tvl-depot/absl/container/btree_test.cc

2245 lines
72 KiB
C++
Raw Normal View History

Export of internal Abseil changes -- 3dbb096e4662311f81df1017a8e0975e903936cf by Derek Mauro <dmauro@google.com>: Document and workaround a known MSVC bug doing constexpr pointer arithmetic PiperOrigin-RevId: 262604652 -- b5fa7f1a0c776f6ba20d52772a1679ec42ad21fd by Derek Mauro <dmauro@google.com>: Fix typo in macos_xcode_bazel.sh PiperOrigin-RevId: 262591285 -- 89dd77ab5bb44d76b6cb6b2f288e21536e16a85a by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 262582747 -- 32295ed9a0c6c8ab143a912194040eede05d3ea3 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262569140 -- 7f0f5b94197369228024529022d727439d2c894f by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262563554 -- 314aed043639abbd221074125c57b7c68616de7e by Derek Mauro <dmauro@google.com>: Release absl::btree PiperOrigin-RevId: 262553526 -- 72b44056c6ce9000c4a6cd9aec58b82067c82a13 by CJ Johnson <johnsoncj@google.com>: Internal change PiperOrigin-RevId: 262421185 -- 4e2c12151edf534f929e8e810f1334073f90489a by Abseil Team <absl-team@google.com>: Update documentation to make it less likely for users to write `Hours(24)` without considering using civil dates instead. PiperOrigin-RevId: 262420758 -- 92b85b9573e800bd96b019408eefbc5ce4f68780 by Derek Mauro <dmauro@google.com>: Add the ability to override the bazel version in the macos_xcode_bazel.sh test script. PiperOrigin-RevId: 262412063 GitOrigin-RevId: 3dbb096e4662311f81df1017a8e0975e903936cf Change-Id: I423b2b829dc0c5f814e37bec4d68c7470f43f041
2019-08-09 20:54:24 +02:00
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/btree_test.h"
#include <cstdint>
#include <map>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
Export of internal Abseil changes -- 3dbb096e4662311f81df1017a8e0975e903936cf by Derek Mauro <dmauro@google.com>: Document and workaround a known MSVC bug doing constexpr pointer arithmetic PiperOrigin-RevId: 262604652 -- b5fa7f1a0c776f6ba20d52772a1679ec42ad21fd by Derek Mauro <dmauro@google.com>: Fix typo in macos_xcode_bazel.sh PiperOrigin-RevId: 262591285 -- 89dd77ab5bb44d76b6cb6b2f288e21536e16a85a by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 262582747 -- 32295ed9a0c6c8ab143a912194040eede05d3ea3 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262569140 -- 7f0f5b94197369228024529022d727439d2c894f by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262563554 -- 314aed043639abbd221074125c57b7c68616de7e by Derek Mauro <dmauro@google.com>: Release absl::btree PiperOrigin-RevId: 262553526 -- 72b44056c6ce9000c4a6cd9aec58b82067c82a13 by CJ Johnson <johnsoncj@google.com>: Internal change PiperOrigin-RevId: 262421185 -- 4e2c12151edf534f929e8e810f1334073f90489a by Abseil Team <absl-team@google.com>: Update documentation to make it less likely for users to write `Hours(24)` without considering using civil dates instead. PiperOrigin-RevId: 262420758 -- 92b85b9573e800bd96b019408eefbc5ce4f68780 by Derek Mauro <dmauro@google.com>: Add the ability to override the bazel version in the macos_xcode_bazel.sh test script. PiperOrigin-RevId: 262412063 GitOrigin-RevId: 3dbb096e4662311f81df1017a8e0975e903936cf Change-Id: I423b2b829dc0c5f814e37bec4d68c7470f43f041
2019-08-09 20:54:24 +02:00
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/internal/counting_allocator.h"
#include "absl/container/internal/test_instance_tracker.h"
#include "absl/flags/flag.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/types/compare.h"
ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests");
namespace absl {
namespace container_internal {
namespace {
using ::absl::test_internal::InstanceTracker;
using ::absl::test_internal::MovableOnlyInstance;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Pair;
template <typename T, typename U>
void CheckPairEquals(const T &x, const U &y) {
ABSL_INTERNAL_CHECK(x == y, "Values are unequal.");
}
template <typename T, typename U, typename V, typename W>
void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) {
CheckPairEquals(x.first, y.first);
CheckPairEquals(x.second, y.second);
}
} // namespace
// The base class for a sorted associative container checker. TreeType is the
// container type to check and CheckerType is the container type to check
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
// CheckerType is expected to be {set,map,multiset,multimap}.
template <typename TreeType, typename CheckerType>
class base_checker {
public:
using key_type = typename TreeType::key_type;
using value_type = typename TreeType::value_type;
using key_compare = typename TreeType::key_compare;
using pointer = typename TreeType::pointer;
using const_pointer = typename TreeType::const_pointer;
using reference = typename TreeType::reference;
using const_reference = typename TreeType::const_reference;
using size_type = typename TreeType::size_type;
using difference_type = typename TreeType::difference_type;
using iterator = typename TreeType::iterator;
using const_iterator = typename TreeType::const_iterator;
using reverse_iterator = typename TreeType::reverse_iterator;
using const_reverse_iterator = typename TreeType::const_reverse_iterator;
public:
base_checker() : const_tree_(tree_) {}
base_checker(const base_checker &x)
: tree_(x.tree_), const_tree_(tree_), checker_(x.checker_) {}
template <typename InputIterator>
base_checker(InputIterator b, InputIterator e)
: tree_(b, e), const_tree_(tree_), checker_(b, e) {}
iterator begin() { return tree_.begin(); }
const_iterator begin() const { return tree_.begin(); }
iterator end() { return tree_.end(); }
const_iterator end() const { return tree_.end(); }
reverse_iterator rbegin() { return tree_.rbegin(); }
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
reverse_iterator rend() { return tree_.rend(); }
const_reverse_iterator rend() const { return tree_.rend(); }
template <typename IterType, typename CheckerIterType>
IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.end()) {
ABSL_INTERNAL_CHECK(checker_iter == checker_.end(),
"Checker iterator not at end.");
} else {
CheckPairEquals(*tree_iter, *checker_iter);
}
return tree_iter;
}
template <typename IterType, typename CheckerIterType>
IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.rend()) {
ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(),
"Checker iterator not at rend.");
} else {
CheckPairEquals(*tree_iter, *checker_iter);
}
return tree_iter;
}
void value_check(const value_type &x) {
typename KeyOfValue<typename TreeType::key_type,
typename TreeType::value_type>::type key_of_value;
const key_type &key = key_of_value(x);
CheckPairEquals(*find(key), x);
lower_bound(key);
upper_bound(key);
equal_range(key);
contains(key);
count(key);
}
void erase_check(const key_type &key) {
EXPECT_FALSE(tree_.contains(key));
EXPECT_EQ(tree_.find(key), const_tree_.end());
EXPECT_FALSE(const_tree_.contains(key));
EXPECT_EQ(const_tree_.find(key), tree_.end());
EXPECT_EQ(tree_.equal_range(key).first,
const_tree_.equal_range(key).second);
}
iterator lower_bound(const key_type &key) {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
const_iterator lower_bound(const key_type &key) const {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
iterator upper_bound(const key_type &key) {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
const_iterator upper_bound(const key_type &key) const {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
std::pair<iterator, iterator> equal_range(const key_type &key) {
std::pair<typename CheckerType::iterator, typename CheckerType::iterator>
checker_res = checker_.equal_range(key);
std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
std::pair<const_iterator, const_iterator> equal_range(
const key_type &key) const {
std::pair<typename CheckerType::const_iterator,
typename CheckerType::const_iterator>
checker_res = checker_.equal_range(key);
std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
iterator find(const key_type &key) {
return iter_check(tree_.find(key), checker_.find(key));
}
const_iterator find(const key_type &key) const {
return iter_check(tree_.find(key), checker_.find(key));
}
bool contains(const key_type &key) const {
return find(key) != end();
}
size_type count(const key_type &key) const {
size_type res = checker_.count(key);
EXPECT_EQ(res, tree_.count(key));
return res;
}
base_checker &operator=(const base_checker &x) {
tree_ = x.tree_;
checker_ = x.checker_;
return *this;
}
int erase(const key_type &key) {
int size = tree_.size();
int res = checker_.erase(key);
EXPECT_EQ(res, tree_.count(key));
EXPECT_EQ(res, tree_.erase(key));
EXPECT_EQ(tree_.count(key), 0);
EXPECT_EQ(tree_.size(), size - res);
erase_check(key);
return res;
}
iterator erase(iterator iter) {
key_type key = iter.key();
int size = tree_.size();
int count = tree_.count(key);
auto checker_iter = checker_.lower_bound(key);
for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) {
++checker_iter;
}
auto checker_next = checker_iter;
++checker_next;
checker_.erase(checker_iter);
iter = tree_.erase(iter);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - 1);
EXPECT_EQ(tree_.count(key), count - 1);
if (count == 1) {
erase_check(key);
}
return iter_check(iter, checker_next);
}
void erase(iterator begin, iterator end) {
int size = tree_.size();
int count = std::distance(begin, end);
auto checker_begin = checker_.lower_bound(begin.key());
for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) {
++checker_begin;
}
auto checker_end =
end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key());
if (end != tree_.end()) {
for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) {
++checker_end;
}
}
checker_.erase(checker_begin, checker_end);
tree_.erase(begin, end);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - count);
}
void clear() {
tree_.clear();
checker_.clear();
}
void swap(base_checker &x) {
tree_.swap(x.tree_);
checker_.swap(x.checker_);
}
void verify() const {
tree_.verify();
EXPECT_EQ(tree_.size(), checker_.size());
// Move through the forward iterators using increment.
