subtree(users/wpcarro): docking briefcase at '24f5a642'

git-subtree-dir: users/wpcarro
git-subtree-mainline: 464bbcb15c
git-subtree-split: 24f5a642af
Change-Id: I6105b3762b79126b3488359c95978cadb3efa789
This commit is contained in:
Vincent Ambo 2021-12-14 01:51:19 +03:00
commit 019f8fd211
766 changed files with 175420 additions and 0 deletions

View file

@ -0,0 +1,123 @@
import unittest
from collections import deque
def is_balanced(node):
q, seen, ds = deque(), set(), set()
q.append((0, node))
while q:
d, node = q.popleft()
l, r = node.left, node.right
seen.add(node)
if not l and not r:
if d not in ds and len(ds) == 2:
return False
else:
ds.add(d)
if l and l not in seen:
q.append((d + 1, l))
if r and r not in seen:
q.append((d + 1, r))
return max(ds) - min(ds) <= 1
# Tests
class Test(unittest.TestCase):
class BinaryTreeNode(object):
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def insert_left(self, value):
self.left = Test.BinaryTreeNode(value)
return self.left
def insert_right(self, value):
self.right = Test.BinaryTreeNode(value)
return self.right
def test_full_tree(self):
tree = Test.BinaryTreeNode(5)
left = tree.insert_left(8)
right = tree.insert_right(6)
left.insert_left(1)
left.insert_right(2)
right.insert_left(3)
right.insert_right(4)
result = is_balanced(tree)
self.assertTrue(result)
def test_both_leaves_at_the_same_depth(self):
tree = Test.BinaryTreeNode(3)
left = tree.insert_left(4)
right = tree.insert_right(2)
left.insert_left(1)
right.insert_right(9)
result = is_balanced(tree)
self.assertTrue(result)
def test_leaf_heights_differ_by_one(self):
tree = Test.BinaryTreeNode(6)
left = tree.insert_left(1)
right = tree.insert_right(0)
right.insert_right(7)
result = is_balanced(tree)
self.assertTrue(result)
def test_leaf_heights_differ_by_two(self):
tree = Test.BinaryTreeNode(6)
left = tree.insert_left(1)
right = tree.insert_right(0)
right_right = right.insert_right(7)
right_right.insert_right(8)
result = is_balanced(tree)
self.assertFalse(result)
def test_three_leaves_total(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(5)
right = tree.insert_right(9)
right.insert_left(8)
right.insert_right(5)
result = is_balanced(tree)
self.assertTrue(result)
def test_both_subtrees_superbalanced(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(5)
right = tree.insert_right(9)
right_left = right.insert_left(8)
right.insert_right(5)
right_left.insert_left(7)
result = is_balanced(tree)
self.assertFalse(result)
def test_both_subtrees_superbalanced_two(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(2)
right = tree.insert_right(4)
left.insert_left(3)
left_right = left.insert_right(7)
left_right.insert_right(8)
right_right = right.insert_right(5)
right_right_right = right_right.insert_right(6)
right_right_right.insert_right(9)
result = is_balanced(tree)
self.assertFalse(result)
def test_only_one_node(self):
tree = Test.BinaryTreeNode(1)
result = is_balanced(tree)
self.assertTrue(result)
def test_linked_list_tree(self):
tree = Test.BinaryTreeNode(1)
right = tree.insert_right(2)
right_right = right.insert_right(3)
right_right.insert_right(4)
result = is_balanced(tree)
self.assertTrue(result)
unittest.main(verbosity=2)

View file

@ -0,0 +1,26 @@
# Doing a practice implementation of Dijkstra's algorithm: a priority-first
# search.
from heapq import heappush, heappop
class Node(object):
def __init__(self, value, children):
self.value = value
self.children = children
def shortest_path(a, b):
"""Return the shortest path from `a` to `b`."""
q = []
seen = set()
heappush((a.value, a, [a]), q)
while q:
d, node, path = heappop(q)
if node == b:
return path
seen.add(node)
for child in node.children:
if child not in seen:
heappush((d + child.value, child, path + [child]), q)
raise Exception("Path between nodes A and B does not exist.")

View file

@ -0,0 +1,6 @@
* Sorting
** Merge: O(n*log(n))
** Heap: O(n*log(n))
** Insertion: O(n^2)
** Quick: O(n^2)
** Bubble: O(n^2)

View file

@ -0,0 +1,55 @@
import unittest
from math import floor
def midpoint(a, b):
return a + floor((b - a) / 2)
def do_find_rotation_point(a, b, xs):
i = midpoint(a, b)
count = b - a + 1
if count == 2:
if xs[a] > xs[b]:
return b
else:
return -1
if i in {a, b}:
return i
if xs[a] < xs[i]:
return do_find_rotation_point(i, b, xs)
else:
return do_find_rotation_point(a, i, xs)
def find_rotation_point(xs):
return do_find_rotation_point(0, len(xs) - 1, xs)
# Tests
class Test(unittest.TestCase):
def test_small_list(self):
actual = find_rotation_point(['cape', 'cake'])
expected = 1
self.assertEqual(actual, expected)
def test_medium_list(self):
actual = find_rotation_point(
['grape', 'orange', 'plum', 'radish', 'apple'])
expected = 4
self.assertEqual(actual, expected)
def test_large_list(self):
actual = find_rotation_point([
'ptolemaic', 'retrograde', 'supplant', 'undulate', 'xenoepist',
'asymptote', 'babka', 'banoffee', 'engender', 'karpatka',
'othellolagkage'
])
expected = 5
self.assertEqual(actual, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,51 @@
import unittest
def can_two_movies_fill_flight(xs, t):
seeking = set()
for x in xs:
if x in seeking:
return True
else:
seeking.add(t - x)
return False
# Tests
class Test(unittest.TestCase):
def test_short_flight(self):
result = can_two_movies_fill_flight([2, 4], 1)
self.assertFalse(result)
def test_long_flight(self):
result = can_two_movies_fill_flight([2, 4], 6)
self.assertTrue(result)
def test_one_movie_half_flight_length(self):
result = can_two_movies_fill_flight([3, 8], 6)
self.assertFalse(result)
def test_two_movies_half_flight_length(self):
result = can_two_movies_fill_flight([3, 8, 3], 6)
self.assertTrue(result)
def test_lots_of_possible_pairs(self):
result = can_two_movies_fill_flight([1, 2, 3, 4, 5, 6], 7)
self.assertTrue(result)
def test_not_using_first_movie(self):
result = can_two_movies_fill_flight([4, 3, 2], 5)
self.assertTrue(result)
def test_only_one_movie(self):
result = can_two_movies_fill_flight([6], 6)
self.assertFalse(result)
def test_no_movies(self):
result = can_two_movies_fill_flight([], 2)
self.assertFalse(result)
unittest.main(verbosity=2)

View file

@ -0,0 +1,64 @@
import unittest
def kth_to_last_node(k, x):
a, b = x, x
if k == 0:
raise Exception('Value of 0 for k is not supported')
for _ in range(k - 1):
if not a.next:
raise Exception('Value of {} for k is too large'.format(k))
a = a.next
while a.next:
a, b = a.next, b.next
return b
class Test(unittest.TestCase):
class LinkedListNode(object):
def __init__(self, value, next=None):
self.value = value
self.next = next
def get_values(self):
node = self
values = []
while node is not None:
values.append(node.value)
node = node.next
return values
def setUp(self):
self.fourth = Test.LinkedListNode(4)
self.third = Test.LinkedListNode(3, self.fourth)
self.second = Test.LinkedListNode(2, self.third)
self.first = Test.LinkedListNode(1, self.second)
def test_first_to_last_node(self):
actual = kth_to_last_node(1, self.first)
expected = self.fourth
self.assertEqual(actual, expected)
def test_second_to_last_node(self):
actual = kth_to_last_node(2, self.first)
expected = self.third
self.assertEqual(actual, expected)
def test_first_node(self):
actual = kth_to_last_node(4, self.first)
expected = self.first
self.assertEqual(actual, expected)
def test_k_greater_than_linked_list_length(self):
with self.assertRaises(Exception):
kth_to_last_node(5, self.first)
def test_k_is_zero(self):
with self.assertRaises(Exception):
kth_to_last_node(0, self.first)
unittest.main(verbosity=2)

