in the heap";
CompressedTuple<int, int&, std::string, std::string&> x(i, i, s, s);
// Sanity check. We should have not moved from `s`
EXPECT_EQ(s, "Very long std::string that goes in the heap");
EXPECT_EQ(x.get<0>(), x.get<1>());
EXPECT_NE(&x.get<0>(), &x.get<1>());
EXPECT_EQ(&x.get<1>(), &i);
EXPECT_EQ(x.get<2>(), x.get<3>());
EXPECT_NE(&x.get<2>(), &x.get<3>());
EXPECT_EQ(&x.get<3>(), &s);
}
TEST(CompressedTupleTest, NoElements) {
CompressedTuple<> x;
static_cast<void>(x); // Silence -Wunused-variable.
EXPECT_TRUE(std::is_empty<CompressedTuple<>>::value);
}
TEST(CompressedTupleTest, Constexpr) {
constexpr CompressedTuple<int, double, CompressedTuple<int>> x(
7, 1.25, CompressedTuple<int>(5));
constexpr int x0 = x.get<0>();
constexpr double x1 = x.get<1>();
constexpr int x2 = x.get<2>().get<0>();
EXPECT_EQ(x0, 7);
EXPECT_EQ(x1, 1.25);
EXPECT_EQ(x2, 5);
}
#if defined(__clang__) || defined(__GNUC__)
TEST(CompressedTupleTest, EmptyFinalClass) {
struct S final {
int f() const { return 5; }
};
CompressedTuple<S> x;
EXPECT_EQ(x.get<0>().f(), 5);
}
#endif
} // namespace
} // namespace container_internal
} // namespace absl

View file

@ -641,38 +641,56 @@ struct default_allocator_is_nothrow : std::false_type {};
#endif
namespace memory_internal {
// TODO(b110200014): Implement proper backports
template <typename ForwardIt>
void DefaultConstruct(ForwardIt it) {
using value_type = typename std::iterator_traits<ForwardIt>::value_type;
::new (static_cast<void*>(std::addressof(*it))) value_type;
} // namespace memory_internal
#ifdef ABSL_HAVE_EXCEPTIONS
template <typename ForwardIt, typename Size>
void uninitialized_default_construct_n(ForwardIt first, Size size) {
for (ForwardIt cur = first; size > 0; static_cast<void>(++cur), --size) {
template <typename Allocator, typename StorageElement, typename... Args>
void ConstructStorage(Allocator* alloc, StorageElement* first,
StorageElement* last, const Args&... args) {
for (StorageElement* cur = first; cur != last; ++cur) {
try {
absl::memory_internal::DefaultConstruct(cur);
std::allocator_traits<Allocator>::construct(*alloc, cur, args...);
} catch (...) {
using value_type = typename std::iterator_traits<ForwardIt>::value_type;
for (; first != cur; ++first) {
first->~value_type();
while (cur != first) {
--cur;
std::allocator_traits<Allocator>::destroy(*alloc, cur);
}
throw;
}
}
}
template <typename Allocator, typename StorageElement, typename Iterator>
void CopyToStorageFromRange(Allocator* alloc, StorageElement* destination,
Iterator first, Iterator last) {
for (StorageElement* cur = destination; first != last;
static_cast<void>(++cur), static_cast<void>(++first)) {
try {
std::allocator_traits<Allocator>::construct(*alloc, cur, *first);
} catch (...) {
while (cur != destination) {
--cur;
std::allocator_traits<Allocator>::destroy(*alloc, cur);
}
throw;
}
}
}
#else // ABSL_HAVE_EXCEPTIONS
template <typename ForwardIt, typename Size>
void uninitialized_default_construct_n(ForwardIt first, Size size) {
for (; size > 0; static_cast<void>(++first), --size) {
absl::memory_internal::DefaultConstruct(first);
template <typename Allocator, typename StorageElement, typename... Args>
void ConstructStorage(Allocator* alloc, StorageElement* first,
StorageElement* last, const Args&... args) {
for (; first != last; ++first) {
std::allocator_traits<Allocator>::construct(*alloc, first, args...);
}
}
template <typename Allocator, typename StorageElement, typename Iterator>
void CopyToStorageFromRange(Allocator* alloc, StorageElement* destination,
Iterator first, Iterator last) {
for (; first != last;
static_cast<void>(++destination), static_cast<void>(++first)) {
std::allocator_traits<Allocator>::construct(*alloc, destination, *first);
}
}
#endif // ABSL_HAVE_EXCEPTIONS
} // namespace memory_internal
} // namespace absl
#endif // ABSL_MEMORY_MEMORY_H_