auto checker_iter = checker_.begin();
const_iterator tree_iter(tree_.begin());
for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) {
CheckPairEquals(*tree_iter, *checker_iter);
}
// Move through the forward iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
iter_check(tree_iter, checker_iter);
--tree_iter;
--checker_iter;
}
EXPECT_EQ(tree_iter, tree_.begin());
EXPECT_EQ(checker_iter, checker_.begin());
// Move through the reverse iterators using increment.
auto checker_riter = checker_.rbegin();
const_reverse_iterator tree_riter(tree_.rbegin());
for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) {
CheckPairEquals(*tree_riter, *checker_riter);
}
// Move through the reverse iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
riter_check(tree_riter, checker_riter);
--tree_riter;
--checker_riter;
}
EXPECT_EQ(tree_riter, tree_.rbegin());
EXPECT_EQ(checker_riter, checker_.rbegin());
}
const TreeType &tree() const { return tree_; }
size_type size() const {
EXPECT_EQ(tree_.size(), checker_.size());
return tree_.size();
}
size_type max_size() const { return tree_.max_size(); }
bool empty() const {
EXPECT_EQ(tree_.empty(), checker_.empty());
return tree_.empty();
}
protected:
TreeType tree_;
const TreeType &const_tree_;
CheckerType checker_;
};
namespace {
// A checker for unique sorted associative containers. TreeType is expected to
// be btree_{set,map} and CheckerType is expected to be {set,map}.
template <typename TreeType, typename CheckerType>
class unique_checker : public base_checker<TreeType, CheckerType> {
using super_type = base_checker<TreeType, CheckerType>;
public:
using iterator = typename super_type::iterator;
using value_type = typename super_type::value_type;
public:
unique_checker() : super_type() {}
unique_checker(const unique_checker &x) : super_type(x) {}
template <class InputIterator>
unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
Export of internal Abseil changes -- f28b989d5161230c6561e923b458c797a96bcf90 by Greg Falcon <gfalcon@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 263586488 -- 8259484025b7de45358719fc6182a48cac8044c6 by Andy Soffer <asoffer@google.com>: Internal changes and combine namespaces into a single namespace. PiperOrigin-RevId: 263560576 -- 8d19f41661984a600d1f8bbfeb8a30fcb4dee7d6 by Mark Barolak <mbar@google.com>: Inside of absl::string_view::copy, use absl::string_view::traits_type::copy instead of std:copy to do the actual work. This both follows the C++ standard more closely and avoids avoid MSVC unchecked iterator warnings. PiperOrigin-RevId: 263430502 -- c06bf74236e12c7c1c97bfcbbc9d29bd65d6b36c by Andy Soffer <asoffer@google.com>: Remove force-inlining attributes. Benchmarking results indicate that they are creating meaningful performance differences. PiperOrigin-RevId: 263364896 -- ec4fa6eac958a9521456201b138784f55d3b17bc by Abseil Team <absl-team@google.com>: Make BM_Fill benchmarks more representative. PiperOrigin-RevId: 263349482 -- 4ae280b4eb31d9cb58e847eb670473340f7778c1 by Derek Mauro <dmauro@google.com>: Fix new -Wdeprecated-copy warning in gcc9 PiperOrigin-RevId: 263348118 -- d238a92f452a5c35686f9c71596fdd1fe62090a2 by Matt Calabrese <calabrese@google.com>: The std::is_trivially_xxx fail on versions of GCC up until 7.4 due to faulty underlying intrinsics, but our emulation succeeds. Update our traits to not compare against the standard library implementation in these versions. PiperOrigin-RevId: 263209457 GitOrigin-RevId: f28b989d5161230c6561e923b458c797a96bcf90 Change-Id: I4c41db5928ba71e243aeace4420e06d1a2df0b5b
2019-08-15 19:06:39 +02:00
unique_checker& operator=(const unique_checker&) = default;
Export of internal Abseil changes -- 3dbb096e4662311f81df1017a8e0975e903936cf by Derek Mauro <dmauro@google.com>: Document and workaround a known MSVC bug doing constexpr pointer arithmetic PiperOrigin-RevId: 262604652 -- b5fa7f1a0c776f6ba20d52772a1679ec42ad21fd by Derek Mauro <dmauro@google.com>: Fix typo in macos_xcode_bazel.sh PiperOrigin-RevId: 262591285 -- 89dd77ab5bb44d76b6cb6b2f288e21536e16a85a by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 262582747 -- 32295ed9a0c6c8ab143a912194040eede05d3ea3 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262569140 -- 7f0f5b94197369228024529022d727439d2c894f by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262563554 -- 314aed043639abbd221074125c57b7c68616de7e by Derek Mauro <dmauro@google.com>: Release absl::btree PiperOrigin-RevId: 262553526 -- 72b44056c6ce9000c4a6cd9aec58b82067c82a13 by CJ Johnson <johnsoncj@google.com>: Internal change PiperOrigin-RevId: 262421185 -- 4e2c12151edf534f929e8e810f1334073f90489a by Abseil Team <absl-team@google.com>: Update documentation to make it less likely for users to write `Hours(24)` without considering using civil dates instead. PiperOrigin-RevId: 262420758 -- 92b85b9573e800bd96b019408eefbc5ce4f68780 by Derek Mauro <dmauro@google.com>: Add the ability to override the bazel version in the macos_xcode_bazel.sh test script. PiperOrigin-RevId: 262412063 GitOrigin-RevId: 3dbb096e4662311f81df1017a8e0975e903936cf Change-Id: I423b2b829dc0c5f814e37bec4d68c7470f43f041
2019-08-09 20:54:24 +02:00
// Insertion routines.
std::pair<iterator, bool> insert(const value_type &x) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator, bool> checker_res =
this->checker_.insert(x);
std::pair<iterator, bool> tree_res = this->tree_.insert(x);
CheckPairEquals(*tree_res.first, *checker_res.first);
EXPECT_EQ(tree_res.second, checker_res.second);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + tree_res.second);
return tree_res;
}
iterator insert(iterator position, const value_type &x) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator, bool> checker_res =
this->checker_.insert(x);
iterator tree_res = this->tree_.insert(position, x);
CheckPairEquals(*tree_res, *checker_res.first);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + checker_res.second);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
// A checker for multiple sorted associative containers. TreeType is expected
// to be btree_{multiset,multimap} and CheckerType is expected to be
// {multiset,multimap}.