View file

@ -0,0 +1,59 @@
import unittest
def merge_ranges(xs):
xs.sort()
result = [xs[0]]
for curr in xs[1:]:
a, z = result[-1]
if z >= curr[0]:
result[-1] = (a, max(z, curr[1]))
else:
result.append(curr)
return result
# Tests
class Test(unittest.TestCase):
def test_meetings_overlap(self):
actual = merge_ranges([(1, 3), (2, 4)])
expected = [(1, 4)]
self.assertEqual(actual, expected)
def test_meetings_touch(self):
actual = merge_ranges([(5, 6), (6, 8)])
expected = [(5, 8)]
self.assertEqual(actual, expected)
def test_meeting_contains_other_meeting(self):
actual = merge_ranges([(1, 8), (2, 5)])
expected = [(1, 8)]
self.assertEqual(actual, expected)
def test_meetings_stay_separate(self):
actual = merge_ranges([(1, 3), (4, 8)])
expected = [(1, 3), (4, 8)]
self.assertEqual(actual, expected)
def test_multiple_merged_meetings(self):
actual = merge_ranges([(1, 4), (2, 5), (5, 8)])
expected = [(1, 8)]
self.assertEqual(actual, expected)
def test_meetings_not_sorted(self):
actual = merge_ranges([(5, 8), (1, 4), (6, 8)])
expected = [(1, 4), (5, 8)]
self.assertEqual(actual, expected)
def test_one_long_meeting_contains_smaller_meetings(self):
actual = merge_ranges([(1, 10), (2, 5), (6, 8), (9, 10), (10, 12)])
expected = [(1, 12)]
self.assertEqual(actual, expected)
def test_sample_input(self):
actual = merge_ranges([(0, 1), (3, 5), (4, 8), (10, 12), (9, 10)])
expected = [(0, 1), (3, 8), (9, 12)]
self.assertEqual(actual, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,56 @@
import unittest
from itertools import permutations
class Node(object):
def __init__(self, x):
self.value = x
self.children = []
def make_tree(c, xs):
root = Node(c)
for x in xs:
root.children.append(make_tree(x, xs - {x}))
return root
def get_permutations(xs):
xs = set(xs)
root = make_tree("", xs)
q, perms = [], set()
q.append(("", root))
while q:
c, node = q.pop()
if not node.children:
perms.add(c)
else:
for child in node.children:
q.append((c + child.value, child))
return perms
# Tests
class Test(unittest.TestCase):
def test_empty_string(self):
actual = get_permutations('')
expected = set([''])
self.assertEqual(actual, expected)
def test_one_character_string(self):
actual = get_permutations('a')
expected = set(['a'])
self.assertEqual(actual, expected)
def test_two_character_string(self):
actual = get_permutations('ab')
expected = set(['ab', 'ba'])
self.assertEqual(actual, expected)
def test_three_character_string(self):
actual = get_permutations('abc')
expected = set(['abc', 'acb', 'bac', 'bca', 'cab', 'cba'])
self.assertEqual(actual, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,74 @@
import unittest
def reverse(node):
prev = None
next = None
curr = node
while curr:
next = curr.next
curr.next = prev
prev = curr
curr = next
return prev
# Tests
class Test(unittest.TestCase):
class LinkedListNode(object):
def __init__(self, value, next=None):
self.value = value
self.next = next
def get_values(self):
node = self
values = []
while node is not None:
values.append(node.value)
node = node.next
return values
def test_short_linked_list(self):
second = Test.LinkedListNode(2)
first = Test.LinkedListNode(1, second)
result = reverse(first)
self.assertIsNotNone(result)
actual = result.get_values()
expected = [2, 1]
self.assertEqual(actual, expected)
def test_long_linked_list(self):
sixth = Test.LinkedListNode(6)
fifth = Test.LinkedListNode(5, sixth)
fourth = Test.LinkedListNode(4, fifth)
third = Test.LinkedListNode(3, fourth)
second = Test.LinkedListNode(2, third)
first = Test.LinkedListNode(1, second)
result = reverse(first)
self.assertIsNotNone(result)
actual = result.get_values()
expected = [6, 5, 4, 3, 2, 1]
self.assertEqual(actual, expected)
def test_one_element_linked_list(self):
first = Test.LinkedListNode(1)
result = reverse(first)
self.assertIsNotNone(result)
actual = result.get_values()
expected = [1]
self.assertEqual(actual, expected)
def test_empty_linked_list(self):
result = reverse(None)
self.assertIsNone(result)
unittest.main(verbosity=2)

View file

@ -0,0 +1,51 @@
def get_max_profit(xs):
best_profit = xs[1] - xs[0]
lowest_buy = xs[0]
for x in xs[1:]:
best_profit = max(best_profit, x - lowest_buy)
lowest_buy = min(lowest_buy, x)
return best_profit
# Tests
import unittest
class Test(unittest.TestCase):
def test_price_goes_up_then_down(self):
actual = get_max_profit([1, 5, 3, 2])
expected = 4
self.assertEqual(actual, expected)
def test_price_goes_down_then_up(self):
actual = get_max_profit([7, 2, 8, 9])
expected = 7
self.assertEqual(actual, expected)
def test_price_goes_up_all_day(self):
actual = get_max_profit([1, 6, 7, 9])
expected = 8
self.assertEqual(actual, expected)
def test_price_goes_down_all_day(self):
actual = get_max_profit([9, 7, 4, 1])
expected = -2
self.assertEqual(actual, expected)
def test_price_stays_the_same_all_day(self):
actual = get_max_profit([1, 1, 1, 1])
expected = 0
self.assertEqual(actual, expected)
def test_error_with_empty_prices(self):
with self.assertRaises(Exception):
get_max_profit([])
def test_error_with_one_price(self):
with self.assertRaises(Exception):
get_max_profit([1])
unittest.main(verbosity=2)

View file

@ -0,0 +1,29 @@
import unittest
def find_repeat(xs):
n = max(xs)
expected_sum = (n + 1) * n / 2
actual_sum = sum(xs)
return actual_sum - expected_sum
# Tests
class Test(unittest.TestCase):
def test_short_list(self):
actual = find_repeat([1, 2, 1])
expected = 1
self.assertEqual(actual, expected)
def test_medium_list(self):
actual = find_repeat([4, 1, 3, 4, 2])
expected = 4
self.assertEqual(actual, expected)
def test_long_list(self):
actual = find_repeat([1, 5, 9, 7, 2, 6, 3, 8, 2, 4])
expected = 2
self.assertEqual(actual, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,2 @@
source_up
use_nix

View file

@ -0,0 +1,126 @@
import unittest
from collections import deque
# is_balanced :: Node(a) -> Bool
def is_balanced(node):
q = deque()
q.append((0, node))
mn, mx = None, None
while q:
depth, node = q.popleft()
# Current node is a leaf node
if not node.left and not node.right:
mx = depth if mx is None else max(mx, depth)
mn = depth if mn is None else min(mn, depth)
if mx - mn > 1:
return False
if node.left:
q.append((depth + 1, node.left))
if node.right:
q.append((depth + 1, node.right))
return mx - mn <= 1
# Tests
class Test(unittest.TestCase):
class BinaryTreeNode(object):
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def insert_left(self, value):
self.left = Test.BinaryTreeNode(value)
return self.left
def insert_right(self, value):
self.right = Test.BinaryTreeNode(value)
return self.right
def test_full_tree(self):
tree = Test.BinaryTreeNode(5)
left = tree.insert_left(8)
right = tree.insert_right(6)
left.insert_left(1)
left.insert_right(2)
right.insert_left(3)
right.insert_right(4)
result = is_balanced(tree)
self.assertTrue(result)
def test_both_leaves_at_the_same_depth(self):
tree = Test.BinaryTreeNode(3)
left = tree.insert_left(4)
right = tree.insert_right(2)
left.insert_left(1)
right.insert_right(9)
result = is_balanced(tree)
self.assertTrue(result)
def test_leaf_heights_differ_by_one(self):
tree = Test.BinaryTreeNode(6)
left = tree.insert_left(1)
right = tree.insert_right(0)
right.insert_right(7)
result = is_balanced(tree)
self.assertTrue(result)
def test_leaf_heights_differ_by_two(self):
tree = Test.BinaryTreeNode(6)
left = tree.insert_left(1)
right = tree.insert_right(0)
right_right = right.insert_right(7)
right_right.insert_right(8)
result = is_balanced(tree)
self.assertFalse(result)
def test_three_leaves_total(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(5)
right = tree.insert_right(9)
right.insert_left(8)
right.insert_right(5)
result = is_balanced(tree)
self.assertTrue(result)
def test_both_subtrees_superbalanced(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(5)
right = tree.insert_right(9)
right_left = right.insert_left(8)
right.insert_right(5)
right_left.insert_left(7)
result = is_balanced(tree)
self.assertFalse(result)
def test_both_subtrees_superbalanced_two(self):
tree = Test.BinaryTreeNode(1)
left = tree.insert_left(2)
right = tree.insert_right(4)
left.insert_left(3)
left_right = left.insert_right(7)
left_right.insert_right(8)
right_right = right.insert_right(5)
right_right_right = right_right.insert_right(6)
right_right_right.insert_right(9)
result = is_balanced(tree)
self.assertFalse(result)
def test_only_one_node(self):
tree = Test.BinaryTreeNode(1)
result = is_balanced(tree)
self.assertTrue(result)
def test_linked_list_tree(self):
tree = Test.BinaryTreeNode(1)
right = tree.insert_right(2)
right_right = right.insert_right(3)
right_right.insert_right(4)
result = is_balanced(tree)
self.assertTrue(result)
unittest.main(verbosity=2)

View file

@ -0,0 +1,110 @@
import unittest
from collections import deque
# While this function solves the problem, it uses O(n) space since we're storing
# all of the less-thans and greater-thans.
def is_binary_search_tree_first_attempt(root):
q = deque()
q.append((set(), set(), root))
while q:
lts, gts, node = q.popleft()
if not all([node.value < lt for lt in lts]):
return False
if not all([node.value > gt for gt in gts]):
return False
if node.left:
q.append((lts | {node.value}, gts, node.left))
if node.right:
q.append((lts, gts | {node.value}, node.right))
return True
# While I did not originally solve this problem this way, when I learned that I
# could condense the space of my solution's runtime, I wrote this.
def is_binary_search_tree(root):
q = deque()
q.append((None, None, root))
while q:
lt, gt, node = q.popleft()
if not lt is None and node.value >= lt:
return False
if not gt is None and node.value <= gt:
return False
if node.left:
q.append((node.value, gt, node.left))
if node.right:
q.append((lt, node.value, node.right))
return True
# Tests
class Test(unittest.TestCase):
class BinaryTreeNode(object):
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def insert_left(self, value):
self.left = Test.BinaryTreeNode(value)
return self.left
def insert_right(self, value):
self.right = Test.BinaryTreeNode(value)
return self.right
def test_valid_full_tree(self):
tree = Test.BinaryTreeNode(50)
left = tree.insert_left(30)
right = tree.insert_right(70)
left.insert_left(10)
left.insert_right(40)
right.insert_left(60)
right.insert_right(80)
result = is_binary_search_tree(tree)
self.assertTrue(result)
def test_both_subtrees_valid(self):
tree = Test.BinaryTreeNode(50)
left = tree.insert_left(30)
right = tree.insert_right(80)
left.insert_left(20)
left.insert_right(60)
right.insert_left(70)
right.insert_right(90)
result = is_binary_search_tree(tree)
self.assertFalse(result)
def test_descending_linked_list(self):
tree = Test.BinaryTreeNode(50)
left = tree.insert_left(40)
left_left = left.insert_left(30)
left_left_left = left_left.insert_left(20)
left_left_left.insert_left(10)
result = is_binary_search_tree(tree)
self.assertTrue(result)
def test_out_of_order_linked_list(self):
tree = Test.BinaryTreeNode(50)
right = tree.insert_right(70)
right_right = right.insert_right(60)
right_right.insert_right(80)
result = is_binary_search_tree(tree)
self.assertFalse(result)
def test_one_node_tree(self):
tree = Test.BinaryTreeNode(50)
result = is_binary_search_tree(tree)
self.assertTrue(result)
unittest.main(verbosity=2)