View file

@ -48,16 +48,5 @@ TEST(MakeUnique, CheckForLeaks) {
}));
}
TEST(MemoryInternal, UninitDefaultConstructNNonTrivial) {
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithInitialValue(ThrowerList{})
.WithOperation([&](ThrowerList* list_ptr) {
absl::memory_internal::uninitialized_default_construct_n(
list_ptr->data(), kLength);
})
.WithInvariants([&](...) { return true; })
.Test());
}
} // namespace
} // namespace absl

View file

@ -611,47 +611,4 @@ TEST(AllocatorNoThrowTest, CustomAllocator) {
EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);
}
TEST(MemoryInternal, UninitDefaultConstructNTrivial) {
constexpr int kInitialValue = 123;
constexpr int kExpectedValue = kInitialValue; // Expect no-op behavior
constexpr int len = 5;
struct TestObj {
int val;
};
static_assert(absl::is_trivially_default_constructible<TestObj>::value, "");
static_assert(absl::is_trivially_destructible<TestObj>::value, "");
TestObj objs[len];
for (auto& obj : objs) {
obj.val = kInitialValue;
}
absl::memory_internal::uninitialized_default_construct_n(objs, len);
for (auto& obj : objs) {
EXPECT_EQ(obj.val, kExpectedValue);
}
}
TEST(MemoryInternal, UninitDefaultConstructNNonTrivial) {
constexpr int kInitialValue = 123;
constexpr int kExpectedValue = 0; // Expect value-construction behavior
constexpr int len = 5;
struct TestObj {
int val{kExpectedValue};
};
static_assert(absl::is_trivially_destructible<TestObj>::value, "");
TestObj objs[len];
for (auto& obj : objs) {
obj.val = kInitialValue;
}
absl::memory_internal::uninitialized_default_construct_n(objs, len);
for (auto& obj : objs) {
EXPECT_EQ(obj.val, kExpectedValue);
}
}
} // namespace

View file

@ -44,6 +44,7 @@
namespace absl {
namespace type_traits_internal {
template <typename... Ts>
struct VoidTImpl {
using type = void;
@ -61,6 +62,49 @@ struct default_alignment_of_aligned_storage<Len,
static constexpr size_t value = Align;
};
////////////////////////////////
// Library Fundamentals V2 TS //
////////////////////////////////
// NOTE: The `is_detected` family of templates here differ from the library
// fundamentals specification in that for library fundamentals, `Op<Args...>` is
// evaluated as soon as the type `is_detected<Op, Args...>` undergoes
// substitution, regardless of whether or not the `::value` is accessed. That
// is inconsistent with all other standard traits and prevents lazy evaluation
// in larger contexts (such as if the `is_detected` check is a trailing argument
// of a `conjunction`. This implementation opts to instead be lazy in the same
// way that the standard traits are (this "defect" of the detection idiom
// specifications has been reported).
template <class Enabler, template <class...> class Op, class... Args>
struct is_detected_impl {
using type = std::false_type;
};
template <template <class...> class Op, class... Args>
struct is_detected_impl<typename VoidTImpl<Op<Args...>>::type, Op, Args...> {
using type = std::true_type;
};
template <template <class...> class Op, class... Args>
struct is_detected : is_detected_impl<void, Op, Args...>::type {};
template <class Enabler, class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl {
using type = std::false_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl<
typename std::enable_if<std::is_convertible<Op<Args...>, To>::value>::type,
To, Op, Args...> {
using type = std::true_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible
: is_detected_convertible_impl<void, To, Op, Args...>::type {};
} // namespace type_traits_internal
// void_t()