template <typename TreeType, typename CheckerType>
class multi_checker : public base_checker<TreeType, CheckerType> {
using super_type = base_checker<TreeType, CheckerType>;
public:
using iterator = typename super_type::iterator;
using value_type = typename super_type::value_type;
public:
multi_checker() : super_type() {}
multi_checker(const multi_checker &x) : super_type(x) {}
template <class InputIterator>
multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
Export of internal Abseil changes -- f28b989d5161230c6561e923b458c797a96bcf90 by Greg Falcon <gfalcon@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 263586488 -- 8259484025b7de45358719fc6182a48cac8044c6 by Andy Soffer <asoffer@google.com>: Internal changes and combine namespaces into a single namespace. PiperOrigin-RevId: 263560576 -- 8d19f41661984a600d1f8bbfeb8a30fcb4dee7d6 by Mark Barolak <mbar@google.com>: Inside of absl::string_view::copy, use absl::string_view::traits_type::copy instead of std:copy to do the actual work. This both follows the C++ standard more closely and avoids avoid MSVC unchecked iterator warnings. PiperOrigin-RevId: 263430502 -- c06bf74236e12c7c1c97bfcbbc9d29bd65d6b36c by Andy Soffer <asoffer@google.com>: Remove force-inlining attributes. Benchmarking results indicate that they are creating meaningful performance differences. PiperOrigin-RevId: 263364896 -- ec4fa6eac958a9521456201b138784f55d3b17bc by Abseil Team <absl-team@google.com>: Make BM_Fill benchmarks more representative. PiperOrigin-RevId: 263349482 -- 4ae280b4eb31d9cb58e847eb670473340f7778c1 by Derek Mauro <dmauro@google.com>: Fix new -Wdeprecated-copy warning in gcc9 PiperOrigin-RevId: 263348118 -- d238a92f452a5c35686f9c71596fdd1fe62090a2 by Matt Calabrese <calabrese@google.com>: The std::is_trivially_xxx fail on versions of GCC up until 7.4 due to faulty underlying intrinsics, but our emulation succeeds. Update our traits to not compare against the standard library implementation in these versions. PiperOrigin-RevId: 263209457 GitOrigin-RevId: f28b989d5161230c6561e923b458c797a96bcf90 Change-Id: I4c41db5928ba71e243aeace4420e06d1a2df0b5b
2019-08-15 19:06:39 +02:00
multi_checker& operator=(const multi_checker&) = default;
Export of internal Abseil changes -- 3dbb096e4662311f81df1017a8e0975e903936cf by Derek Mauro <dmauro@google.com>: Document and workaround a known MSVC bug doing constexpr pointer arithmetic PiperOrigin-RevId: 262604652 -- b5fa7f1a0c776f6ba20d52772a1679ec42ad21fd by Derek Mauro <dmauro@google.com>: Fix typo in macos_xcode_bazel.sh PiperOrigin-RevId: 262591285 -- 89dd77ab5bb44d76b6cb6b2f288e21536e16a85a by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 262582747 -- 32295ed9a0c6c8ab143a912194040eede05d3ea3 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262569140 -- 7f0f5b94197369228024529022d727439d2c894f by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262563554 -- 314aed043639abbd221074125c57b7c68616de7e by Derek Mauro <dmauro@google.com>: Release absl::btree PiperOrigin-RevId: 262553526 -- 72b44056c6ce9000c4a6cd9aec58b82067c82a13 by CJ Johnson <johnsoncj@google.com>: Internal change PiperOrigin-RevId: 262421185 -- 4e2c12151edf534f929e8e810f1334073f90489a by Abseil Team <absl-team@google.com>: Update documentation to make it less likely for users to write `Hours(24)` without considering using civil dates instead. PiperOrigin-RevId: 262420758 -- 92b85b9573e800bd96b019408eefbc5ce4f68780 by Derek Mauro <dmauro@google.com>: Add the ability to override the bazel version in the macos_xcode_bazel.sh test script. PiperOrigin-RevId: 262412063 GitOrigin-RevId: 3dbb096e4662311f81df1017a8e0975e903936cf Change-Id: I423b2b829dc0c5f814e37bec4d68c7470f43f041
2019-08-09 20:54:24 +02:00
// Insertion routines.
iterator insert(const value_type &x) {
int size = this->tree_.size();
auto checker_res = this->checker_.insert(x);
iterator tree_res = this->tree_.insert(x);
CheckPairEquals(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
iterator insert(iterator position, const value_type &x) {
int size = this->tree_.size();
auto checker_res = this->checker_.insert(x);
iterator tree_res = this->tree_.insert(position, x);
CheckPairEquals(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
template <typename T, typename V>
void DoTest(const char *name, T *b, const std::vector<V> &values) {
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
T &mutable_b = *b;
const T &const_b = *b;
// Test insert.
for (int i = 0; i < values.size(); ++i) {
mutable_b.insert(values[i]);
mutable_b.value_check(values[i]);
}
ASSERT_EQ(mutable_b.size(), values.size());
const_b.verify();
// Test copy constructor.
T b_copy(const_b);
EXPECT_EQ(b_copy.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]);
}
// Test range constructor.
T b_range(const_b.begin(), const_b.end());
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test range insertion for values that already exist.
b_range.insert(b_copy.begin(), b_copy.end());
b_range.verify();
// Test range insertion for new values.
b_range.clear();
b_range.insert(b_copy.begin(), b_copy.end());
EXPECT_EQ(b_range.size(), b_copy.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test assignment to self. Nothing should change.
b_range.operator=(b_range);
EXPECT_EQ(b_range.size(), b_copy.size());
// Test assignment of new values.
b_range.clear();
b_range = b_copy;
EXPECT_EQ(b_range.size(), b_copy.size());
// Test swap.
b_range.clear();
b_range.swap(b_copy);
EXPECT_EQ(b_copy.size(), 0);
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
b_range.swap(b_copy);
// Test non-member function swap.
swap(b_range, b_copy);
EXPECT_EQ(b_copy.size(), 0);
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
}
swap(b_range, b_copy);
// Test erase via values.
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(key_of_value(values[i]));
// Erasing a non-existent key should have no effect.
ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
}
const_b.verify();
EXPECT_EQ(const_b.size(), 0);
// Test erase via iterators.
mutable_b = b_copy;
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(mutable_b.find(key_of_value(values[i])));
}
const_b.verify();
EXPECT_EQ(const_b.size(), 0);
// Test insert with hint.
for (int i = 0; i < values.size(); i++) {
mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
}
const_b.verify();
// Test range erase.
mutable_b.erase(mutable_b.begin(), mutable_b.end());
EXPECT_EQ(mutable_b.size(), 0);
const_b.verify();
// First half.
mutable_b = b_copy;
typename T::iterator mutable_iter_end = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_b.begin(), mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
const_b.verify();
// Second half.
mutable_b = b_copy;
typename T::iterator mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
mutable_b.erase(mutable_iter_begin, mutable_b.end());
EXPECT_EQ(mutable_b.size(), values.size() / 2);
const_b.verify();
// Second quarter.
mutable_b = b_copy;
mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
mutable_iter_end = mutable_iter_begin;
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_iter_begin, mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
const_b.verify();
mutable_b.clear();
}
template <typename T>
void ConstTest() {
using value_type = typename T::value_type;
typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
T mutable_b;
const T &const_b = mutable_b;
// Insert a single value into the container and test looking it up.
value_type value = Generator<value_type>(2)(2);
mutable_b.insert(value);
EXPECT_TRUE(mutable_b.contains(key_of_value(value)));
EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end());
EXPECT_TRUE(const_b.contains(key_of_value(value)));
EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end());
EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end());
EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
// We can only create a non-const iterator from a non-const container.
typename T::iterator mutable_iter(mutable_b.begin());
EXPECT_EQ(mutable_iter, const_b.begin());
EXPECT_NE(mutable_iter, const_b.end());
EXPECT_EQ(const_b.begin(), mutable_iter);
EXPECT_NE(const_b.end(), mutable_iter);
typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
EXPECT_EQ(mutable_riter, const_b.rbegin());
EXPECT_NE(mutable_riter, const_b.rend());
EXPECT_EQ(const_b.rbegin(), mutable_riter);
EXPECT_NE(const_b.rend(), mutable_riter);
// We can create a const iterator from a non-const iterator.
typename T::const_iterator const_iter(mutable_iter);
EXPECT_EQ(const_iter, mutable_b.begin());
EXPECT_NE(const_iter, mutable_b.end());
EXPECT_EQ(mutable_b.begin(), const_iter);
EXPECT_NE(mutable_b.end(), const_iter);
typename T::const_reverse_iterator const_riter(mutable_riter);
EXPECT_EQ(const_riter, mutable_b.rbegin());
EXPECT_NE(const_riter, mutable_b.rend());
EXPECT_EQ(mutable_b.rbegin(), const_riter);
EXPECT_NE(mutable_b.rend(), const_riter);
// Make sure various methods can be invoked on a const container.
const_b.verify();
ASSERT_TRUE(!const_b.empty());
EXPECT_EQ(const_b.size(), 1);
EXPECT_GT(const_b.max_size(), 0);
EXPECT_TRUE(const_b.contains(key_of_value(value)));
EXPECT_EQ(const_b.count(key_of_value(value)), 1);
}
template <typename T, typename C>
void BtreeTest() {
ConstTest<T>();
using V = typename remove_pair_const<typename T::value_type>::type;
const std::vector<V> random_values = GenerateValuesWithSeed<V>(
absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
testing::GTEST_FLAG(random_seed));
unique_checker<T, C> container;
// Test key insertion/deletion in sorted order.
std::vector<V> sorted_values(random_values);
std::sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test key insertion/deletion in reverse sorted order.
std::reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test key insertion/deletion in random order.