View file

@ -0,0 +1,64 @@
import unittest
# Solution
def is_first_come_first_served(xs, ys, zs):
i, j = 0, 0
for z in zs:
if i < len(xs) and z == xs[i]:
i += 1
elif j < len(ys) and z == ys[j]:
j += 1
else:
return False
return i == len(xs) and j == len(ys)
# Tests
class Test(unittest.TestCase):
def test_both_registers_have_same_number_of_orders(self):
result = is_first_come_first_served([1, 4, 5], [2, 3, 6],
[1, 2, 3, 4, 5, 6])
self.assertTrue(result)
def test_registers_have_different_lengths(self):
result = is_first_come_first_served([1, 5], [2, 3, 6], [1, 2, 6, 3, 5])
self.assertFalse(result)
def test_one_register_is_empty(self):
result = is_first_come_first_served([], [2, 3, 6], [2, 3, 6])
self.assertTrue(result)
def test_served_orders_is_missing_orders(self):
result = is_first_come_first_served([1, 5], [2, 3, 6], [1, 6, 3, 5])
self.assertFalse(result)
def test_served_orders_has_extra_orders(self):
result = is_first_come_first_served([1, 5], [2, 3, 6],
[1, 2, 3, 5, 6, 8])
self.assertFalse(result)
def test_one_register_has_extra_orders(self):
result = is_first_come_first_served([1, 9], [7, 8], [1, 7, 8])
self.assertFalse(result)
def test_one_register_has_unserved_orders(self):
result = is_first_come_first_served([55, 9], [7, 8], [1, 7, 8, 9])
self.assertFalse(result)
# Bonus
def test_handles_repeats(self):
actual = is_first_come_first_served([1, 2, 1], [3, 4, 5, 5],
[3, 4, 1, 5, 5, 2, 1])
self.assertTrue(actual)
def test_kitchen_didnt_serve(self):
actual = is_first_come_first_served([1, 2], [3, 4], [1, 3, 4])
self.assertFalse(actual)
def test_customer_didnt_pay(self):
actual = is_first_come_first_served([2], [3, 4], [1, 3, 4])
self.assertFalse(actual)
unittest.main(verbosity=2)

View file

@ -0,0 +1,102 @@
// The denomination of a coin.
type Coin = number;
// The amount of change remaining.
type Amount = number;
// Mapping of Coin -> Int
type CoinBag = Map<Coin, number>;
function createCoinBag(coins: Coin[]): CoinBag {
const result = new Map();
for (const coin of coins) {
result.set(coin, 0);
}
return result;
}
// This algorithm should work conceptual, but it does not actually
// work. JavaScript uses reference equality when constructing a Set<Map<A,B>>,
// so my result.size returns a higher number than I expect because it contains
// many duplicate entries.
//
// Conceptually, I'm not sure this solution is optimal either -- even after I
// can dedupe the entries in `result`.
function changePossibilities(amt: Amount, coins: Coin[]): number {
if (amt === 0) {
return 1;
}
const result: Set<CoinBag> = new Set();
const q: [Coin, Amount, CoinBag][] = [];
for (const coin of coins) {
const bag = createCoinBag(coins);
bag.set(coin, 1);
q.push([coin, amt - coin, bag]);
}
while (q.length > 0) {
const [coin, amt, bag] = q.shift();
console.log([coin, amt, bag]);
if (amt === 0) {
result.add(bag);
} else if (amt < 0) {
continue;
} else {
for (const c of coins) {
const bagCopy = new Map(bag);
const value = bagCopy.get(c);
bagCopy.set(c, value + 1);
q.push([c, amt - c, bagCopy]);
}
}
}
console.log(result);
return result.size;
}
// Tests
let desc = "sample input";
let actual = changePossibilities(4, [1, 2, 3]);
let expected = 4;
assertEqual(actual, expected, desc);
desc = "one way to make zero cents";
actual = changePossibilities(0, [1, 2]);
expected = 1;
assertEqual(actual, expected, desc);
desc = "no ways if no coins";
actual = changePossibilities(1, []);
expected = 0;
assertEqual(actual, expected, desc);
desc = "big coin value";
actual = changePossibilities(5, [25, 50]);
expected = 0;
assertEqual(actual, expected, desc);
desc = "big target amount";
actual = changePossibilities(50, [5, 10]);
expected = 6;
assertEqual(actual, expected, desc);
// I think InterviewCake designed this assertion to be computationally
// expensive.
desc = "change for one dollar";
actual = changePossibilities(100, [1, 5, 10, 25, 50]);
expected = 292;
assertEqual(actual, expected, desc);
function assertEqual(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`);
}
}

View file

@ -0,0 +1,57 @@
import unittest
def delete_node(node):
if node.next:
node.value = node.next.value
node.next = node.next.next
else:
raise Exception(
"We cannot delete the last node in a linked list using this function"
)
# Tests
class Test(unittest.TestCase):
class LinkedListNode(object):
def __init__(self, value, next=None):
self.value = value
self.next = next
def get_values(self):
node = self
values = []
while node is not None:
values.append(node.value)
node = node.next
return values
def setUp(self):
self.fourth = Test.LinkedListNode(4)
self.third = Test.LinkedListNode(3, self.fourth)
self.second = Test.LinkedListNode(2, self.third)
self.first = Test.LinkedListNode(1, self.second)
def test_node_at_beginning(self):
delete_node(self.first)
actual = self.first.get_values()
expected = [2, 3, 4]
self.assertEqual(actual, expected)
def test_node_in_middle(self):
delete_node(self.second)
actual = self.first.get_values()
expected = [1, 3, 4]
self.assertEqual(actual, expected)
def test_node_at_end(self):
with self.assertRaises(Exception):
delete_node(self.fourth)
def test_one_node_in_list(self):
unique = Test.LinkedListNode(1)
with self.assertRaises(Exception):
delete_node(unique)
unittest.main(verbosity=2)

View file

@ -0,0 +1,114 @@
import unittest
################################################################################
# InterviewCake's solution
################################################################################
def cycle_len(xs, i):
"""
Returns the length of a cycle that contains no duplicate items.
"""
result = 1
checkpt = i
current = xs[checkpt - 1]
while current != checkpt:
current = xs[current - 1]
result += 1
return result
def theirs(xs):
"""
This is InterviewCake's solution.
"""
i = xs[-1]
for _ in range(len(xs) - 1):
i = xs[i - 1]
cycle_length = cycle_len(xs, i)
p0 = xs[-1]
p1 = xs[-1]
for _ in range(cycle_length):
p1 = xs[p1 - 1]
while p0 != p1:
p0 = xs[p0 - 1]
p1 = xs[p1 - 1]
print(p0, p1)
return p0
################################################################################
# My solution
################################################################################
def mine(xs):
"""
This is the solution that I came up with, which differs from InterviewCake's
solution.
"""
i = xs[-1]
offset = 1 if len(xs) % 2 == 0 else 2
for _ in range(len(xs) - offset):
i = xs[i - 1]
return i
use_mine = True
find_duplicate = mine if use_mine else theirs
# Tests
class Test(unittest.TestCase):
def test_just_the_repeated_number(self):
# len(xs) even
actual = find_duplicate([1, 1])
expected = 1
self.assertEqual(actual, expected)
def test_short_list(self):
# len(xs) even
actual = find_duplicate([1, 2, 3, 2])
expected = 2
self.assertEqual(actual, expected)
def test_medium_list(self):
# len(xs) even
actual = find_duplicate([1, 2, 5, 5, 5, 5])
expected = 5
self.assertEqual(actual, expected)
def test_long_list(self):
# len(xs) odd
actual = find_duplicate([4, 1, 4, 8, 3, 2, 7, 6, 5])
expected = 4
self.assertEqual(actual, expected)
############################################################################
# Additional examples from InterviewCake.com
############################################################################
def test_example_a(self):
# len(xs) even
actual = find_duplicate([3, 4, 2, 3, 1, 5])
expected = 3
self.assertTrue(actual, expected)
def test_example_b(self):
# len(xs) even
actual = find_duplicate([3, 1, 2, 2])
expected = 2
self.assertEqual(actual, expected)
def test_example_c(self):
# len(xs) odd BUT multiple duplicates
actual = find_duplicate([4, 3, 1, 1, 4])
self.assertTrue(actual in {1, 4})
unittest.main(verbosity=2)

View file

@ -0,0 +1,70 @@
function findRepeatBruteForce(xs: Array<number>): number {
// InterviewCake asks us to write a function that optimizes for space. Using
// brute force, we can write a function that returns an answer using constant
// (i.e. O(1)) space at the cost of a quadratic (i.e. O(n^2)) runtime.
//
// I did not think of this myself; InterviewCake's "Tell me more" hints
// did. Since I think this idea is clever, I wrote a solution from memory to
// help me internalize the solution.
for (let i = 0; i < xs.length; i += 1) {
let seeking = xs[i];
for (let j = i + 1; j < xs.length; j += 1) {
if (xs[j] === seeking) {
return seeking;
}
}
}
}
function findRepeatSort(xs: Array<number>): number {
// This version first sorts xs, which gives the function a time-complexity of
// O(n*log(n)), which is better than the quadratic complexity of the
// brute-force solution. The space requirement here is constant.
//
// Since we need to sort xs in-place to avoid paying a O(n) space cost for
// storing the newly sorted xs, we're mutating our input. InterviewCake
// advises us to not mutate our input.
xs.sort();
let i = 0;
let j = 1;
for (; j < xs.length; ) {
if (xs[i] === xs[j]) {
return xs[i];
}
i += 1;
j += 1;
}
}
function findRepeat(xs: Array<number>): number {
return 0;
}
// Tests
let desc = "just the repeated number";
let actual = findRepeat([1, 1]);
let expected = 1;
assertEqual(actual, expected, desc);
desc = "short array";
actual = findRepeat([1, 2, 3, 2]);
expected = 2;
assertEqual(actual, expected, desc);
desc = "medium array";
actual = findRepeat([1, 2, 5, 5, 5, 5]);
expected = 5;
assertEqual(actual, expected, desc);
desc = "long array";
actual = findRepeat([4, 1, 4, 8, 3, 2, 7, 6, 5]);
expected = 4;
assertEqual(actual, expected, desc);
function assertEqual(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`);
}
}

