194 lines
5.9 KiB
C++
194 lines
5.9 KiB
C++
|
// Copyright 2017 The Abseil Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "absl/random/internal/distribution_test_util.h"
|
||
|
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
TEST(TestUtil, InverseErf) {
|
||
|
const struct {
|
||
|
const double z;
|
||
|
const double value;
|
||
|
} kErfInvTable[] = {
|
||
|
{0.0000001, 8.86227e-8},
|
||
|
{0.00001, 8.86227e-6},
|
||
|
{0.5, 0.4769362762044},
|
||
|
{0.6, 0.5951160814499},
|
||
|
{0.99999, 3.1234132743},
|
||
|
{0.9999999, 3.7665625816},
|
||
|
{0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004
|
||
|
{0.999999999, 4.3200053849134452},
|
||
|
};
|
||
|
|
||
|
for (const auto& data : kErfInvTable) {
|
||
|
auto value = absl::random_internal::erfinv(data.z);
|
||
|
|
||
|
// Log using the Wolfram-alpha function name & parameters.
|
||
|
EXPECT_NEAR(value, data.value, 1e-8)
|
||
|
<< " InverseErf[" << data.z << "] (expected=" << data.value << ") -> "
|
||
|
<< value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const struct {
|
||
|
const double p;
|
||
|
const double q;
|
||
|
const double x;
|
||
|
const double alpha;
|
||
|
} kBetaTable[] = {
|
||
|
{0.5, 0.5, 0.01, 0.06376856085851985},
|
||
|
{0.5, 0.5, 0.1, 0.2048327646991335},
|
||
|
{0.5, 0.5, 1, 1},
|
||
|
{1, 0.5, 0, 0},
|
||
|
{1, 0.5, 0.01, 0.005012562893380045},
|
||
|
{1, 0.5, 0.1, 0.0513167019494862},
|
||
|
{1, 0.5, 0.5, 0.2928932188134525},
|
||
|
{1, 1, 0.5, 0.5},
|
||
|
{2, 2, 0.1, 0.028},
|
||
|
{2, 2, 0.2, 0.104},
|
||
|
{2, 2, 0.3, 0.216},
|
||
|
{2, 2, 0.4, 0.352},
|
||
|
{2, 2, 0.5, 0.5},
|
||
|
{2, 2, 0.6, 0.648},
|
||
|
{2, 2, 0.7, 0.784},
|
||
|
{2, 2, 0.8, 0.896},
|
||
|
{2, 2, 0.9, 0.972},
|
||
|
{5.5, 5, 0.5, 0.4361908850559777},
|
||
|
{10, 0.5, 0.9, 0.1516409096346979},
|
||
|
{10, 5, 0.5, 0.08978271484375},
|
||
|
{10, 5, 1, 1},
|
||
|
{10, 10, 0.5, 0.5},
|
||
|
{20, 5, 0.8, 0.4598773297575791},
|
||
|
{20, 10, 0.6, 0.2146816102371739},
|
||
|
{20, 10, 0.8, 0.9507364826957875},
|
||
|
{20, 20, 0.5, 0.5},
|
||
|
{20, 20, 0.6, 0.8979413687105918},
|
||
|
{30, 10, 0.7, 0.2241297491808366},
|
||
|
{30, 10, 0.8, 0.7586405487192086},
|
||
|
{40, 20, 0.7, 0.7001783247477069},
|
||
|
{1, 0.5, 0.1, 0.0513167019494862},
|
||
|
{1, 0.5, 0.2, 0.1055728090000841},
|
||
|
{1, 0.5, 0.3, 0.1633399734659245},
|
||
|
{1, 0.5, 0.4, 0.2254033307585166},
|
||
|
{1, 2, 0.2, 0.36},
|
||
|
{1, 3, 0.2, 0.488},
|
||
|
{1, 4, 0.2, 0.5904},
|
||
|
{1, 5, 0.2, 0.67232},
|
||
|
{2, 2, 0.3, 0.216},
|
||
|
{3, 2, 0.3, 0.0837},
|
||
|
{4, 2, 0.3, 0.03078},
|
||
|
{5, 2, 0.3, 0.010935},
|
||
|
|
||
|
// These values test small & large points along the range of the Beta
|
||
|
// function.