DoTest("random: ", &container, random_values);
}
template <typename T, typename C>
void BtreeMultiTest() {
ConstTest<T>();
using V = typename remove_pair_const<typename T::value_type>::type;
const std::vector<V> random_values = GenerateValuesWithSeed<V>(
absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
testing::GTEST_FLAG(random_seed));
multi_checker<T, C> container;
// Test keys in sorted order.
std::vector<V> sorted_values(random_values);
std::sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test keys in reverse sorted order.
std::reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test keys in random order.
DoTest("random: ", &container, random_values);
// Test keys in random order w/ duplicates.
std::vector<V> duplicate_values(random_values);
duplicate_values.insert(duplicate_values.end(), random_values.begin(),
random_values.end());
DoTest("duplicates:", &container, duplicate_values);
// Test all identical keys.
std::vector<V> identical_values(100);
std::fill(identical_values.begin(), identical_values.end(),
Generator<V>(2)(2));
DoTest("identical: ", &container, identical_values);
}
template <typename T>
struct PropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other)
: Base(other.bytes_used_) {}
template <typename U>
struct rebind {
using other = PropagatingCountingAlloc<U>;
};
};
template <typename T>
void BtreeAllocatorTest() {
using value_type = typename T::value_type;
int64_t bytes1 = 0, bytes2 = 0;
PropagatingCountingAlloc<T> allocator1(&bytes1);
PropagatingCountingAlloc<T> allocator2(&bytes2);
Generator<value_type> generator(1000);
// Test that we allocate properly aligned memory. If we don't, then Layout
// will assert fail.
auto unused1 = allocator1.allocate(1);
auto unused2 = allocator2.allocate(1);
// Test copy assignment
{
T b1(typename T::key_compare(), allocator1);
T b2(typename T::key_compare(), allocator2);
int64_t original_bytes1 = bytes1;
b1.insert(generator(0));
EXPECT_GT(bytes1, original_bytes1);
// This should propagate the allocator.
b1 = b2;
EXPECT_EQ(b1.size(), 0);
EXPECT_EQ(b2.size(), 0);
EXPECT_EQ(bytes1, original_bytes1);
for (int i = 1; i < 1000; i++) {
b1.insert(generator(i));
}
// We should have allocated out of allocator2.
EXPECT_GT(bytes2, bytes1);
}
// Test move assignment
{
T b1(typename T::key_compare(), allocator1);
T b2(typename T::key_compare(), allocator2);
int64_t original_bytes1 = bytes1;
b1.insert(generator(0));
EXPECT_GT(bytes1, original_bytes1);
// This should propagate the allocator.
b1 = std::move(b2);
EXPECT_EQ(b1.size(), 0);
EXPECT_EQ(bytes1, original_bytes1);
for (int i = 1; i < 1000; i++) {
b1.insert(generator(i));
}
// We should have allocated out of allocator2.
EXPECT_GT(bytes2, bytes1);
}
// Test swap
{
T b1(typename T::key_compare(), allocator1);
T b2(typename T::key_compare(), allocator2);
int64_t original_bytes1 = bytes1;
b1.insert(generator(0));
EXPECT_GT(bytes1, original_bytes1);
// This should swap the allocators.
swap(b1, b2);
EXPECT_EQ(b1.size(), 0);
EXPECT_EQ(b2.size(), 1);
EXPECT_GT(bytes1, original_bytes1);
for (int i = 1; i < 1000; i++) {
b1.insert(generator(i));
}
// We should have allocated out of allocator2.
EXPECT_GT(bytes2, bytes1);
}
allocator1.deallocate(unused1, 1);
allocator2.deallocate(unused2, 1);
}
template <typename T>
void BtreeMapTest() {
using value_type = typename T::value_type;
using mapped_type = typename T::mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void)m;
T b;
// Verify we can insert using operator[].
for (int i = 0; i < 1000; i++) {
value_type v = Generator<value_type>(1000)(i);
b[v.first] = v.second;
}
EXPECT_EQ(b.size(), 1000);
// Test whether we can use the "->" operator on iterators and
// reverse_iterators. This stresses the btree_map_params::pair_pointer
// mechanism.
EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
}
template <typename T>
void BtreeMultiMapTest() {
using mapped_type = typename T::mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void)m;
}
template <typename K, int N = 256>
void SetTest() {
EXPECT_EQ(
sizeof(absl::btree_set<K>),
2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type));
using BtreeSet = absl::btree_set<K>;
using CountingBtreeSet =
absl::btree_set<K, std::less<K>, PropagatingCountingAlloc<K>>;
BtreeTest<BtreeSet, std::set<K>>();
BtreeAllocatorTest<CountingBtreeSet>();
}
template <typename K, int N = 256>
void MapTest() {
EXPECT_EQ(
sizeof(absl::btree_map<K, K>),
2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type));
using BtreeMap = absl::btree_map<K, K>;
using CountingBtreeMap =
absl::btree_map<K, K, std::less<K>,
PropagatingCountingAlloc<std::pair<const K, K>>>;
BtreeTest<BtreeMap, std::map<K, K>>();
BtreeAllocatorTest<CountingBtreeMap>();
BtreeMapTest<BtreeMap>();
}
TEST(Btree, set_int32) { SetTest<int32_t>(); }
TEST(Btree, set_int64) { SetTest<int64_t>(); }
TEST(Btree, set_string) { SetTest<std::string>(); }
TEST(Btree, set_pair) { SetTest<std::pair<int, int>>(); }
TEST(Btree, map_int32) { MapTest<int32_t>(); }
TEST(Btree, map_int64) { MapTest<int64_t>(); }
TEST(Btree, map_string) { MapTest<std::string>(); }
TEST(Btree, map_pair) { MapTest<std::pair<int, int>>(); }
template <typename K, int N = 256>
void MultiSetTest() {
EXPECT_EQ(
sizeof(absl::btree_multiset<K>),
2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type));
using BtreeMSet = absl::btree_multiset<K>;
using CountingBtreeMSet =
absl::btree_multiset<K, std::less<K>, PropagatingCountingAlloc<K>>;
BtreeMultiTest<BtreeMSet, std::multiset<K>>();
BtreeAllocatorTest<CountingBtreeMSet>();
}
template <typename K, int N = 256>
void MultiMapTest() {
EXPECT_EQ(sizeof(absl::btree_multimap<K, K>),
2 * sizeof(void *) +
sizeof(typename absl::btree_multimap<K, K>::size_type));
using BtreeMMap = absl::btree_multimap<K, K>;
using CountingBtreeMMap =
absl::btree_multimap<K, K, std::less<K>,
PropagatingCountingAlloc<std::pair<const K, K>>>;
BtreeMultiTest<BtreeMMap, std::multimap<K, K>>();
BtreeMultiMapTest<BtreeMMap>();
BtreeAllocatorTest<CountingBtreeMMap>();
}
TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); }
TEST(Btree, multiset_int64) { MultiSetTest<int64_t>(); }
TEST(Btree, multiset_string) { MultiSetTest<std::string>(); }
TEST(Btree, multiset_pair) { MultiSetTest<std::pair<int, int>>(); }
TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); }
TEST(Btree, multimap_int64) { MultiMapTest<int64_t>(); }
TEST(Btree, multimap_string) { MultiMapTest<std::string>(); }
TEST(Btree, multimap_pair) { MultiMapTest<std::pair<int, int>>(); }
struct CompareIntToString {
bool operator()(const std::string &a, const std::string &b) const {
return a < b;
}
bool operator()(const std::string &a, int b) const {
return a < absl::StrCat(b);
}
bool operator()(int a, const std::string &b) const {
return absl::StrCat(a) < b;
}
using is_transparent = void;
};
struct NonTransparentCompare {
template <typename T, typename U>
bool operator()(const T& t, const U& u) const {
// Treating all comparators as transparent can cause inefficiencies (see
// N3657 C++ proposal). Test that for comparators without 'is_transparent'
// alias (like this one), we do not attempt heterogeneous lookup.