View file

@ -34,6 +34,83 @@ struct simple_pair {
struct Dummy {};
struct ReturnType {};
struct ConvertibleToReturnType {
operator ReturnType() const; // NOLINT
};
// Unique types used as parameter types for testing the detection idiom.
struct StructA {};
struct StructB {};
struct StructC {};
struct TypeWithBarFunction {
template <class T,
absl::enable_if_t<std::is_same<T&&, StructA&>::value, int> = 0>
ReturnType bar(T&&, const StructB&, StructC&&) &&; // NOLINT
};
struct TypeWithBarFunctionAndConvertibleReturnType {
template <class T,
absl::enable_if_t<std::is_same<T&&, StructA&>::value, int> = 0>
ConvertibleToReturnType bar(T&&, const StructB&, StructC&&) &&; // NOLINT
};
template <class Class, class... Ts>
using BarIsCallableImpl =
decltype(std::declval<Class>().bar(std::declval<Ts>()...));
template <class Class, class... T>
using BarIsCallable =
absl::type_traits_internal::is_detected<BarIsCallableImpl, Class, T...>;
template <class Class, class... T>
using BarIsCallableConv = absl::type_traits_internal::is_detected_convertible<
ReturnType, BarIsCallableImpl, Class, T...>;
// NOTE: Test of detail type_traits_internal::is_detected.
TEST(IsDetectedTest, BasicUsage) {
EXPECT_TRUE((BarIsCallable<TypeWithBarFunction, StructA&, const StructB&,
StructC>::value));
EXPECT_TRUE(
(BarIsCallable<TypeWithBarFunction, StructA&, StructB&, StructC>::value));
EXPECT_TRUE(
(BarIsCallable<TypeWithBarFunction, StructA&, StructB, StructC>::value));
EXPECT_FALSE((BarIsCallable<int, StructA&, const StructB&, StructC>::value));
EXPECT_FALSE((BarIsCallable<TypeWithBarFunction&, StructA&, const StructB&,
StructC>::value));
EXPECT_FALSE((BarIsCallable<TypeWithBarFunction, StructA, const StructB&,
StructC>::value));
}
// NOTE: Test of detail type_traits_internal::is_detected_convertible.
TEST(IsDetectedConvertibleTest, BasicUsage) {
EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunction, StructA&, const StructB&,
StructC>::value));
EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunction, StructA&, StructB&,
StructC>::value));
EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunction, StructA&, StructB,
StructC>::value));
EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType,
StructA&, const StructB&, StructC>::value));
EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType,
StructA&, StructB&, StructC>::value));
EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType,
StructA&, StructB, StructC>::value));
EXPECT_FALSE(
(BarIsCallableConv<int, StructA&, const StructB&, StructC>::value));
EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunction&, StructA&,
const StructB&, StructC>::value));
EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunction, StructA, const StructB&,
StructC>::value));
EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType&,
StructA&, const StructB&, StructC>::value));
EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType,
StructA, const StructB&, StructC>::value));
}
TEST(VoidTTest, BasicUsage) {
StaticAssertTypeEq<void, absl::void_t<Dummy>>();
StaticAssertTypeEq<void, absl::void_t<Dummy, Dummy, Dummy>>();
@ -718,8 +795,8 @@ TEST(TypeTraitsTest, TestDecay) {
ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int[][1]);
ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int());
ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int(float));
ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int(char, ...));
ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int(float)); // NOLINT
ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int(char, ...)); // NOLINT
}
struct TypeA {};

View file

@ -56,16 +56,11 @@ using testing::Eq;
using testing::MatchesRegex;
// Number of floats to test with.
// 10,000,000 is a reasonable default for a test that only takes a few seconds.
// 5,000,000 is a reasonable default for a test that only takes a few seconds.
// 1,000,000,000+ triggers checking for all possible mantissa values for
// double-precision tests. 2,000,000,000+ triggers checking for every possible
// single-precision float.
#ifdef _MSC_VER
// Use a smaller number on MSVC to avoid test time out (1 min)
const int kFloatNumCases = 5000000;
#else
const int kFloatNumCases = 10000000;
#endif
// This is a slow, brute-force routine to compute the exact base-10
// representation of a double-precision floating-point number. It

View file

@ -895,13 +895,10 @@ bool ParseDuration(const std::string& dur_string, Duration* d) {
*d = dur;
return true;
}
bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
return ParseDuration(text, dst);
}
std::string UnparseFlag(Duration d) {
return FormatDuration(d);
}
std::string UnparseFlag(Duration d) { return FormatDuration(d); }
} // namespace absl