View file

@ -0,0 +1,68 @@
function findRotationPoint(xs: Array<string>): number {
// Find the rotation point in the vector.
let beg = 0;
let end = xs.length - 1;
while (beg != end) {
let mid = beg + Math.floor((end - beg) / 2);
if (beg === mid) {
return xs[beg] < xs[end] ? beg : end;
}
if (xs[end] <= xs[mid]) {
beg = mid;
end = end;
} else {
beg = beg;
end = mid;
}
}
return beg;
}
// Tests
let desc;
let actual;
let expected;
desc = "small array one";
actual = findRotationPoint(["cape", "cake"]);
expected = 1;
assertEquals(actual, expected, desc);
desc = "small array two";
actual = findRotationPoint(["cake", "cape"]);
expected = 0;
assertEquals(actual, expected, desc);
desc = "medium array";
actual = findRotationPoint(["grape", "orange", "plum", "radish", "apple"]);
expected = 4;
assertEquals(actual, expected, desc);
desc = "large array";
actual = findRotationPoint([
"ptolemaic",
"retrograde",
"supplant",
"undulate",
"xenoepist",
"asymptote",
"babka",
"banoffee",
"engender",
"karpatka",
"othellolagkage"
]);
expected = 5;
assertEquals(actual, expected, desc);
function assertEquals(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`);
}
}

View file

@ -0,0 +1,232 @@
type Color = string;
interface GraphNode {
label: string;
neighbors: Set<GraphNode>;
color: string;
}
class GraphNode {
constructor(label: string) {
this.label = label;
this.neighbors = new Set();
this.color = null;
}
}
interface Queue<A> {
xs: Array<A>;
}
class Queue<A> {
constructor() {
this.xs = [];
}
isEmpty(): boolean {
return this.xs.length === 0;
}
enqueue(x: A): void {
this.xs.push(x);
}
dequeue(): A {
return this.xs.shift();
}
}
type Graph = Array<GraphNode>;
// Return a set of all of the colors from the neighbor nodes of `node`.
function neighborColors(node: GraphNode): Set<Color> {
const result: Set<Color> = new Set();
for (const x of node.neighbors) {
if (typeof x.color === 'string') {
result.add(x.color);
}
}
return result;
}
// Returns the set difference between sets `xs`, and `ys`.
function setDifference<A>(xs: Set<A>, ys: Set<A>): Set<A> {
const result: Set<A> = new Set();
for (const x of xs) {
if (!ys.has(x)) {
result.add(x);
}
}
return result;
}
// Returns an element from the set, `xs`.
// Throwns an error if `xs` is an empty set.
function choose<A>(xs: Set<A>): A {
if (xs.size === 0) {
throw new Error('Cannot choose an element from an empty set.');
} else {
return xs.values().next().value;
}
}
// Returns true if `node` is present in `node.neighbors`.
function isCyclic(node: GraphNode): boolean {
for (const x of node.neighbors) {
if (x === node) {
return true;
}
}
}
function colorGraph(graph: Graph, colors: Array<Color>): void {
const allColors = new Set(colors);
for (const node of graph) {
if (isCyclic(node)) {
throw new Error('InterviewCake would like me to invalidate this');
}
if (typeof node.color !== 'string') {
node.color = choose(setDifference(allColors, neighborColors(node)));
}
}
}
// Tests
const colors = ['red', 'green', 'blue', 'orange', 'yellow', 'white'];
let graph = [];
{
const nodeA = new GraphNode('A');
const nodeB = new GraphNode('B');
const nodeC = new GraphNode('C');
const nodeD = new GraphNode('D');
nodeA.neighbors.add(nodeB);
nodeB.neighbors.add(nodeA);
nodeB.neighbors.add(nodeC);
nodeC.neighbors.add(nodeB);
nodeC.neighbors.add(nodeD);
nodeD.neighbors.add(nodeC);
graph = [nodeA, nodeB, nodeC, nodeD];
}
colorGraph(graph, colors);
assertEqual(validateGraphColoring(graph), true, 'line graph');
{
const nodeA = new GraphNode('A');
const nodeB = new GraphNode('B');
const nodeC = new GraphNode('C');
const nodeD = new GraphNode('D');
nodeA.neighbors.add(nodeB);
nodeB.neighbors.add(nodeA);
nodeC.neighbors.add(nodeD);
nodeD.neighbors.add(nodeC);
graph = [nodeA, nodeB, nodeC, nodeD];
}
colorGraph(graph, colors);
assertEqual(validateGraphColoring(graph), true, 'separate graph');
{
const nodeA = new GraphNode('A');
const nodeB = new GraphNode('B');
const nodeC = new GraphNode('C');
nodeA.neighbors.add(nodeB);
nodeA.neighbors.add(nodeC);
nodeB.neighbors.add(nodeA);
nodeB.neighbors.add(nodeC);
nodeC.neighbors.add(nodeA);
nodeC.neighbors.add(nodeB);
graph = [nodeA, nodeB, nodeC];
}
colorGraph(graph, colors);
assertEqual(validateGraphColoring(graph), true, 'triangle graph');
{
const nodeA = new GraphNode('A');
const nodeB = new GraphNode('B');
const nodeC = new GraphNode('C');
const nodeD = new GraphNode('D');
const nodeE = new GraphNode('E');
nodeA.neighbors.add(nodeB);
nodeA.neighbors.add(nodeC);
nodeB.neighbors.add(nodeA);
nodeB.neighbors.add(nodeC);
nodeB.neighbors.add(nodeD);
nodeB.neighbors.add(nodeE);
nodeC.neighbors.add(nodeA);
nodeC.neighbors.add(nodeB);
nodeC.neighbors.add(nodeD);
nodeC.neighbors.add(nodeE);
nodeD.neighbors.add(nodeB);
nodeD.neighbors.add(nodeC);
nodeD.neighbors.add(nodeE);
nodeE.neighbors.add(nodeB);
nodeE.neighbors.add(nodeC);
nodeE.neighbors.add(nodeD);
graph = [nodeA, nodeB, nodeC, nodeD, nodeE];
}
colorGraph(graph, colors);
assertEqual(validateGraphColoring(graph), true, 'envelope graph');
{
const nodeA = new GraphNode('A');
nodeA.neighbors.add(nodeA);
graph = [nodeA];
}
assertThrows(() => {
colorGraph(graph, colors);
}, 'loop graph');
function validateGraphColoring(graph) {
const maxDegree = Math.max(...graph.map(node => node.neighbors.size));
const colorsUsed = new Set();
graph.forEach(node => {
colorsUsed.add(node.color);
});
if (colorsUsed.has(null)) {
return false;
}
if (colorsUsed.size > maxDegree + 1) {
return false;
}
let badEdges = 0;
graph.forEach(node => {
node.neighbors.forEach(neighbor => {
if (neighbor.color === node.color) {
badEdges += 1;
}
});
});
if (badEdges > 0) {
return false;
}
return true;
}
function assertEqual(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`);
}
}
function assertThrows(func, desc) {
try {
func();
console.log(`${desc} ... FAIL`);
} catch (e) {
console.log(`${desc} ... PASS`);
}
}

View file

@ -0,0 +1,81 @@
import unittest
import sys
import trace
def highest_product_of_3(xs):
if len(xs) < 3:
raise Exception("List needs to contain at least three elements.")
hp3 = xs[0] * xs[1] * xs[2]
hp2 = xs[0] * xs[1]
lp2 = xs[0] * xs[1]
hn = max(xs[0], xs[1])
ln = min(xs[0], xs[1])
for x in xs[2:]:
hp3 = max(hp3, hp2 * x, lp2 * x)
hp2 = max(hp2, hn * x, ln * x)
lp2 = min(lp2, hn * x, ln * x)
hn = max(hn, x)
ln = min(ln, x)
return hp3
# Tests
class Test(unittest.TestCase):
def test_short_list(self):
actual = highest_product_of_3([1, 2, 3, 4])
expected = 24
self.assertEqual(actual, expected)
def test_longer_list(self):
actual = highest_product_of_3([6, 1, 3, 5, 7, 8, 2])
expected = 336
self.assertEqual(actual, expected)
def test_list_has_one_negative(self):
actual = highest_product_of_3([-5, 4, 8, 2, 3])
expected = 96
self.assertEqual(actual, expected)
def test_list_has_two_negatives(self):
actual = highest_product_of_3([-10, 1, 3, 2, -10])
expected = 300
self.assertEqual(actual, expected)
def test_list_is_all_negatives(self):
actual = highest_product_of_3([-5, -1, -3, -2])
expected = -6
self.assertEqual(actual, expected)
def test_error_with_empty_list(self):
with self.assertRaises(Exception):
highest_product_of_3([])
def test_error_with_one_number(self):
with self.assertRaises(Exception):
highest_product_of_3([1])
def test_error_with_two_numbers(self):
with self.assertRaises(Exception):
highest_product_of_3([1, 1])
def test_custom(self):
actual = highest_product_of_3([9, 5, 2, 1, 7, 3])
expected = 9 * 7 * 5
self.assertEqual(actual, expected)
unittest.main(verbosity=2)
def main():
highest_product_of_3([-5, -1, -3, -2])
tracer = trace.Trace(ignoredirs=[sys.prefix, sys.exec_prefix],
trace=0,
count=1)
tracer.run('main()')
r = tracer.results()
r.write_results(show_missing=True, coverdir=".")