EXPECT_TRUE((std::is_same<T, U>()));
return t < u;
}
};
template <typename T>
bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) {
return true;
}
template <typename T>
bool CanEraseWithEmptyBrace(T, ...) {
return false;
}
template <typename T>
void TestHeterogeneous(T table) {
auto lb = table.lower_bound("3");
EXPECT_EQ(lb, table.lower_bound(3));
EXPECT_NE(lb, table.lower_bound(4));
EXPECT_EQ(lb, table.lower_bound({"3"}));
EXPECT_NE(lb, table.lower_bound({}));
auto ub = table.upper_bound("3");
EXPECT_EQ(ub, table.upper_bound(3));
EXPECT_NE(ub, table.upper_bound(5));
EXPECT_EQ(ub, table.upper_bound({"3"}));
EXPECT_NE(ub, table.upper_bound({}));
auto er = table.equal_range("3");
EXPECT_EQ(er, table.equal_range(3));
EXPECT_NE(er, table.equal_range(4));
EXPECT_EQ(er, table.equal_range({"3"}));
EXPECT_NE(er, table.equal_range({}));
auto it = table.find("3");
EXPECT_EQ(it, table.find(3));
EXPECT_NE(it, table.find(4));
EXPECT_EQ(it, table.find({"3"}));
EXPECT_NE(it, table.find({}));
EXPECT_TRUE(table.contains(3));
EXPECT_FALSE(table.contains(4));
EXPECT_TRUE(table.count({"3"}));
EXPECT_FALSE(table.contains({}));
EXPECT_EQ(1, table.count(3));
EXPECT_EQ(0, table.count(4));
EXPECT_EQ(1, table.count({"3"}));
EXPECT_EQ(0, table.count({}));
auto copy = table;
copy.erase(3);
EXPECT_EQ(table.size() - 1, copy.size());
copy.erase(4);
EXPECT_EQ(table.size() - 1, copy.size());
copy.erase({"5"});
EXPECT_EQ(table.size() - 2, copy.size());
EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr));
// Also run it with const T&.
if (std::is_class<T>()) TestHeterogeneous<const T &>(table);
}
TEST(Btree, HeterogeneousLookup) {
TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"});
TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{
{"1", 1}, {"3", 3}, {"5", 5}});
TestHeterogeneous(
btree_multiset<std::string, CompareIntToString>{"1", "3", "5"});
TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{
{"1", 1}, {"3", 3}, {"5", 5}});
// Only maps have .at()
btree_map<std::string, int, CompareIntToString> map{
{"", -1}, {"1", 1}, {"3", 3}, {"5", 5}};
EXPECT_EQ(1, map.at(1));
EXPECT_EQ(3, map.at({"3"}));
EXPECT_EQ(-1, map.at({}));
const auto &cmap = map;
EXPECT_EQ(1, cmap.at(1));
EXPECT_EQ(3, cmap.at({"3"}));
EXPECT_EQ(-1, cmap.at({}));
}
TEST(Btree, NoHeterogeneousLookupWithoutAlias) {
using StringSet = absl::btree_set<std::string, NonTransparentCompare>;
StringSet s;
ASSERT_TRUE(s.insert("hello").second);
ASSERT_TRUE(s.insert("world").second);
EXPECT_TRUE(s.end() == s.find("blah"));
EXPECT_TRUE(s.begin() == s.lower_bound("hello"));
EXPECT_EQ(1, s.count("world"));
EXPECT_TRUE(s.contains("hello"));
EXPECT_TRUE(s.contains("world"));
EXPECT_FALSE(s.contains("blah"));
using StringMultiSet =
absl::btree_multiset<std::string, NonTransparentCompare>;
StringMultiSet ms;
ms.insert("hello");
ms.insert("world");
ms.insert("world");
EXPECT_TRUE(ms.end() == ms.find("blah"));
EXPECT_TRUE(ms.begin() == ms.lower_bound("hello"));
EXPECT_EQ(2, ms.count("world"));
EXPECT_TRUE(ms.contains("hello"));
EXPECT_TRUE(ms.contains("world"));
EXPECT_FALSE(ms.contains("blah"));
}
TEST(Btree, DefaultTransparent) {
{
// `int` does not have a default transparent comparator.
// The input value is converted to key_type.
btree_set<int> s = {1};
double d = 1.1;
EXPECT_EQ(s.begin(), s.find(d));
EXPECT_TRUE(s.contains(d));
}
{
// `std::string` has heterogeneous support.
btree_set<std::string> s = {"A"};
EXPECT_EQ(s.begin(), s.find(absl::string_view("A")));
EXPECT_TRUE(s.contains(absl::string_view("A")));
}
}
class StringLike {
public:
StringLike() = default;
StringLike(const char* s) : s_(s) { // NOLINT
++constructor_calls_;
}
bool operator<(const StringLike& a) const {
return s_ < a.s_;
}
static void clear_constructor_call_count() {
constructor_calls_ = 0;
}
static int constructor_calls() {
return constructor_calls_;
}
private:
static int constructor_calls_;
std::string s_;
};
int StringLike::constructor_calls_ = 0;
TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) {
using StringSet = absl::btree_set<StringLike>;
StringSet s;
for (int i = 0; i < 100; ++i) {
ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second);
}
StringLike::clear_constructor_call_count();
s.find("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.contains("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.count("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.lower_bound("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.upper_bound("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.equal_range("50");
ASSERT_EQ(1, StringLike::constructor_calls());
StringLike::clear_constructor_call_count();
s.erase("50");
ASSERT_EQ(1, StringLike::constructor_calls());
}
// Verify that swapping btrees swaps the key comparison functors and that we can
// use non-default constructible comparators.
struct SubstringLess {
SubstringLess() = delete;
explicit SubstringLess(int length) : n(length) {}
bool operator()(const std::string &a, const std::string &b) const {
return absl::string_view(a).substr(0, n) <
absl::string_view(b).substr(0, n);
}
int n;
};
TEST(Btree, SwapKeyCompare) {
using SubstringSet = absl::btree_set<std::string, SubstringLess>;
SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type());
SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type());
ASSERT_TRUE(s1.insert("a").second);
ASSERT_FALSE(s1.insert("aa").second);
ASSERT_TRUE(s2.insert("a").second);
ASSERT_TRUE(s2.insert("aa").second);
ASSERT_FALSE(s2.insert("aaa").second);
swap(s1, s2);
ASSERT_TRUE(s1.insert("b").second);
ASSERT_TRUE(s1.insert("bb").second);
ASSERT_FALSE(s1.insert("bbb").second);
ASSERT_TRUE(s2.insert("b").second);
ASSERT_FALSE(s2.insert("bb").second);
}
TEST(Btree, UpperBoundRegression) {
// Regress a bug where upper_bound would default-construct a new key_compare
// instead of copying the existing one.
using SubstringSet = absl::btree_set<std::string, SubstringLess>;
SubstringSet my_set(SubstringLess(3));
my_set.insert("aab");
my_set.insert("abb");
// We call upper_bound("aaa"). If this correctly uses the length 3
// comparator, aaa < aab < abb, so we should get aab as the result.
// If it instead uses the default-constructed length 2 comparator,
// aa == aa < ab, so we'll get abb as our result.