View file

@ -27,47 +27,113 @@ namespace {
//
void BM_Duration_Factory_Nanoseconds(benchmark::State& state) {
int64_t i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Nanoseconds(1));
benchmark::DoNotOptimize(absl::Nanoseconds(i));
i += 314159;
}
}
BENCHMARK(BM_Duration_Factory_Nanoseconds);
void BM_Duration_Factory_Microseconds(benchmark::State& state) {
int64_t i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Microseconds(1));
benchmark::DoNotOptimize(absl::Microseconds(i));
i += 314;
}
}
BENCHMARK(BM_Duration_Factory_Microseconds);
void BM_Duration_Factory_Milliseconds(benchmark::State& state) {
int64_t i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Milliseconds(1));
benchmark::DoNotOptimize(absl::Milliseconds(i));
i += 1;
}
}
BENCHMARK(BM_Duration_Factory_Milliseconds);
void BM_Duration_Factory_Seconds(benchmark::State& state) {
int64_t i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Seconds(1));
benchmark::DoNotOptimize(absl::Seconds(i));
i += 1;
}
}
BENCHMARK(BM_Duration_Factory_Seconds);
void BM_Duration_Factory_Minutes(benchmark::State& state) {
int64_t i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Minutes(1));
benchmark::DoNotOptimize(absl::Minutes(i));
i += 1;
}
}
BENCHMARK(BM_Duration_Factory_Minutes);
void BM_Duration_Factory_Hours(benchmark::State& state) {
int64_t i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Hours(1));
benchmark::DoNotOptimize(absl::Hours(i));
i += 1;
}
}
BENCHMARK(BM_Duration_Factory_Hours);
void BM_Duration_Factory_DoubleNanoseconds(benchmark::State& state) {
double d = 1;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Nanoseconds(d));
d = d * 1.00000001 + 1;
}
}
BENCHMARK(BM_Duration_Factory_DoubleNanoseconds);
void BM_Duration_Factory_DoubleMicroseconds(benchmark::State& state) {
double d = 1e-3;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Microseconds(d));
d = d * 1.00000001 + 1e-3;
}
}
BENCHMARK(BM_Duration_Factory_DoubleMicroseconds);
void BM_Duration_Factory_DoubleMilliseconds(benchmark::State& state) {
double d = 1e-6;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Milliseconds(d));
d = d * 1.00000001 + 1e-6;
}
}
BENCHMARK(BM_Duration_Factory_DoubleMilliseconds);
void BM_Duration_Factory_DoubleSeconds(benchmark::State& state) {
double d = 1e-9;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Seconds(d));
d = d * 1.00000001 + 1e-9;
}
}
BENCHMARK(BM_Duration_Factory_DoubleSeconds);
void BM_Duration_Factory_DoubleMinutes(benchmark::State& state) {
double d = 1e-9;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Minutes(d));
d = d * 1.00000001 + 1e-9;
}
}
BENCHMARK(BM_Duration_Factory_DoubleMinutes);
void BM_Duration_Factory_DoubleHours(benchmark::State& state) {
double d = 1e-9;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Hours(d));
d = d * 1.00000001 + 1e-9;
}
}
BENCHMARK(BM_Duration_Factory_DoubleHours);
//
// Arithmetic
//