View file

@ -0,0 +1,85 @@
function canTwoMoviesFillFlightBonus(
xs: Array<number>,
duration: number
): boolean {
// Returns true if two movies exist that can fill the flight duration +/- 20
// minutes.
const seeking = {};
for (let x of xs) {
for (let i = 0; i < 40; i += 1) {
if (seeking[x + i + 1]) {
return true;
}
}
for (let i = 1; i <= 20; i += 1) {
seeking[duration - x - i] = true;
seeking[duration - x + i] = true;
}
}
return false;
}
function canTwoMoviesFillFlight(xs: Array<number>, duration: number): boolean {
const seeking = {};
for (let x of xs) {
if (seeking[x]) {
return true;
} else {
seeking[duration - x] = true;
}
}
return false;
}
// Tests
let desc = "short flight";
let actual = canTwoMoviesFillFlight([2, 4], 1);
let expected = false;
assertEquals(actual, expected, desc);
desc = "long flight";
actual = canTwoMoviesFillFlight([2, 4], 6);
expected = true;
assertEquals(actual, expected, desc);
desc = "one movie half flight length";
actual = canTwoMoviesFillFlight([3, 8], 6);
expected = false;
assertEquals(actual, expected, desc);
desc = "two movies half flight length";
actual = canTwoMoviesFillFlight([3, 8, 3], 6);
expected = true;
assertEquals(actual, expected, desc);
desc = "lots of possible pairs";
actual = canTwoMoviesFillFlight([1, 2, 3, 4, 5, 6], 7);
expected = true;
assertEquals(actual, expected, desc);
desc = "not using first movie";
actual = canTwoMoviesFillFlight([4, 3, 2], 5);
expected = true;
assertEquals(actual, expected, desc);
desc = "only one movie";
actual = canTwoMoviesFillFlight([6], 6);
expected = false;
assertEquals(actual, expected, desc);
desc = "no movies";
actual = canTwoMoviesFillFlight([], 2);
expected = false;
assertEquals(actual, expected, desc);
function assertEquals(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`);
}
}

View file

@ -0,0 +1,63 @@
function mergeArrays(xs: Array<number>, ys: Array<number>): Array<number> {
let i = 0;
let j = 0;
const result = [];
for (let q = 0; q < xs.length + ys.length; q += 1) {
if (i === xs.length) {
while (j < ys.length) {
result.push(ys[j]);
j += 1;
}
} else if (j === ys.length) {
while (i < xs.length) {
result.push(xs[i]);
i += 1;
}
} else if (xs[i] < ys[j]) {
result.push(xs[i]);
i += 1;
} else {
result.push(ys[j]);
j += 1;
}
}
return result;
}
// Tests
let desc = "both arrays are empty";
let actual = mergeArrays([], []);
let expected = [];
assertDeepEqual(actual, expected, desc);
desc = "first array is empty";
actual = mergeArrays([], [1, 2, 3]);
expected = [1, 2, 3];
assertDeepEqual(actual, expected, desc);
desc = "second array is empty";
actual = mergeArrays([5, 6, 7], []);
expected = [5, 6, 7];
assertDeepEqual(actual, expected, desc);
desc = "both arrays have some numbers";
actual = mergeArrays([2, 4, 6], [1, 3, 7]);
expected = [1, 2, 3, 4, 6, 7];
assertDeepEqual(actual, expected, desc);
desc = "arrays are different lengths";
actual = mergeArrays([2, 4, 6, 8], [1, 7]);
expected = [1, 2, 4, 6, 7, 8];
assertDeepEqual(actual, expected, desc);
function assertDeepEqual(a: Array<number>, b: Array<number>, desc: string) {
const aStr = JSON.stringify(a);
const bStr = JSON.stringify(b);
if (aStr !== bStr) {
console.log(`${desc} ... FAIL: ${aStr} != ${bStr}`);
} else {
console.log(`${desc} ... PASS`);
}
}

View file

@ -0,0 +1,115 @@
import unittest
import timeit
# Solution that uses O(n) space to store the result.
def not_in_place(xs):
xs.sort()
result = [xs[0]]
for ca, cb in xs[1:]:
pa, pb = result[-1]
if ca <= pb:
result[-1] = (pa, max(pb, cb))
else:
result.append((ca, cb))
return result
# Solution that uses O(1) space to store the result.
def in_place(xs):
xs.sort()
i = 0
j = i + 1
while j < len(xs):
pa, pb = xs[i]
ca, cb = xs[j]
if ca <= pb:
xs[i] = (pa, max(pb, cb))
del xs[j]
else:
i = j
j += 1
return xs
def test_nip():
inputs = [
[(1, 3), (2, 4)],
[(5, 6), (6, 8)],
[(1, 8), (2, 5)],
[(1, 3), (4, 8)],
[(1, 4), (2, 5), (5, 8)],
[(5, 8), (1, 4), (6, 8)],
[(1, 10), (2, 5), (6, 8), (9, 10), (10, 12)],
[(0, 1), (3, 5), (4, 8), (10, 12), (9, 10)],
]
for x in inputs:
not_in_place(x)
def test_ip():
inputs = [
[(1, 3), (2, 4)],
[(5, 6), (6, 8)],
[(1, 8), (2, 5)],
[(1, 3), (4, 8)],
[(1, 4), (2, 5), (5, 8)],
[(5, 8), (1, 4), (6, 8)],
[(1, 10), (2, 5), (6, 8), (9, 10), (10, 12)],
[(0, 1), (3, 5), (4, 8), (10, 12), (9, 10)],
]
for x in inputs:
in_place(x)
merge_ranges = in_place
setup = 'from __main__ import test_nip, test_ip'
print(timeit.timeit('test_nip()', number=10000, setup=setup))
print(timeit.timeit('test_ip()', number=10000, setup=setup))
# Tests
class Test(unittest.TestCase):
def test_meetings_overlap(self):
actual = merge_ranges([(1, 3), (2, 4)])
expected = [(1, 4)]
self.assertEqual(actual, expected)
def test_meetings_touch(self):
actual = merge_ranges([(5, 6), (6, 8)])
expected = [(5, 8)]
self.assertEqual(actual, expected)
def test_meeting_contains_other_meeting(self):
actual = merge_ranges([(1, 8), (2, 5)])
expected = [(1, 8)]
self.assertEqual(actual, expected)
def test_meetings_stay_separate(self):
actual = merge_ranges([(1, 3), (4, 8)])
expected = [(1, 3), (4, 8)]
self.assertEqual(actual, expected)
def test_multiple_merged_meetings(self):
actual = merge_ranges([(1, 4), (2, 5), (5, 8)])
expected = [(1, 8)]
self.assertEqual(actual, expected)
def test_meetings_not_sorted(self):
actual = merge_ranges([(5, 8), (1, 4), (6, 8)])
expected = [(1, 4), (5, 8)]
self.assertEqual(actual, expected)
def test_one_long_meeting_contains_smaller_meetings(self):
actual = merge_ranges([(1, 10), (2, 5), (6, 8), (9, 10), (10, 12)])
expected = [(1, 12)]
self.assertEqual(actual, expected)
def test_sample_input(self):
actual = merge_ranges([(0, 1), (3, 5), (4, 8), (10, 12), (9, 10)])
expected = [(0, 1), (3, 8), (9, 12)]
self.assertEqual(actual, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,183 @@
import unittest
from collections import deque
from heapq import heappush, heappop
################################################################################
# InterviewCake.com
################################################################################
# construct_path :: Map String String -> String -> String -> [String]
def construct_path(paths, beg, end):
"""
Reconstruct the path from `beg` to `end`.
"""
result = []
current = end
print(paths)
print(beg, end)
print('-----')
while current:
result.append(current)
current = paths[current]
result.reverse()
return result
def get_path_ic(graph, beg, end):
"""
InterviewCake uses a dictionary and back-tracking to store and reconstruct
the path instead of storing the path as state on each node.
This reduces the memory costs. See get_path_bft for an example of this less
optimal solution.
"""
if beg not in graph:
raise Exception('Origin node absent from graph.')
if end not in graph:
raise Exception('Destination node absent from graph.')
q = deque()
q.append(beg)
paths = {beg: None}
while q:
node = q.popleft()
if node == end:
print(graph)
return construct_path(paths, beg, end)
for x in graph[node]:
if x not in paths:
paths[x] = node
q.append(x)
return None
################################################################################
# Per-node state
################################################################################
def get_path_bft(graph, beg, end):
"""
Here we find the shortest path from `beg` to `end` in `graph` by doing a BFT
from beg to end and storing the path state alongside each node in the queue.
"""
if beg not in graph:
raise Exception('Origin node absent from graph.')
if end not in graph:
raise Exception('Destination node absent from graph.')
q = deque()
seen = set()
q.append([beg])
while q:
path = q.popleft()
node = path[-1]
seen.add(node)
if node == end:
return path
for x in graph[node]:
if x not in seen:
q.append(path + [x])
################################################################################
# Dijkstra's Algorithm
################################################################################
def get_path(graph, beg, end):
"""
Here we find the shortest path using Dijkstra's algorithm, which is my
favorite solution.
"""
if beg not in graph:
raise Exception(
'The origin node, {}, is not present in the graph'.format(beg))
if end not in graph:
raise Exception(
'The origin node, {}, is not present in the graph'.format(end))
q = []
seen = set()
heappush(q, (1, [beg]))
while q:
weight, path = heappop(q)
node = path[-1]
seen.add(node)
if node == end:
return path
for x in graph[node]:
if x not in seen:
heappush(q, (weight + 1, path + [x]))
return None
# Tests
class Test(unittest.TestCase):
def setUp(self):
self.graph = {
'a': ['b', 'c', 'd'],
'b': ['a', 'd'],
'c': ['a', 'e'],
'd': ['b', 'a'],
'e': ['c'],
'f': ['g'],
'g': ['f'],
}
def test_two_hop_path_1(self):
actual = get_path(self.graph, 'a', 'e')
expected = ['a', 'c', 'e']
self.assertEqual(actual, expected)
def test_two_hop_path_2(self):
actual = get_path(self.graph, 'd', 'c')
expected = ['d', 'a', 'c']
self.assertEqual(actual, expected)
def test_one_hop_path_1(self):
actual = get_path(self.graph, 'a', 'c')
expected = ['a', 'c']
self.assertEqual(actual, expected)
def test_one_hop_path_2(self):
actual = get_path(self.graph, 'f', 'g')
expected = ['f', 'g']
self.assertEqual(actual, expected)
def test_one_hop_path_3(self):
actual = get_path(self.graph, 'g', 'f')
expected = ['g', 'f']
self.assertEqual(actual, expected)
def test_zero_hop_path(self):
actual = get_path(self.graph, 'a', 'a')
expected = ['a']
self.assertEqual(actual, expected)
def test_no_path(self):
actual = get_path(self.graph, 'a', 'f')
expected = None
self.assertEqual(actual, expected)
def test_start_node_not_present(self):
with self.assertRaises(Exception):
get_path(self.graph, 'h', 'a')
def test_end_node_not_present(self):
with self.assertRaises(Exception):
get_path(self.graph, 'a', 'h')
unittest.main(verbosity=2)

