Solve "find duplicate" using a graph
This problem is unusually difficult, but the solution is elegant.
This commit is contained in:
parent
847aad2a14
commit
0ccaa22032
1 changed files with 57 additions and 0 deletions
57
scratch/facebook/find-duplicate-beast-mode.py
Normal file
57
scratch/facebook/find-duplicate-beast-mode.py
Normal file
|
@ -0,0 +1,57 @@
|
||||||
|
def advance(position, xs):
|
||||||
|
"""
|
||||||
|
Return the next element in `xs` pointed to by the current `position`.
|
||||||
|
"""
|
||||||
|
return xs[position - 1]
|
||||||
|
|
||||||
|
def find_duplicate(xs):
|
||||||
|
"""
|
||||||
|
Find the duplicate integer in the list, `xs`.
|
||||||
|
"""
|
||||||
|
beg = xs[-1]
|
||||||
|
a = beg
|
||||||
|
b = advance(a, xs)
|
||||||
|
# Find the first element of the cycle
|
||||||
|
cycle_beg = None
|
||||||
|
while a != b:
|
||||||
|
cycle_beg = a
|
||||||
|
a = advance(a, xs)
|
||||||
|
b = advance(b, xs)
|
||||||
|
b = advance(b, xs)
|
||||||
|
# The duplicate element is the element before the `cycle_beg`
|
||||||
|
a = beg
|
||||||
|
result = None
|
||||||
|
while a != cycle_beg:
|
||||||
|
result = a
|
||||||
|
a = advance(a, xs)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def find_duplicate(xs):
|
||||||
|
"""
|
||||||
|
This is the solution that InterviewCake.com suggests.
|
||||||
|
"""
|
||||||
|
# find length of the cycle
|
||||||
|
beg = xs[-1]
|
||||||
|
a = beg
|
||||||
|
for _ in range(len(xs)):
|
||||||
|
a = advance(a, xs)
|
||||||
|
element = a
|
||||||
|
a = advance(a, xs)
|
||||||
|
n = 1
|
||||||
|
while a != element:
|
||||||
|
a = advance(a, xs)
|
||||||
|
n += 1
|
||||||
|
# find the first element in the cycle
|
||||||
|
a, b = beg, beg
|
||||||
|
for _ in range(n):
|
||||||
|
b = advance(b, xs)
|
||||||
|
while a != b:
|
||||||
|
a = advance(a, xs)
|
||||||
|
b = advance(b, xs)
|
||||||
|
return a
|
||||||
|
|
||||||
|
xs = [2, 3, 1, 3]
|
||||||
|
result = find_duplicate(xs)
|
||||||
|
print(result)
|
||||||
|
assert result == 3
|
||||||
|
print("Success!")
|
Loading…
Reference in a new issue