View file

@ -16,7 +16,9 @@
#include <cmath>
#include <cstdint>
#include <ctime>
#include <iomanip>
#include <limits>
#include <random>
#include <string>
#include "gmock/gmock.h"
@ -105,22 +107,22 @@ TEST(Duration, Factories) {
}
TEST(Duration, ToConversion) {
#define TEST_DURATION_CONVERSION(UNIT) \
do { \
const absl::Duration d = absl::UNIT(1.5); \
const absl::Duration z = absl::ZeroDuration(); \
const absl::Duration inf = absl::InfiniteDuration(); \
const double dbl_inf = std::numeric_limits<double>::infinity(); \
EXPECT_EQ(kint64min, absl::ToInt64##UNIT(-inf)); \
EXPECT_EQ(-1, absl::ToInt64##UNIT(-d)); \
EXPECT_EQ(0, absl::ToInt64##UNIT(z)); \
EXPECT_EQ(1, absl::ToInt64##UNIT(d)); \
EXPECT_EQ(kint64max, absl::ToInt64##UNIT(inf)); \
EXPECT_EQ(-dbl_inf, absl::ToDouble##UNIT(-inf)); \
EXPECT_EQ(-1.5, absl::ToDouble##UNIT(-d)); \
EXPECT_EQ(0, absl::ToDouble##UNIT(z)); \
EXPECT_EQ(1.5, absl::ToDouble##UNIT(d)); \
EXPECT_EQ(dbl_inf, absl::ToDouble##UNIT(inf)); \
#define TEST_DURATION_CONVERSION(UNIT) \
do { \
const absl::Duration d = absl::UNIT(1.5); \
constexpr absl::Duration z = absl::ZeroDuration(); \
constexpr absl::Duration inf = absl::InfiniteDuration(); \
constexpr double dbl_inf = std::numeric_limits<double>::infinity(); \
EXPECT_EQ(kint64min, absl::ToInt64##UNIT(-inf)); \
EXPECT_EQ(-1, absl::ToInt64##UNIT(-d)); \
EXPECT_EQ(0, absl::ToInt64##UNIT(z)); \
EXPECT_EQ(1, absl::ToInt64##UNIT(d)); \
EXPECT_EQ(kint64max, absl::ToInt64##UNIT(inf)); \
EXPECT_EQ(-dbl_inf, absl::ToDouble##UNIT(-inf)); \
EXPECT_EQ(-1.5, absl::ToDouble##UNIT(-d)); \
EXPECT_EQ(0, absl::ToDouble##UNIT(z)); \
EXPECT_EQ(1.5, absl::ToDouble##UNIT(d)); \
EXPECT_EQ(dbl_inf, absl::ToDouble##UNIT(inf)); \
} while (0)
TEST_DURATION_CONVERSION(Nanoseconds);
@ -1284,6 +1286,16 @@ TEST(Duration, SmallConversions) {
EXPECT_EQ(absl::Nanoseconds(1), absl::Seconds(0.875e-9));
EXPECT_EQ(absl::Nanoseconds(1), absl::Seconds(1.000e-9));
EXPECT_EQ(absl::ZeroDuration(), absl::Seconds(-0.124999999e-9));
EXPECT_EQ(-absl::Nanoseconds(1) / 4, absl::Seconds(-0.125e-9));
EXPECT_EQ(-absl::Nanoseconds(1) / 4, absl::Seconds(-0.250e-9));
EXPECT_EQ(-absl::Nanoseconds(1) / 2, absl::Seconds(-0.375e-9));
EXPECT_EQ(-absl::Nanoseconds(1) / 2, absl::Seconds(-0.500e-9));
EXPECT_EQ(-absl::Nanoseconds(3) / 4, absl::Seconds(-0.625e-9));
EXPECT_EQ(-absl::Nanoseconds(3) / 4, absl::Seconds(-0.750e-9));
EXPECT_EQ(-absl::Nanoseconds(1), absl::Seconds(-0.875e-9));
EXPECT_EQ(-absl::Nanoseconds(1), absl::Seconds(-1.000e-9));
timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
@ -1313,6 +1325,86 @@ TEST(Duration, SmallConversions) {
EXPECT_THAT(ToTimeval(absl::Nanoseconds(2000)), TimevalMatcher(tv));
}
void VerifySameAsMul(double time_as_seconds, int* const misses) {
auto direct_seconds = absl::Seconds(time_as_seconds);
auto mul_by_one_second = time_as_seconds * absl::Seconds(1);