View file

@ -0,0 +1,104 @@
# Herein I'm practicing two-dimensional matrix traversals in all directions of
# which I can conceive:
# 0. T -> B; L -> R
# 1. T -> B; R -> L
# 2. B -> T; L -> R
# 3. B -> T; R -> L
#
# Commentary:
# When I think of matrices, I'm reminded of cartesian planes. I think of the
# cells as (X,Y) coordinates. This has been a pitfall for me because matrices
# are usually encoded in the opposite way. That is, to access a cell at the
# coordinates (X,Y) given a matrix M, you index M like this: M[Y][X]. To attempt
# to avoid this confusion, instead of saying X and Y, I will prefer saying
# "column" and "row".
#
# When traversing a matrix, you typically traverse vertically and then
# horizontally; in other words, the rows come first followed by the columns. As
# such, I'd like to refer to traversal orders as "top-to-bottom, left-to-right"
# rather than "left-to-right, top-to-bottom".
#
# These practices are all in an attempt to rewire my thinking.
# This is a list of matrices where the index of a matrix corresponds to the
# order in which it should be traversed to produce the sequence:
# [1,2,3,4,5,6,7,8,9].
boards = [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[3, 2, 1], [6, 5, 4], [9, 8, 7]],
[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[9, 8, 7], [6, 5, 4], [3, 2, 1]]]
# T -> B; L -> R
board = boards[0]
result = []
for row in board:
for col in row:
result.append(col)
print(result)
# T -> B; R -> L
board = boards[1]
result = []
for row in board:
for col in reversed(row):
result.append(col)
print(result)
# B -> T; L -> R
board = boards[2]
result = []
for row in reversed(board):
for col in row:
result.append(col)
print(result)
# B -> T; R -> L
board = boards[3]
result = []
for row in reversed(board):
for col in reversed(row):
result.append(col)
print(result)
################################################################################
# Neighbors
################################################################################
import random
# Generate a matrix of size `rows` x `cols` where each cell contains an item
# randomly selected from `xs`.
def generate_board(rows, cols, xs):
result = []
for _ in range(rows):
row = []
for _ in range(cols):
row.append(random.choice(xs))
result.append(row)
return result
# Print the `board` to the screen.
def print_board(board):
print('\n'.join([' '.join(row) for row in board]))
board = generate_board(4, 5, ['R', 'G', 'B'])
print_board(board)
# Return all of the cells horizontally and vertically accessible from a starting
# cell at `row`, `col` in `board`.
def neighbors(row, col, board):
result = {'top': [], 'bottom': [], 'left': [], 'right': []}
for i in range(row - 1, -1, -1):
result['top'].append(board[i][col])
for i in range(row + 1, len(board)):
result['bottom'].append(board[i][col])
for i in range(col - 1, -1, -1):
result['left'].append(board[row][i])
for i in range(col + 1, len(board[0])):
result['right'].append(board[row][i])
return result
print(neighbors(1, 2, board))

View file

@ -0,0 +1,72 @@
import unittest
# Compute the fibonacci using a bottom-up algorithm.
def fib(n):
if n < 0:
raise Error('Cannot call fibonacci with negative values')
cache = [0, 1]
for i in range(n):
cache[0], cache[1] = cache[1], cache[0] + cache[1]
return cache[0]
# Compute the fibonacci using memoization.
def fib_memoized(n):
cache = {
0: 0,
1: 1,
}
def do_fib(n):
if n < 0:
raise Error('The fib function does not support negative inputs')
if n in cache:
return cache[n]
cache[n - 1] = do_fib(n - 1)
cache[n - 2] = do_fib(n - 2)
return cache[n - 1] + cache[n - 2]
return do_fib(n)
# Tests
class Test(unittest.TestCase):
def test_zeroth_fibonacci(self):
actual = fib(0)
expected = 0
self.assertEqual(actual, expected)
def test_first_fibonacci(self):
actual = fib(1)
expected = 1
self.assertEqual(actual, expected)
def test_second_fibonacci(self):
actual = fib(2)
expected = 1
self.assertEqual(actual, expected)
def test_third_fibonacci(self):
actual = fib(3)
expected = 2
self.assertEqual(actual, expected)
def test_fifth_fibonacci(self):
actual = fib(5)
expected = 5
self.assertEqual(actual, expected)
def test_tenth_fibonacci(self):
actual = fib(10)
expected = 55
self.assertEqual(actual, expected)
def test_negative_fibonacci(self):
with self.assertRaises(Exception):
fib(-1)
unittest.main(verbosity=2)

View file

@ -0,0 +1,79 @@
{
"name": "deepmind-part-two",
"version": "1.0.0",
"lockfileVersion": 1,
"requires": true,
"dependencies": {
"arg": {
"version": "4.1.3",
"resolved": "https://registry.npmjs.org/arg/-/arg-4.1.3.tgz",
"integrity": "sha512-58S9QDqG0Xx27YwPSt9fJxivjYl432YCwfDMfZ+71RAqUrZef7LrKQZ3LHLOwCS4FLNBplP533Zx895SeOCHvA==",
"dev": true
},
"buffer-from": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/buffer-from/-/buffer-from-1.1.1.tgz",
"integrity": "sha512-MQcXEUbCKtEo7bhqEs6560Hyd4XaovZlO/k9V3hjVUF/zwW7KBVdSK4gIt/bzwS9MbR5qob+F5jusZsb0YQK2A==",
"dev": true
},
"diff": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/diff/-/diff-4.0.2.tgz",
"integrity": "sha512-58lmxKSA4BNyLz+HHMUzlOEpg09FV+ev6ZMe3vJihgdxzgcwZ8VoEEPmALCZG9LmqfVoNMMKpttIYTVG6uDY7A==",
"dev": true
},
"make-error": {
"version": "1.3.5",
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.5.tgz",
"integrity": "sha512-c3sIjNUow0+8swNwVpqoH4YCShKNFkMaw6oH1mNS2haDZQqkeZFlHS3dhoeEbKKmJB4vXpJucU6oH75aDYeE9g==",
"dev": true
},
"prettier": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/prettier/-/prettier-2.0.2.tgz",
"integrity": "sha512-5xJQIPT8BraI7ZnaDwSbu5zLrB6vvi8hVV58yHQ+QK64qrY40dULy0HSRlQ2/2IdzeBpjhDkqdcFBnFeDEMVdg==",
"dev": true
},
"source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz",
"integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==",
"dev": true
},
"source-map-support": {
"version": "0.5.16",
"resolved": "https://registry.npmjs.org/source-map-support/-/source-map-support-0.5.16.tgz",
"integrity": "sha512-efyLRJDr68D9hBBNIPWFjhpFzURh+KJykQwvMyW5UiZzYwoF6l4YMMDIJJEyFWxWCqfyxLzz6tSfUFR+kXXsVQ==",
"dev": true,
"requires": {
"buffer-from": "^1.0.0",
"source-map": "^0.6.0"
}
},
"ts-node": {
"version": "8.6.2",
"resolved": "https://registry.npmjs.org/ts-node/-/ts-node-8.6.2.tgz",
"integrity": "sha512-4mZEbofxGqLL2RImpe3zMJukvEvcO1XP8bj8ozBPySdCUXEcU5cIRwR0aM3R+VoZq7iXc8N86NC0FspGRqP4gg==",
"dev": true,
"requires": {
"arg": "^4.1.0",
"diff": "^4.0.1",
"make-error": "^1.1.1",
"source-map-support": "^0.5.6",
"yn": "3.1.1"
}
},
"typescript": {
"version": "3.7.5",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-3.7.5.tgz",
"integrity": "sha512-/P5lkRXkWHNAbcJIiHPfRoKqyd7bsyCma1hZNUGfn20qm64T6ZBlrzprymeu918H+mB/0rIg2gGK/BXkhhYgBw==",
"dev": true
},
"yn": {
"version": "3.1.1",
"resolved": "https://registry.npmjs.org/yn/-/yn-3.1.1.tgz",
"integrity": "sha512-Ux4ygGWsu2c7isFWe8Yu1YluJmqVhxqK2cLXNQA5AcC3QfbGNpM7fu0Y8b/z16pXLnFxZYvWhd3fhBY9DLmC6Q==",
"dev": true
}
}
}

View file

@ -0,0 +1,16 @@
{
"name": "deepmind-part-two",
"version": "1.0.0",
"description": "Practicing coding interview questions",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "William Carroll",
"license": "MIT",
"devDependencies": {
"prettier": "^2.0.2",
"ts-node": "^8.6.2",
"typescript": "^3.7.5"
}
}

View file

@ -0,0 +1,37 @@
import unittest
from collections import Counter
def has_palindrome_permutation(xs):
vs = Counter(xs).values()
return len([v for v in vs if v % 2 == 1]) in {0, 1}
# Tests
class Test(unittest.TestCase):
def test_permutation_with_odd_number_of_chars(self):
result = has_palindrome_permutation('aabcbcd')
self.assertTrue(result)
def test_permutation_with_even_number_of_chars(self):
result = has_palindrome_permutation('aabccbdd')
self.assertTrue(result)
def test_no_permutation_with_odd_number_of_chars(self):
result = has_palindrome_permutation('aabcd')
self.assertFalse(result)
def test_no_permutation_with_even_number_of_chars(self):
result = has_palindrome_permutation('aabbcd')
self.assertFalse(result)
def test_empty_string(self):
result = has_palindrome_permutation('')
self.assertTrue(result)
def test_one_character_string(self):
result = has_palindrome_permutation('a')
self.assertTrue(result)
unittest.main(verbosity=2)

View file

@ -0,0 +1,68 @@
import unittest
# get_products_of_all_ints_except_at_index :: [Int] -> [Int]
def get_products_of_all_ints_except_at_index(xs):
n = len(xs)
if n < 2:
raise Exception("Cannot computer without 2 or elements")
# lhs
befores = [None] * n
befores[0] = 1
for i in range(1, n):
befores[i] = befores[i - 1] * xs[i - 1]
# rhs
afters = [None] * n
afters[-1] = 1
for i in range(n - 2, -1, -1):
afters[i] = afters[i + 1] * xs[i + 1]
result = [None] * n
for i in range(n):
result[i] = befores[i] * afters[i]
return result
# Tests
class Test(unittest.TestCase):
def test_small_list(self):
actual = get_products_of_all_ints_except_at_index([1, 2, 3])
expected = [6, 3, 2]
self.assertEqual(actual, expected)
def test_longer_list(self):
actual = get_products_of_all_ints_except_at_index([8, 2, 4, 3, 1, 5])
expected = [120, 480, 240, 320, 960, 192]
self.assertEqual(actual, expected)
def test_list_has_one_zero(self):
actual = get_products_of_all_ints_except_at_index([6, 2, 0, 3])
expected = [0, 0, 36, 0]
self.assertEqual(actual, expected)
def test_list_has_two_zeros(self):
actual = get_products_of_all_ints_except_at_index([4, 0, 9, 1, 0])
expected = [0, 0, 0, 0, 0]
self.assertEqual(actual, expected)
def test_one_negative_number(self):
actual = get_products_of_all_ints_except_at_index([-3, 8, 4])
expected = [32, -12, -24]
self.assertEqual(actual, expected)
def test_all_negative_numbers(self):
actual = get_products_of_all_ints_except_at_index([-7, -1, -4, -2])
expected = [-8, -56, -14, -28]
self.assertEqual(actual, expected)
def test_error_with_empty_list(self):
with self.assertRaises(Exception):
get_products_of_all_ints_except_at_index([])
def test_error_with_one_number(self):
with self.assertRaises(Exception):
get_products_of_all_ints_except_at_index([1])
unittest.main(verbosity=2)