|
||
|
//
|
||
|
// When selecting test points, remember that if BetaIncomplete(x, p, q)
|
||
|
// returns the same value to within the limits of precision over a large
|
||
|
// domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an
|
||
|
// essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.
|
||
|
|
||
|
// BetaRegularized[x, 0.00001, 0.00001],
|
||
|
// For x in {~0.001 ... ~0.999}, => ~0.5
|
||
|
{1e-5, 1e-5, 1e-5, 0.4999424388184638311},
|
||
|
{1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
|
||
|
|
||
|
// BetaRegularized[x, 0.00001, 10000].
|
||
|
// For x in {~epsilon ... 1.0}, => ~1
|
||
|
{1e-5, 1e5, 1e-6, 0.9999817708130066936},
|
||
|
{1e-5, 1e5, (1.0 - 1e-7), 1.0},
|
||
|
|
||
|
// BetaRegularized[x, 10000, 0.00001].
|
||
|
// For x in {0 .. 1-epsilon}, => ~0
|
||
|
{1e5, 1e-5, 1e-6, 0},
|
||
|
{1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
|
||
|
};
|
||
|
|
||
|
TEST(BetaTest, BetaIncomplete) {
|
||
|
for (const auto& data : kBetaTable) {
|
||
|
auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);
|
||
|
|
||
|
// Log using the Wolfram-alpha function name & parameters.
|
||
|
EXPECT_NEAR(value, data.alpha, 1e-12)
|
||
|
<< " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
|
||
|
<< "] (expected=" << data.alpha << ") -> " << value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(BetaTest, BetaIncompleteInv) {
|
||
|
for (const auto& data : kBetaTable) {
|
||
|
auto value =
|
||
|
absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);
|
||
|
|
||
|
// Log using the Wolfram-alpha function name & parameters.
|
||
|
EXPECT_NEAR(value, data.x, 1e-6)
|
||
|
<< " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
|
||
|
<< data.q << "] (expected=" << data.x << ") -> " << value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(MaxErrorTolerance, MaxErrorTolerance) {
|
||
|
std::vector<std::pair<double, double>> cases = {
|
||
|
{0.0000001, 8.86227e-8 * 1.41421356237},
|
||
|
{0.00001, 8.86227e-6 * 1.41421356237},
|
||
|
{0.5, 0.4769362762044 * 1.41421356237},
|
||
|
{0.6, 0.5951160814499 * 1.41421356237},
|
||
|
{0.99999, 3.1234132743 * 1.41421356237},
|
||
|
{0.9999999, 3.7665625816 * 1.41421356237},
|
||
|
{0.999999944, 3.8403850690566985 * 1.41421356237},
|
||
|
{0.999999999, 4.3200053849134452 * 1.41421356237}};
|
||
|
for (auto entry : cases) {
|
||
|
EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),
|
||
|
entry.second, 1e-8);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(ZScore, WithSameMean) {
|
||
|
absl::random_internal::DistributionMoments m;
|
||
|
m.n = 100;
|
||
|
m.mean = 5;
|
||
|
m.variance = 1;
|
||
|
EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);
|
||
|
|
||
|
m.n = 1;
|
||
|
m.mean = 0;
|
||
|
m.variance = 1;
|
||
|
EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);
|
||
|
|
||
|
m.n = 10000;
|
||
|
m.mean = -5;
|
||
|
m.variance = 100;
|
||
|
EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);
|
||
|
}
|
||
|
|
||
|
TEST(ZScore, DifferentMean) {
|
||
|
absl::random_internal::DistributionMoments m;
|
||
|
m.n = 100;
|
||
|
m.mean = 5;
|
||
|
m.variance = 1;
|
||
|
EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);
|
||
|
|
||
|
m.n = 1;
|
||
|
m.mean = 0;
|
||
|
m.variance = 1;
|
||
|
EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);
|
||
|
|
||
|
m.n = 10000;
|
||
|
m.mean = -5;
|
||
|
m.variance = 100;
|
||
|
EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
|
||
|
}
|
||
|
} // namespace
|