if (direct_seconds != mul_by_one_second) {
if (*misses > 10) return;
ASSERT_LE(++(*misses), 10) << "Too many errors, not reporting more.";
EXPECT_EQ(direct_seconds, mul_by_one_second)
<< "given double time_as_seconds = " << std::setprecision(17)
<< time_as_seconds;
}
}
// For a variety of interesting durations, we find the exact point
// where one double converts to that duration, and the very next double
// converts to the next duration. For both of those points, verify that
// Seconds(point) returns the same duration as point * Seconds(1.0)
TEST(Duration, ToDoubleSecondsCheckEdgeCases) {
constexpr uint32_t kTicksPerSecond = absl::time_internal::kTicksPerSecond;
constexpr auto duration_tick = absl::time_internal::MakeDuration(0, 1u);
int misses = 0;
for (int64_t seconds = 0; seconds < 99; ++seconds) {
uint32_t tick_vals[] = {0, +999, +999999, +999999999, kTicksPerSecond - 1,
0, 1000, 1000000, 1000000000, kTicksPerSecond,
1, 1001, 1000001, 1000000001, kTicksPerSecond + 1,
2, 1002, 1000002, 1000000002, kTicksPerSecond + 2,
3, 1003, 1000003, 1000000003, kTicksPerSecond + 3,
4, 1004, 1000004, 1000000004, kTicksPerSecond + 4,
5, 6, 7, 8, 9};
for (uint32_t ticks : tick_vals) {
absl::Duration s_plus_t = absl::Seconds(seconds) + ticks * duration_tick;
for (absl::Duration d : {s_plus_t, -s_plus_t}) {
absl::Duration after_d = d + duration_tick;
EXPECT_NE(d, after_d);
EXPECT_EQ(after_d - d, duration_tick);
double low_edge = ToDoubleSeconds(d);
EXPECT_EQ(d, absl::Seconds(low_edge));
double high_edge = ToDoubleSeconds(after_d);
EXPECT_EQ(after_d, absl::Seconds(high_edge));
for (;;) {
double midpoint = low_edge + (high_edge - low_edge) / 2;
if (midpoint == low_edge || midpoint == high_edge) break;
absl::Duration mid_duration = absl::Seconds(midpoint);
if (mid_duration == d) {
low_edge = midpoint;
} else {
EXPECT_EQ(mid_duration, after_d);
high_edge = midpoint;
}
}
// Now low_edge is the highest double that converts to Duration d,
// and high_edge is the lowest double that converts to Duration after_d.
VerifySameAsMul(low_edge, &misses);
VerifySameAsMul(high_edge, &misses);
}
}
}
}
TEST(Duration, ToDoubleSecondsCheckRandom) {
std::random_device rd;
std::seed_seq seed({rd(), rd(), rd(), rd(), rd(), rd(), rd(), rd()});
std::mt19937_64 gen(seed);
// We want doubles distributed from 1/8ns up to 2^63, where
// as many values are tested from 1ns to 2ns as from 1sec to 2sec,
// so even distribute along a log-scale of those values, and
// exponentiate before using them. (9.223377e+18 is just slightly
// out of bounds for absl::Duration.)
std::uniform_real_distribution<double> uniform(std::log(0.125e-9),
std::log(9.223377e+18));
int misses = 0;
for (int i = 0; i < 1000000; ++i) {
double d = std::exp(uniform(gen));
VerifySameAsMul(d, &misses);
VerifySameAsMul(-d, &misses);
}
}
TEST(Duration, ConversionSaturation) {
absl::Duration d;