View file

@ -0,0 +1,85 @@
// Returns a new string comprised of every characters in `xs` except for the
// character at `i`.
function everyOtherChar(xs: string, i: number): string[] {
const result = [];
for (let j = 0; j < xs.length; j += 1) {
if (i !== j) {
result.push(xs[j]);
}
}
return [xs[i], result.join('')];
}
function getPermutations(xs: string): Set<string> {
if (xs === '') {
return new Set(['']);
}
const result: Set<string> = new Set;
for (let i = 0; i < xs.length; i += 1) {
const [char, rest] = everyOtherChar(xs, i);
const perms = getPermutations(rest);
for (const perm of perms) {
result.add(char + perm);
}
}
return result;
}
// Tests
let desc = 'empty string';
let input = '';
let actual = getPermutations(input);
let expected = new Set(['']);
assert(isSetsEqual(actual, expected), desc);
desc = 'one character string';
input = 'a';
actual = getPermutations(input);
expected = new Set(['a']);
assert(isSetsEqual(actual, expected), desc);
desc = 'two character string';
input = 'ab';
actual = getPermutations(input);
expected = new Set(['ab', 'ba']);
assert(isSetsEqual(actual, expected), desc);
desc = 'three character string';
input = 'abc';
actual = getPermutations(input);
expected = new Set(['abc', 'acb', 'bac', 'bca', 'cab', 'cba']);
assert(isSetsEqual(actual, expected), desc);
desc = 'four character string';
input = 'abca';
actual = getPermutations(input);
expected = new Set([
'abca', 'abac', 'acba', 'acab', 'aabc', 'aacb', 'baca', 'baac', 'bcaa',
'bcaa', 'baac', 'baca', 'caba', 'caab', 'cbaa', 'cbaa', 'caab', 'caba',
'aabc', 'aacb', 'abac', 'abca', 'acab', 'acba'
]);
assert(isSetsEqual(actual, expected), desc);
function isSetsEqual(as, bs) {
if (as.size !== bs.size) {
return false;
}
for (let a of as) {
if (!bs.has(a)) return false;
}
return true;
}
function assert(condition, desc) {
if (condition) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL`);
}
}

View file

@ -0,0 +1,13 @@
// Reverse array of characters, `xs`, mutatively.
function reverse(xs: Array<string>) {
let i: number = 0;
let j: number = xs.length - 1;
while (i < j) {
let tmp = xs[i];
xs[i] = xs[j]
xs[j] = tmp
i += 1
j -= 1
}
}

View file

@ -0,0 +1,74 @@
import unittest
def reverse(xs, i, j):
"""Reverse array of characters, xs, in-place."""
while i < j:
xs[i], xs[j] = xs[j], xs[i]
i += 1
j -= 1
def reverse_words(xs):
punctuation = None
if len(xs) > 0 and xs[-1] in ".?!":
punctuation = xs.pop()
reverse(xs, 0, len(xs) - 1)
i = 0
j = i
while j < len(xs):
while j < len(xs) and xs[j] != ' ':
j += 1
reverse(xs, i, j - 1)
j += 1
i = j
if punctuation:
xs.append(punctuation)
# Tests
class Test(unittest.TestCase):
def test_one_word(self):
message = list('vault')
reverse_words(message)
expected = list('vault')
self.assertEqual(message, expected)
def test_two_words(self):
message = list('thief cake')
reverse_words(message)
expected = list('cake thief')
self.assertEqual(message, expected)
def test_three_words(self):
message = list('one another get')
reverse_words(message)
expected = list('get another one')
self.assertEqual(message, expected)
def test_multiple_words_same_length(self):
message = list('rat the ate cat the')
reverse_words(message)
expected = list('the cat ate the rat')
self.assertEqual(message, expected)
def test_multiple_words_different_lengths(self):
message = list('yummy is cake bundt chocolate')
reverse_words(message)
expected = list('chocolate bundt cake is yummy')
self.assertEqual(message, expected)
def test_empty_string(self):
message = list('')
reverse_words(message)
expected = list('')
self.assertEqual(message, expected)
def test_bonus_support_punctuation(self):
message = list('yummy is cake bundt chocolate this!')
reverse_words(message)
expected = list('this chocolate bundt cake is yummy!')
self.assertEqual(message, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,219 @@
/*******************************************************************************
* Setup
******************************************************************************/
interface BinaryTreeNode {
value: number;
left: BinaryTreeNode;
right: BinaryTreeNode;
}
class BinaryTreeNode {
constructor(value: number) {
this.value = value;
this.left = null;
this.right = null;
}
insertLeft(value: number): BinaryTreeNode {
this.left = new BinaryTreeNode(value);
return this.left;
}
insertRight(value: number): BinaryTreeNode {
this.right = new BinaryTreeNode(value);
return this.right;
}
}
/*******************************************************************************
* First solution
******************************************************************************/
/**
* I first solved this problem using O(n) space and O(n*log(n))
* time. InterviewCake informs me that we can improve both the time and the
* space performance.
*/
function findSecondLargest_first(node: BinaryTreeNode): number {
const stack: Array<BinaryTreeNode> = [];
const xs: Array<number> = [];
stack.push(node);
while (stack.length > 0) {
const node = stack.pop()
xs.push(node.value);
if (node.left) {
stack.push(node.left);
}
if (node.right) {
stack.push(node.right);
}
}
xs.sort();
if (xs.length < 2) {
throw new Error('Cannot find the second largest element in a BST with fewer than two elements.');
} else {
return xs[xs.length - 2];
}
}
/*******************************************************************************
* Second solution
******************************************************************************/
/**
* My second solution accumulates a list of the values in the tree using an
* in-order traversal. This reduces the runtime costs from O(n*log(n)) from the
* previous solution to O(n). The memory cost is still O(n), which InterviewCake
* informs me can be reduced to O(1).
*/
function findSecondLargest_second(node: BinaryTreeNode): number {
const xs: Array<number> = accumulateInorder(node);
if (xs.length < 2) {
throw new Error('Cannot find the second largest element in a BST with fewer than two elements.');
} else {
return xs[xs.length - 2];
}
}
/**
* Returns an array containing the values of the tree, `node`, sorted in-order
* (i.e. from smallest-to-largest).
*/
function accumulateInorder(node: BinaryTreeNode): Array<number> {
let result = [];
if (node.left) {
result = result.concat(accumulateInorder(node.left));
}
result.push(node.value)
if (node.right) {
result = result.concat(accumulateInorder(node.right));
}
return result;
}
/*******************************************************************************
* Third solution
******************************************************************************/
/**
* Returns the largest number in a BST.
*/
function findLargest(node: BinaryTreeNode): number {
let curr: BinaryTreeNode = node;
while (curr.right) {
curr = curr.right;
}
return curr.value;
}
/**
* Returns the second largest number in a BST
*/
function findSecondLargest(node: BinaryTreeNode): number {
let curr = node;
let parent = null;
while (curr.right) {
parent = curr;
curr = curr.right
}
if (curr.left) {
return findLargest(curr.left);
}
else {
return parent.value;
}
}
// Tests
let desc = 'full tree';
let treeRoot = new BinaryTreeNode(50);
let leftNode = treeRoot.insertLeft(30);
leftNode.insertLeft(10);
leftNode.insertRight(40);
let rightNode = treeRoot.insertRight(70);
rightNode.insertLeft(60);
rightNode.insertRight(80);
assertEquals(findSecondLargest(treeRoot), 70, desc);
desc = 'largest has a left child';
treeRoot = new BinaryTreeNode(50);
leftNode = treeRoot.insertLeft(30);
leftNode.insertLeft(10);
leftNode.insertRight(40);
rightNode = treeRoot.insertRight(70);
rightNode.insertLeft(60);
assertEquals(findSecondLargest(treeRoot), 60, desc);
desc = 'largest has a left subtree';
treeRoot = new BinaryTreeNode(50);
leftNode = treeRoot.insertLeft(30);
leftNode.insertLeft(10);
leftNode.insertRight(40);
rightNode = treeRoot.insertRight(70);
leftNode = rightNode.insertLeft(60);
leftNode.insertRight(65);
leftNode = leftNode.insertLeft(55);
leftNode.insertRight(58);
assertEquals(findSecondLargest(treeRoot), 65, desc);
desc = 'second largest is root node';
treeRoot = new BinaryTreeNode(50);
leftNode = treeRoot.insertLeft(30);
leftNode.insertLeft(10);
leftNode.insertRight(40);
rightNode = treeRoot.insertRight(70);
assertEquals(findSecondLargest(treeRoot), 50, desc);
desc = 'descending linked list';
treeRoot = new BinaryTreeNode(50);
leftNode = treeRoot.insertLeft(40);
leftNode = leftNode.insertLeft(30);
leftNode = leftNode.insertLeft(20);
leftNode = leftNode.insertLeft(10);
assertEquals(findSecondLargest(treeRoot), 40, desc);
desc = 'ascending linked list';
treeRoot = new BinaryTreeNode(50);
rightNode = treeRoot.insertRight(60);
rightNode = rightNode.insertRight(70);
rightNode = rightNode.insertRight(80);
assertEquals(findSecondLargest(treeRoot), 70, desc);
desc = 'one node tree';
treeRoot = new BinaryTreeNode(50);
assertThrowsError(() => findSecondLargest(treeRoot), desc);
desc = 'when tree is empty';
treeRoot = null;
assertThrowsError(() => findSecondLargest(treeRoot), desc);
function assertEquals(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`)
}
}
function assertThrowsError(func, desc) {
try {
func();
console.log(`${desc} ... FAIL`);
} catch (e) {
console.log(`${desc} ... PASS`);
}
}