SubstringSet::iterator it = my_set.upper_bound("aaa");
ASSERT_TRUE(it != my_set.end());
EXPECT_EQ("aab", *it);
}
TEST(Btree, Comparison) {
const int kSetSize = 1201;
absl::btree_set<int64_t> my_set;
for (int i = 0; i < kSetSize; ++i) {
my_set.insert(i);
}
absl::btree_set<int64_t> my_set_copy(my_set);
EXPECT_TRUE(my_set_copy == my_set);
EXPECT_TRUE(my_set == my_set_copy);
EXPECT_FALSE(my_set_copy != my_set);
EXPECT_FALSE(my_set != my_set_copy);
my_set.insert(kSetSize);
EXPECT_FALSE(my_set_copy == my_set);
EXPECT_FALSE(my_set == my_set_copy);
EXPECT_TRUE(my_set_copy != my_set);
EXPECT_TRUE(my_set != my_set_copy);
my_set.erase(kSetSize - 1);
EXPECT_FALSE(my_set_copy == my_set);
EXPECT_FALSE(my_set == my_set_copy);
EXPECT_TRUE(my_set_copy != my_set);
EXPECT_TRUE(my_set != my_set_copy);
absl::btree_map<std::string, int64_t> my_map;
for (int i = 0; i < kSetSize; ++i) {
my_map[std::string(i, 'a')] = i;
}
absl::btree_map<std::string, int64_t> my_map_copy(my_map);
EXPECT_TRUE(my_map_copy == my_map);
EXPECT_TRUE(my_map == my_map_copy);
EXPECT_FALSE(my_map_copy != my_map);
EXPECT_FALSE(my_map != my_map_copy);
++my_map_copy[std::string(7, 'a')];
EXPECT_FALSE(my_map_copy == my_map);
EXPECT_FALSE(my_map == my_map_copy);
EXPECT_TRUE(my_map_copy != my_map);
EXPECT_TRUE(my_map != my_map_copy);
my_map_copy = my_map;
my_map["hello"] = kSetSize;
EXPECT_FALSE(my_map_copy == my_map);
EXPECT_FALSE(my_map == my_map_copy);
EXPECT_TRUE(my_map_copy != my_map);
EXPECT_TRUE(my_map != my_map_copy);
my_map.erase(std::string(kSetSize - 1, 'a'));
EXPECT_FALSE(my_map_copy == my_map);
EXPECT_FALSE(my_map == my_map_copy);
EXPECT_TRUE(my_map_copy != my_map);
EXPECT_TRUE(my_map != my_map_copy);
}
TEST(Btree, RangeCtorSanity) {
std::vector<int> ivec;
ivec.push_back(1);
std::map<int, int> imap;
imap.insert(std::make_pair(1, 2));
absl::btree_multiset<int> tmset(ivec.begin(), ivec.end());
absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end());
absl::btree_set<int> tset(ivec.begin(), ivec.end());
absl::btree_map<int, int> tmap(imap.begin(), imap.end());
EXPECT_EQ(1, tmset.size());
EXPECT_EQ(1, tmmap.size());
EXPECT_EQ(1, tset.size());
EXPECT_EQ(1, tmap.size());
}
TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) {
absl::btree_map<std::string, std::unique_ptr<std::string>> m;
std::unique_ptr<std::string> &v = m["A"];
EXPECT_TRUE(v == nullptr);
v.reset(new std::string("X"));
auto iter = m.find("A");
EXPECT_EQ("X", *iter->second);
}
TEST(Btree, InitializerListConstructor) {
absl::btree_set<std::string> set({"a", "b"});
EXPECT_EQ(set.count("a"), 1);
EXPECT_EQ(set.count("b"), 1);
absl::btree_multiset<int> mset({1, 1, 4});
EXPECT_EQ(mset.count(1), 2);
EXPECT_EQ(mset.count(4), 1);
absl::btree_map<int, int> map({{1, 5}, {2, 10}});
EXPECT_EQ(map[1], 5);
EXPECT_EQ(map[2], 10);
absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}});
auto range = mmap.equal_range(1);
auto it = range.first;
ASSERT_NE(it, range.second);
EXPECT_EQ(it->second, 5);
ASSERT_NE(++it, range.second);
EXPECT_EQ(it->second, 10);
EXPECT_EQ(++it, range.second);
}
TEST(Btree, InitializerListInsert) {
absl::btree_set<std::string> set;
set.insert({"a", "b"});
EXPECT_EQ(set.count("a"), 1);
EXPECT_EQ(set.count("b"), 1);
absl::btree_multiset<int> mset;
mset.insert({1, 1, 4});
EXPECT_EQ(mset.count(1), 2);
EXPECT_EQ(mset.count(4), 1);
absl::btree_map<int, int> map;
map.insert({{1, 5}, {2, 10}});
// Test that inserting one element using an initializer list also works.
map.insert({3, 15});
EXPECT_EQ(map[1], 5);
EXPECT_EQ(map[2], 10);
EXPECT_EQ(map[3], 15);
absl::btree_multimap<int, int> mmap;
mmap.insert({{1, 5}, {1, 10}});
auto range = mmap.equal_range(1);
auto it = range.first;
ASSERT_NE(it, range.second);
EXPECT_EQ(it->second, 5);
ASSERT_NE(++it, range.second);
EXPECT_EQ(it->second, 10);
EXPECT_EQ(++it, range.second);
}
template <typename Compare, typename K>
void AssertKeyCompareToAdapted() {
using Adapted = typename key_compare_to_adapter<Compare>::type;
static_assert(!std::is_same<Adapted, Compare>::value,
"key_compare_to_adapter should have adapted this comparator.");
static_assert(
std::is_same<absl::weak_ordering,
absl::result_of_t<Adapted(const K &, const K &)>>::value,
"Adapted comparator should be a key-compare-to comparator.");
}
template <typename Compare, typename K>
void AssertKeyCompareToNotAdapted() {
using Unadapted = typename key_compare_to_adapter<Compare>::type;
static_assert(
std::is_same<Unadapted, Compare>::value,
"key_compare_to_adapter shouldn't have adapted this comparator.");
static_assert(
std::is_same<bool,
absl::result_of_t<Unadapted(const K &, const K &)>>::value,
"Un-adapted comparator should return bool.");
}
TEST(Btree, KeyCompareToAdapter) {
AssertKeyCompareToAdapted<std::less<std::string>, std::string>();
AssertKeyCompareToAdapted<std::greater<std::string>, std::string>();
AssertKeyCompareToAdapted<std::less<absl::string_view>, absl::string_view>();
AssertKeyCompareToAdapted<std::greater<absl::string_view>,
absl::string_view>();
AssertKeyCompareToNotAdapted<std::less<int>, int>();
AssertKeyCompareToNotAdapted<std::greater<int>, int>();
}
TEST(Btree, RValueInsert) {
InstanceTracker tracker;
absl::btree_set<MovableOnlyInstance> set;
set.insert(MovableOnlyInstance(1));
set.insert(MovableOnlyInstance(3));
MovableOnlyInstance two(2);
set.insert(set.find(MovableOnlyInstance(3)), std::move(two));
auto it = set.find(MovableOnlyInstance(2));
ASSERT_NE(it, set.end());
ASSERT_NE(++it, set.end());
EXPECT_EQ(it->value(), 3);
absl::btree_multiset<MovableOnlyInstance> mset;
MovableOnlyInstance zero(0);
MovableOnlyInstance zero2(0);
mset.insert(std::move(zero));
mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2));
EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2);
absl::btree_map<int, MovableOnlyInstance> map;
std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)};
std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)};
std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)};
map.insert(std::move(p1));
map.insert(std::move(p3));
map.insert(map.find(3), std::move(p2));
ASSERT_NE(map.find(2), map.end());
EXPECT_EQ(map.find(2)->second.value(), 10);
absl::btree_multimap<int, MovableOnlyInstance> mmap;
std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)};
std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)};
mmap.insert(std::move(p4));
mmap.insert(mmap.find(1), std::move(p5));
auto range = mmap.equal_range(1);
auto it1 = range.first;
ASSERT_NE(it1, range.second);
EXPECT_EQ(it1->second.value(), 10);
ASSERT_NE(++it1, range.second);
EXPECT_EQ(it1->second.value(), 5);
EXPECT_EQ(++it1, range.second);
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.swaps(), 0);
}
} // namespace
class BtreeNodePeer {
public:
// Yields the size of a leaf node with a specific number of values.
template <typename ValueType>
constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) {
return btree_node<
set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>,
/*TargetNodeSize=*/256, // This parameter isn't used here.
