Partially complete the "Basic Libraries" chapter exercises
I was instructed to benchmark these functions, but I couldn't get the benchmarking library to run using Nix -- although I'm *sure* it's possible. Unfortunately the book recommends using `stack`, which I couldn't reproduce.
This commit is contained in:
parent
feb74b3091
commit
0f1146cc4c
1 changed files with 60 additions and 0 deletions
|
@ -0,0 +1,60 @@
|
||||||
|
module BasicLibrariesScratch where
|
||||||
|
|
||||||
|
import Data.Function ((&))
|
||||||
|
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
newtype DList a = DL { unDL :: [a] -> [a] }
|
||||||
|
|
||||||
|
instance (Show a) => Show (DList a) where
|
||||||
|
show (DL x) = "DL " ++ show (x [])
|
||||||
|
|
||||||
|
-- | Create an empty difference list.
|
||||||
|
emptyDList :: DList a
|
||||||
|
emptyDList = DL $ \xs -> xs
|
||||||
|
{-# INLINE emptyDList #-}
|
||||||
|
|
||||||
|
-- | Create a difference list with `x` as the only member.
|
||||||
|
singleton :: a -> DList a
|
||||||
|
singleton x = DL $ \xs -> x : xs
|
||||||
|
{-# INLINE singleton #-}
|
||||||
|
|
||||||
|
-- | Convert the DList into a list.
|
||||||
|
toList :: DList a -> [a]
|
||||||
|
toList (DL unDL) = unDL mempty
|
||||||
|
{-# INLINE toList #-}
|
||||||
|
|
||||||
|
-- | Add an element to the end of a DList.
|
||||||
|
infixr `snoc`
|
||||||
|
snoc :: a -> DList a -> DList a
|
||||||
|
snoc x (DL xs) = DL $ \ys -> xs (x : ys)
|
||||||
|
{-# INLINE snoc #-}
|
||||||
|
|
||||||
|
-- | Add an element to the beginning of a DList.
|
||||||
|
infixr `cons`
|
||||||
|
cons :: a -> DList a -> DList a
|
||||||
|
cons x (DL xs) = DL $ \ys -> x : xs ys
|
||||||
|
{-# INLINE cons #-}
|
||||||
|
|
||||||
|
-- | Combine two DLists together.
|
||||||
|
append :: DList a -> DList a -> DList a
|
||||||
|
append (DL xs) (DL ys) = DL $ \zs -> zs & ys & xs
|
||||||
|
{-# INLINE append #-}
|
||||||
|
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
data Queue a =
|
||||||
|
Queue { one :: [a]
|
||||||
|
, two :: [a]
|
||||||
|
} deriving (Show, Eq)
|
||||||
|
|
||||||
|
emptyQueue :: Queue a
|
||||||
|
emptyQueue = Queue mempty mempty
|
||||||
|
|
||||||
|
enqueue :: a -> Queue a -> Queue a
|
||||||
|
enqueue x (Queue en de) = Queue (x:en) de
|
||||||
|
|
||||||
|
dequeue :: Queue a -> Maybe (a, Queue a)
|
||||||
|
dequeue (Queue [] []) = Nothing
|
||||||
|
dequeue (Queue en []) =
|
||||||
|
let (d:de) = reverse en
|
||||||
|
in Just (d, Queue de [])
|
||||||
|
dequeue (Queue en (d:de)) = Just (d, Queue en de)
|
Loading…
Reference in a new issue