View file

@ -0,0 +1,11 @@
let
briefcase = import <briefcase> {};
pkgs = briefcase.third_party.pkgs;
in pkgs.mkShell {
buildInputs = with pkgs; [
nodejs
python3
go
goimports
];
}

View file

@ -0,0 +1,20 @@
import random
def get_random(floor, ceiling):
return random.randrange(floor, ceiling + 1)
def shuffle(xs):
n = len(xs)
for i in range(n - 1):
j = get_random(i + 1, n - 1)
xs[i], xs[j] = xs[j], xs[i]
sample_list = [1, 2, 3, 4, 5]
print('Sample list:', sample_list)
print('Shuffling sample list...')
shuffle(sample_list)
print(sample_list)

View file

@ -0,0 +1,54 @@
import unittest
def get_max_profit(xs):
if len(xs) < 2:
raise Exception('Can only trade with two or more ticker values.')
lowest_buy = xs[0]
max_profit = None
for x in xs[1:]:
if not max_profit:
max_profit = x - lowest_buy
else:
max_profit = max(max_profit, x - lowest_buy)
lowest_buy = min(lowest_buy, x)
return max_profit
# Tests
class Test(unittest.TestCase):
def test_price_goes_up_then_down(self):
actual = get_max_profit([1, 5, 3, 2])
expected = 4
self.assertEqual(actual, expected)
def test_price_goes_down_then_up(self):
actual = get_max_profit([7, 2, 8, 9])
expected = 7
self.assertEqual(actual, expected)
def test_price_goes_up_all_day(self):
actual = get_max_profit([1, 6, 7, 9])
expected = 8
self.assertEqual(actual, expected)
def test_price_goes_down_all_day(self):
actual = get_max_profit([9, 7, 4, 1])
expected = -2
self.assertEqual(actual, expected)
def test_price_stays_the_same_all_day(self):
actual = get_max_profit([1, 1, 1, 1])
expected = 0
self.assertEqual(actual, expected)
def test_error_with_empty_prices(self):
with self.assertRaises(Exception):
get_max_profit([])
def test_error_with_one_price(self):
with self.assertRaises(Exception):
get_max_profit([1])
unittest.main(verbosity=2)

View file

@ -0,0 +1,77 @@
* Array and string manipulation
** DONE Merging Meeting Times
** DONE Reverse String in Place
** DONE Reverse Words
** DONE Merge Sorted Arrays
** DONE Cafe Order Checker
* Hashing and hash tables
** DONE Inflight Entertainment
** DONE Permutation Palindrome
** DONE Word Cloud Data
** DONE Top Scores
* Greedy Algorithms
** DONE Apple Stocks
** DONE Highest Product of 3
** DONE Product of All Other Numbers
** DONE Cafe Order Checker
** DONE In-Place Shuffle
* Sorting, searching, and logarithms
** DONE Find Rotation Point
** TODO Find Repeat, Space Edition
** DONE Top Scores
** DONE Merging Meeting Times
* Trees and graphs
** DONE Balanced Binary Tree
** DONE Binary Search Tree Checker
** DONE 2nd Largest Item in a Binary Search Tree
** DONE Graph Coloring
** DONE MeshMessage
** DONE Find Repeat, Space Edition BEAST MODE
* Dynamic programming and recursion
** DONE Recursive String Permutations
** DONE Compute nth Fibonacci Number
** TODO Making Change
** TODO The Cake Thief
** DONE Balanced Binary Tree
** DONE Binary Search Tree Checker
** DONE 2nd Largest Item in a Binary Search Tree
* Queues and stacks
** TODO Largest Stack
** TODO Implement A Queue With Two Stacks
** TODO Parenthesis Matching
** TODO Bracket Validator
* Linked lists
** DONE Delete Node
** TODO Does This Linked List Have A Cycle?
** TODO Reverse A Linked List
** TODO Kth to Last Node in a Singly-Linked List
** DONE Find Repeat, Space Edition BEAST MODE
* System design
** TODO URL Shortener
** TODO MillionGazillion
** TODO Find Duplicate Files
* General programming
** TODO Rectangular Love
** TODO Temperature Tracker
* Bit manipulation
** TODO Binary Numbers
** TODO The Stolen Breakfast Drone
* Combinatorics, probability, and other math
** TODO Which Appears Twice
** TODO Find in Ordered Set
** DONE In-Place Shuffle
** TODO Simulate 5-sided die
** TODO Simulate 7-sided die
** TODO Two Egg Problem
* JavaScript
** TODO JavaScript Scope
** TODO What's Wrong with This JavaScript?
* Coding interview tips
** TODO How The Coding Interview Works
** TODO General Coding Interview Advice
** TODO Impostor Syndrome
** TODO Why You Hit Dead Ends
** TODO Tips for Getting Unstuck
** TODO The 24 Hours Before Your Interview
** TODO Beating Behavioral Questions
** TODO Managing Your Interview Timeline

View file

@ -0,0 +1,47 @@
import unittest
def sort_scores(xs, highest_possible_score):
result = []
buckets = [0] * highest_possible_score
for x in xs:
buckets[x - 1] += 1
for i in range(highest_possible_score - 1, -1, -1):
if buckets[i] > 0:
for _ in range(buckets[i]):
result.append(i + 1)
return result
# Tests
class Test(unittest.TestCase):
def test_no_scores(self):
actual = sort_scores([], 100)
expected = []
self.assertEqual(actual, expected)
def test_one_score(self):
actual = sort_scores([55], 100)
expected = [55]
self.assertEqual(actual, expected)
def test_two_scores(self):
actual = sort_scores([30, 60], 100)
expected = [60, 30]
self.assertEqual(actual, expected)
def test_many_scores(self):
actual = sort_scores([37, 89, 41, 65, 91, 53], 100)
expected = [91, 89, 65, 53, 41, 37]
self.assertEqual(actual, expected)
def test_repeated_scores(self):
actual = sort_scores([20, 10, 30, 30, 10, 20], 100)
expected = [30, 30, 20, 20, 10, 10]
self.assertEqual(actual, expected)
unittest.main(verbosity=2)

View file

@ -0,0 +1,57 @@
function sortScores(xs: Array<number>, highest: number): Array<number> {
const counts: Array<number> = [];
const result: Array<number> = [];
// Initialize counts
for (let i = 0; i <= highest; i += 1) {
counts.push(0);
}
for (let i = 0; i < xs.length; i += 1) {
counts[xs[i]] += 1;
}
for (let i = highest; i >= 0; i -= 1) {
let count: number = counts[i];
for (let j = 0; j < count; j += 1) {
result.push(i);
}
}
return result;
}
// Tests
let desc = "no scores";
let actual = sortScores([], 100);
let expected = [];
assertEqual(JSON.stringify(actual), JSON.stringify(expected), desc);
desc = "one score";
actual = sortScores([55], 100);
expected = [55];
assertEqual(JSON.stringify(actual), JSON.stringify(expected), desc);
desc = "two scores";
actual = sortScores([30, 60], 100);
expected = [60, 30];
assertEqual(JSON.stringify(actual), JSON.stringify(expected), desc);
desc = "many scores";
actual = sortScores([37, 89, 41, 65, 91, 53], 100);
expected = [91, 89, 65, 53, 41, 37];
assertEqual(JSON.stringify(actual), JSON.stringify(expected), desc);
desc = "repeated scores";
actual = sortScores([20, 10, 30, 30, 10, 20], 100);
expected = [30, 30, 20, 20, 10, 10];
assertEqual(JSON.stringify(actual), JSON.stringify(expected), desc);
function assertEqual(a, b, desc) {
if (a === b) {
console.log(`${desc} ... PASS`);
} else {
console.log(`${desc} ... FAIL: ${a} != ${b}`);
}
}

View file

@ -0,0 +1,7 @@
{
"compilerOptions": {
"downlevelIteration": true,
"target": "es5",
"lib": ["es6", "dom"]
}
}

View file

@ -0,0 +1,79 @@
import unittest
import re
from collections import Counter
class WordCloudData(object):
def __init__(self, x):
x = x.replace('...', ' ').replace(' - ', ' ')
x = ''.join(c for c in x if c not in ',.!?;:')
self.words_to_counts = dict(
Counter(x.lower() for x in re.split(r'\s+', x)))
# Tests
class Test(unittest.TestCase):
def test_simple_sentence(self):
input = 'I like cake'
word_cloud = WordCloudData(input)
actual = word_cloud.words_to_counts
expected = {'i': 1, 'like': 1, 'cake': 1}
self.assertEqual(actual, expected)
def test_longer_sentence(self):
input = 'Chocolate cake for dinner and pound cake for dessert'
word_cloud = WordCloudData(input)
actual = word_cloud.words_to_counts
expected = {
'and': 1,
'pound': 1,
'for': 2,
'dessert': 1,
'chocolate': 1,
'dinner': 1,
'cake': 2,
}
self.assertEqual(actual, expected)
def test_punctuation(self):
input = 'Strawberry short cake? Yum!'
word_cloud = WordCloudData(input)
actual = word_cloud.words_to_counts
expected = {'cake': 1, 'strawberry': 1, 'short': 1, 'yum': 1}
self.assertEqual(actual, expected)
def test_hyphenated_words(self):
input = 'Dessert - mille-feuille cake'
word_cloud = WordCloudData(input)
actual = word_cloud.words_to_counts
expected = {'cake': 1, 'dessert': 1, 'mille-feuille': 1}
self.assertEqual(actual, expected)
def test_ellipses_between_words(self):
input = 'Mmm...mmm...decisions...decisions'
word_cloud = WordCloudData(input)
actual = word_cloud.words_to_counts
expected = {'mmm': 2, 'decisions': 2}
self.assertEqual(actual, expected)
def test_apostrophes(self):
input = "Allie's Bakery: Sasha's Cakes"
word_cloud = WordCloudData(input)
actual = word_cloud.words_to_counts
expected = {"bakery": 1, "cakes": 1, "allie's": 1, "sasha's": 1}
self.assertEqual(actual, expected)
unittest.main(verbosity=2)