/*Multi=*/false>>::SizeWithNValues(target_values_per_node);
}
// Yields the number of values in a (non-root) leaf node for this set.
template <typename Set>
constexpr static size_t GetNumValuesPerNode() {
return btree_node<typename Set::params_type>::kNodeValues;
}
};
namespace {
// A btree set with a specific number of values per node.
template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>>
class SizedBtreeSet
: public btree_set_container<btree<
set_params<Key, Cmp, std::allocator<Key>,
BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode),
/*Multi=*/false>>> {
using Base = typename SizedBtreeSet::btree_set_container;
public:
SizedBtreeSet() {}
using Base::Base;
};
template <typename Set>
void ExpectOperationCounts(const int expected_moves,
const int expected_comparisons,
const std::vector<int> &values,
InstanceTracker *tracker, Set *set) {
for (const int v : values) set->insert(MovableOnlyInstance(v));
set->clear();
EXPECT_EQ(tracker->moves(), expected_moves);
EXPECT_EQ(tracker->comparisons(), expected_comparisons);
EXPECT_EQ(tracker->copies(), 0);
EXPECT_EQ(tracker->swaps(), 0);
tracker->ResetCopiesMovesSwaps();
}
// Note: when the values in this test change, it is expected to have an impact
// on performance.
TEST(Btree, MovesComparisonsCopiesSwapsTracking) {
InstanceTracker tracker;
// Note: this is minimum number of values per node.
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3> set3;
// Note: this is the default number of values per node for a set of int32s
// (with 64-bit pointers).
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61;
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100;
// Don't depend on flags for random values because then the expectations will
// fail if the flags change.
std::vector<int> values =
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
if (sizeof(void *) == 8) {
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(),
BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
}
// Test key insertion/deletion in random order.
ExpectOperationCounts(45281, 132551, values, &tracker, &set3);
ExpectOperationCounts(386718, 129807, values, &tracker, &set61);
ExpectOperationCounts(586761, 130310, values, &tracker, &set100);
// Test key insertion/deletion in sorted order.
std::sort(values.begin(), values.end());
ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
// Test key insertion/deletion in reverse sorted order.
std::reverse(values.begin(), values.end());
ExpectOperationCounts(49951, 119325, values, &tracker, &set3);
ExpectOperationCounts(338813, 118266, values, &tracker, &set61);
ExpectOperationCounts(534529, 125279, values, &tracker, &set100);
}
struct MovableOnlyInstanceThreeWayCompare {
absl::weak_ordering operator()(const MovableOnlyInstance &a,
const MovableOnlyInstance &b) const {
return a.compare(b);
}
};
// Note: when the values in this test change, it is expected to have an impact
// on performance.
TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) {
InstanceTracker tracker;
// Note: this is minimum number of values per node.
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3,
MovableOnlyInstanceThreeWayCompare>
set3;
// Note: this is the default number of values per node for a set of int32s
// (with 64-bit pointers).
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61,
MovableOnlyInstanceThreeWayCompare>
set61;
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100,
MovableOnlyInstanceThreeWayCompare>
set100;
// Don't depend on flags for random values because then the expectations will
// fail if the flags change.
std::vector<int> values =
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
if (sizeof(void *) == 8) {
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(),
BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
}
// Test key insertion/deletion in random order.
ExpectOperationCounts(45281, 122560, values, &tracker, &set3);
ExpectOperationCounts(386718, 119816, values, &tracker, &set61);
ExpectOperationCounts(586761, 120319, values, &tracker, &set100);
// Test key insertion/deletion in sorted order.
std::sort(values.begin(), values.end());
ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
// Test key insertion/deletion in reverse sorted order.
std::reverse(values.begin(), values.end());
ExpectOperationCounts(49951, 109326, values, &tracker, &set3);
ExpectOperationCounts(338813, 108267, values, &tracker, &set61);
ExpectOperationCounts(534529, 115280, values, &tracker, &set100);
}
struct NoDefaultCtor {
int num;
explicit NoDefaultCtor(int i) : num(i) {}
friend bool operator<(const NoDefaultCtor& a, const NoDefaultCtor& b) {
return a.num < b.num;
}
};
TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) {
absl::btree_map<NoDefaultCtor, NoDefaultCtor> m;
for (int i = 1; i <= 99; ++i) {
SCOPED_TRACE(i);
EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second);
}
EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second);
auto iter99 = m.find(NoDefaultCtor(99));
ASSERT_NE(iter99, m.end());
EXPECT_EQ(iter99->second.num, 1);
auto iter1 = m.find(NoDefaultCtor(1));
ASSERT_NE(iter1, m.end());
EXPECT_EQ(iter1->second.num, 99);
auto iter50 = m.find(NoDefaultCtor(50));
ASSERT_NE(iter50, m.end());
EXPECT_EQ(iter50->second.num, 50);
auto iter25 = m.find(NoDefaultCtor(25));
ASSERT_NE(iter25, m.end());
EXPECT_EQ(iter25->second.num, 75);
}
TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) {
absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m;
for (int i = 1; i <= 99; ++i) {
SCOPED_TRACE(i);
m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i));
}
auto iter99 = m.find(NoDefaultCtor(99));
ASSERT_NE(iter99, m.end());
EXPECT_EQ(iter99->second.num, 1);
auto iter1 = m.find(NoDefaultCtor(1));
ASSERT_NE(iter1, m.end());
EXPECT_EQ(iter1->second.num, 99);
auto iter50 = m.find(NoDefaultCtor(50));
ASSERT_NE(iter50, m.end());
EXPECT_EQ(iter50->second.num, 50);
auto iter25 = m.find(NoDefaultCtor(25));
ASSERT_NE(iter25, m.end());
EXPECT_EQ(iter25->second.num, 75);
}
TEST(Btree, MapAt) {
absl::btree_map<int, int> map = {{1, 2}, {2, 4}};
EXPECT_EQ(map.at(1), 2);
EXPECT_EQ(map.at(2), 4);
map.at(2) = 8;
const absl::btree_map<int, int> &const_map = map;
EXPECT_EQ(const_map.at(1), 2);
EXPECT_EQ(const_map.at(2), 8);
#ifdef ABSL_HAVE_EXCEPTIONS
EXPECT_THROW(map.at(3), std::out_of_range);
#else
EXPECT_DEATH(map.at(3), "absl::btree_map::at");
#endif
Export of internal Abseil changes -- 3dbb096e4662311f81df1017a8e0975e903936cf by Derek Mauro <dmauro@google.com>: Document and workaround a known MSVC bug doing constexpr pointer arithmetic PiperOrigin-RevId: 262604652 -- b5fa7f1a0c776f6ba20d52772a1679ec42ad21fd by Derek Mauro <dmauro@google.com>: Fix typo in macos_xcode_bazel.sh PiperOrigin-RevId: 262591285 -- 89dd77ab5bb44d76b6cb6b2f288e21536e16a85a by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 262582747 -- 32295ed9a0c6c8ab143a912194040eede05d3ea3 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262569140 -- 7f0f5b94197369228024529022d727439d2c894f by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 262563554 -- 314aed043639abbd221074125c57b7c68616de7e by Derek Mauro <dmauro@google.com>: Release absl::btree PiperOrigin-RevId: 262553526 -- 72b44056c6ce9000c4a6cd9aec58b82067c82a13 by CJ Johnson <johnsoncj@google.com>: Internal change PiperOrigin-RevId: 262421185 -- 4e2c12151edf534f929e8e810f1334073f90489a by Abseil Team <absl-team@google.com>: Update documentation to make it less likely for users to write `Hours(24)` without considering using civil dates instead. PiperOrigin-RevId: 262420758 -- 92b85b9573e800bd96b019408eefbc5ce4f68780 by Derek Mauro <dmauro@google.com>: Add the ability to override the bazel version in the macos_xcode_bazel.sh test script. PiperOrigin-RevId: 262412063 GitOrigin-RevId: 3dbb096e4662311f81df1017a8e0975e903936cf Change-Id: I423b2b829dc0c5f814e37bec4d68c7470f43f041