View file

@ -81,6 +81,7 @@ constexpr int64_t GetRepHi(Duration d);
constexpr uint32_t GetRepLo(Duration d);
constexpr Duration MakeDuration(int64_t hi, uint32_t lo);
constexpr Duration MakeDuration(int64_t hi, int64_t lo);
inline Duration MakePosDoubleDuration(double n);
constexpr int64_t kTicksPerNanosecond = 4;
constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
template <std::intmax_t N>
@ -295,6 +296,39 @@ Duration Floor(Duration d, Duration unit);
// absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us
Duration Ceil(Duration d, Duration unit);
// InfiniteDuration()
//
// Returns an infinite `Duration`. To get a `Duration` representing negative
// infinity, use `-InfiniteDuration()`.
//
// Duration arithmetic overflows to +/- infinity and saturates. In general,
// arithmetic with `Duration` infinities is similar to IEEE 754 infinities
// except where IEEE 754 NaN would be involved, in which case +/-
// `InfiniteDuration()` is used in place of a "nan" Duration.
//
// Examples:
//
// constexpr absl::Duration inf = absl::InfiniteDuration();
// const absl::Duration d = ... any finite duration ...
//
// inf == inf + inf
// inf == inf + d
// inf == inf - inf
// -inf == d - inf
//
// inf == d * 1e100
// inf == inf / 2
// 0 == d / inf
// INT64_MAX == inf / d
//
// // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
// inf == d / 0
// INT64_MAX == d / absl::ZeroDuration()
//
// The examples involving the `/` operator above also apply to `IDivDuration()`
// and `FDivDuration()`.
constexpr Duration InfiniteDuration();
// Nanoseconds()
// Microseconds()
// Milliseconds()
@ -344,7 +378,13 @@ Duration Milliseconds(T n) {
}
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Seconds(T n) {
return n * Seconds(1);
if (n >= 0) {
if (n >= std::numeric_limits<int64_t>::max()) return InfiniteDuration();
return time_internal::MakePosDoubleDuration(n);
} else {
if (n <= std::numeric_limits<int64_t>::min()) return -InfiniteDuration();
return -time_internal::MakePosDoubleDuration(-n);
}
}
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Minutes(T n) {
@ -439,39 +479,6 @@ std::chrono::seconds ToChronoSeconds(Duration d);
std::chrono::minutes ToChronoMinutes(Duration d);
std::chrono::hours ToChronoHours(Duration d);
// InfiniteDuration()
//
// Returns an infinite `Duration`. To get a `Duration` representing negative
// infinity, use `-InfiniteDuration()`.
//
// Duration arithmetic overflows to +/- infinity and saturates. In general,
// arithmetic with `Duration` infinities is similar to IEEE 754 infinities
// except where IEEE 754 NaN would be involved, in which case +/-
// `InfiniteDuration()` is used in place of a "nan" Duration.
//
// Examples:
//
// constexpr absl::Duration inf = absl::InfiniteDuration();
// const absl::Duration d = ... any finite duration ...
//
// inf == inf + inf
// inf == inf + d
// inf == inf - inf
// -inf == d - inf
//
// inf == d * 1e100
// inf == inf / 2
// 0 == d / inf
// INT64_MAX == inf / d
//
// // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
// inf == d / 0
// INT64_MAX == d / absl::ZeroDuration()
//
// The examples involving the `/` operator above also apply to `IDivDuration()`
// and `FDivDuration()`.
constexpr Duration InfiniteDuration();
// FormatDuration()
//
// Returns a std::string representing the duration in the form "72h3m0.5s".
@ -492,12 +499,9 @@ inline std::ostream& operator<<(std::ostream& os, Duration d) {
// `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.
bool ParseDuration(const std::string& dur_string, Duration* d);
// ParseFlag()
//
// Support for flag values of type Duration. Duration flags must be specified
// in a format that is valid input for absl::ParseDuration().
bool ParseFlag(const std::string& text, Duration* dst, std::string* error);
// UnparseFlag()
//
std::string UnparseFlag(Duration d);
// Time
@ -991,9 +995,6 @@ bool ParseTime(const std::string& format, const std::string& input, Time* time,
bool ParseTime(const std::string& format, const std::string& input, TimeZone tz,
Time* time, std::string* err);
// ParseFlag()
// UnparseFlag()
//
// Support for flag values of type Time. Time flags must be specified in a
// format that matches absl::RFC3339_full. For example:
//
@ -1114,6 +1115,18 @@ constexpr Duration MakeDuration(int64_t hi, int64_t lo) {
return MakeDuration(hi, static_cast<uint32_t>(lo));
}
// Make a Duration value from a floating-point number, as long as that number
// is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as
// it's positive and can be converted to int64_t without risk of UB.
inline Duration MakePosDoubleDuration(double n) {
const int64_t int_secs = static_cast<int64_t>(n);
const uint32_t ticks =
static_cast<uint32_t>((n - int_secs) * kTicksPerSecond + 0.5);
return ticks < kTicksPerSecond
? MakeDuration(int_secs, ticks)
: MakeDuration(int_secs + 1, ticks - kTicksPerSecond);
}
// Creates a normalized Duration from an almost-normalized (sec,ticks)
// pair. sec may be positive or negative. ticks must be in the range
// -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it

View file

@ -1062,32 +1062,6 @@ struct OverloadSet<> {
static void Overload(...);
};
////////////////////////////////
// Library Fundamentals V2 TS //
////////////////////////////////
// TODO(calabrese): Consider moving this to absl/meta/type_traits.h
// The following is a rough implementation of parts of the detection idiom.
// It is used for the comparison operator checks.
template <class Enabler, class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl {
using type = std::false_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl<
absl::enable_if_t<std::is_convertible<Op<Args...>, To>::value>, To, Op,
Args...> {
using type = std::true_type;
};
// NOTE: This differs from library fundamentals by being lazy.
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible
: is_detected_convertible_impl<void, To, Op, Args...>::type {};
template <class T>
using LessThanResult = decltype(std::declval<T>() < std::declval<T>());
@ -1107,6 +1081,8 @@ using EqualResult = decltype(std::declval<T>() == std::declval<T>());
template <class T>
using NotEqualResult = decltype(std::declval<T>() != std::declval<T>());
using type_traits_internal::is_detected_convertible;
template <class... T>
using RequireAllHaveEqualT = absl::enable_if_t<
absl::conjunction<is_detected_convertible<bool, EqualResult, T>...>::value,