2019-08-09 20:54:24 +02:00
}
TEST(Btree, BtreeMultisetEmplace) {
const int value_to_insert = 123456;
absl::btree_multiset<int> s;
auto iter = s.emplace(value_to_insert);
ASSERT_NE(iter, s.end());
EXPECT_EQ(*iter, value_to_insert);
auto iter2 = s.emplace(value_to_insert);
EXPECT_NE(iter2, iter);
ASSERT_NE(iter2, s.end());
EXPECT_EQ(*iter2, value_to_insert);
auto result = s.equal_range(value_to_insert);
EXPECT_EQ(std::distance(result.first, result.second), 2);
}
TEST(Btree, BtreeMultisetEmplaceHint) {
const int value_to_insert = 123456;
absl::btree_multiset<int> s;
auto iter = s.emplace(value_to_insert);
ASSERT_NE(iter, s.end());
EXPECT_EQ(*iter, value_to_insert);
auto emplace_iter = s.emplace_hint(iter, value_to_insert);
EXPECT_NE(emplace_iter, iter);
ASSERT_NE(emplace_iter, s.end());
EXPECT_EQ(*emplace_iter, value_to_insert);
}
TEST(Btree, BtreeMultimapEmplace) {
const int key_to_insert = 123456;
const char value0[] = "a";
absl::btree_multimap<int, std::string> s;
auto iter = s.emplace(key_to_insert, value0);
ASSERT_NE(iter, s.end());
EXPECT_EQ(iter->first, key_to_insert);
EXPECT_EQ(iter->second, value0);
const char value1[] = "b";
auto iter2 = s.emplace(key_to_insert, value1);
EXPECT_NE(iter2, iter);
ASSERT_NE(iter2, s.end());
EXPECT_EQ(iter2->first, key_to_insert);
EXPECT_EQ(iter2->second, value1);
auto result = s.equal_range(key_to_insert);
EXPECT_EQ(std::distance(result.first, result.second), 2);
}
TEST(Btree, BtreeMultimapEmplaceHint) {
const int key_to_insert = 123456;
const char value0[] = "a";
absl::btree_multimap<int, std::string> s;
auto iter = s.emplace(key_to_insert, value0);
ASSERT_NE(iter, s.end());
EXPECT_EQ(iter->first, key_to_insert);
EXPECT_EQ(iter->second, value0);
const char value1[] = "b";
auto emplace_iter = s.emplace_hint(iter, key_to_insert, value1);
EXPECT_NE(emplace_iter, iter);
ASSERT_NE(emplace_iter, s.end());
EXPECT_EQ(emplace_iter->first, key_to_insert);
EXPECT_EQ(emplace_iter->second, value1);
}
TEST(Btree, ConstIteratorAccessors) {
absl::btree_set<int> set;
for (int i = 0; i < 100; ++i) {
set.insert(i);
}
auto it = set.cbegin();
auto r_it = set.crbegin();
for (int i = 0; i < 100; ++i, ++it, ++r_it) {
ASSERT_EQ(*it, i);
ASSERT_EQ(*r_it, 99 - i);
}
EXPECT_EQ(it, set.cend());
EXPECT_EQ(r_it, set.crend());
}
TEST(Btree, StrSplitCompatible) {
const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ',');
const absl::btree_set<std::string> expected_set = {"a", "b", "c"};
EXPECT_EQ(split_set, expected_set);
}
// We can't use EXPECT_EQ/etc. to compare absl::weak_ordering because they
// convert literal 0 to int and absl::weak_ordering can only be compared with
// literal 0. Defining this function allows for avoiding ClangTidy warnings.
bool Identity(const bool b) { return b; }
TEST(Btree, ValueComp) {
absl::btree_set<int> s;
EXPECT_TRUE(s.value_comp()(1, 2));
EXPECT_FALSE(s.value_comp()(2, 2));
EXPECT_FALSE(s.value_comp()(2, 1));
absl::btree_map<int, int> m1;
EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0)));
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0)));
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0)));
absl::btree_map<std::string, int> m2;
EXPECT_TRUE(Identity(
m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)) < 0));
EXPECT_TRUE(Identity(
m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)) == 0));
EXPECT_TRUE(Identity(
m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)) > 0));
}
TEST(Btree, DefaultConstruction) {
absl::btree_set<int> s;
absl::btree_map<int, int> m;
absl::btree_multiset<int> ms;
absl::btree_multimap<int, int> mm;
EXPECT_TRUE(s.empty());
EXPECT_TRUE(m.empty());
EXPECT_TRUE(ms.empty());
EXPECT_TRUE(mm.empty());
}
TEST(Btree, SwissTableHashable) {
static constexpr int kValues = 10000;
std::vector<int> values(kValues);
std::iota(values.begin(), values.end(), 0);
std::vector<std::pair<int, int>> map_values;
for (int v : values) map_values.emplace_back(v, -v);
using set = absl::btree_set<int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
set{},
set{1},
set{2},
set{1, 2},
set{2, 1},
set(values.begin(), values.end()),
set(values.rbegin(), values.rend()),
}));
using mset = absl::btree_multiset<int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
mset{},
mset{1},
mset{1, 1},
mset{2},
mset{2, 2},
mset{1, 2},
mset{1, 1, 2},
mset{1, 2, 2},
mset{1, 1, 2, 2},
mset(values.begin(), values.end()),
mset(values.rbegin(), values.rend()),
}));
using map = absl::btree_map<int, int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
map{},
map{{1, 0}},
map{{1, 1}},
map{{2, 0}},
map{{2, 2}},
map{{1, 0}, {2, 1}},
map(map_values.begin(), map_values.end()),
map(map_values.rbegin(), map_values.rend()),
}));
using mmap = absl::btree_multimap<int, int>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
mmap{},
mmap{{1, 0}},
mmap{{1, 1}},
mmap{{1, 0}, {1, 1}},
mmap{{1, 1}, {1, 0}},
mmap{{2, 0}},
mmap{{2, 2}},
mmap{{1, 0}, {2, 1}},
mmap(map_values.begin(), map_values.end()),
mmap(map_values.rbegin(), map_values.rend()),
}));
}
TEST(Btree, ComparableSet) {
absl::btree_set<int> s1 = {1, 2};
absl::btree_set<int> s2 = {2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableSetsDifferentLength) {
absl::btree_set<int> s1 = {1, 2};
absl::btree_set<int> s2 = {1, 2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
}
TEST(Btree, ComparableMultiset) {
absl::btree_multiset<int> s1 = {1, 2};
absl::btree_multiset<int> s2 = {2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableMap) {
absl::btree_map<int, int> s1 = {{1, 2}};
absl::btree_map<int, int> s2 = {{2, 3}};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableMultimap) {
absl::btree_multimap<int, int> s1 = {{1, 2}};
absl::btree_multimap<int, int> s2 = {{2, 3}};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, ComparableSetWithCustomComparator) {
// As specified by
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section
// [container.requirements.general].12, ordering associative containers always
// uses default '<' operator
// - even if otherwise the container uses custom functor.
absl::btree_set<int, std::greater<int>> s1 = {1, 2};
absl::btree_set<int, std::greater<int>> s2 = {2, 3};
EXPECT_LT(s1, s2);
EXPECT_LE(s1, s2);
EXPECT_LE(s1, s1);
EXPECT_GT(s2, s1);
EXPECT_GE(s2, s1);
EXPECT_GE(s1, s1);
}
TEST(Btree, EraseReturnsIterator) {
absl::btree_set<int> set = {1, 2, 3, 4, 5};
auto result_it = set.erase(set.begin(), set.find(3));
EXPECT_EQ(result_it, set.find(3));
result_it = set.erase(set.find(5));
EXPECT_EQ(result_it, set.end());
}
TEST(Btree, ExtractAndInsertNodeHandleSet) {
absl::btree_set<int> src1 = {1, 2, 3, 4, 5};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5));
absl::btree_set<int> other;
absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3));
EXPECT_EQ(res.position, other.find(3));
EXPECT_TRUE(res.inserted);
EXPECT_TRUE(res.node.empty());
absl::btree_set<int> src2 = {3, 4};
nh = src2.extract(src2.find(3));
EXPECT_THAT(src2, ElementsAre(4));
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3));
EXPECT_EQ(res.position, other.find(3));
EXPECT_FALSE(res.inserted);
ASSERT_FALSE(res.node.empty());
EXPECT_EQ(res.node.value(), 3);
}
struct Deref {
bool operator()(const std::unique_ptr<int> &lhs,
const std::unique_ptr<int> &rhs) const {
return *lhs < *rhs;
}
};
TEST(Btree, ExtractWithUniquePtr) {
absl::btree_set<std::unique_ptr<int>, Deref> s;
s.insert(absl::make_unique<int>(1));
s.insert(absl::make_unique<int>(2));
s.insert(absl::make_unique<int>(3));
s.insert(absl::make_unique<int>(4));
s.insert(absl::make_unique<int>(5));
auto nh = s.extract(s.find(absl::make_unique<int>(3)));
EXPECT_EQ(s.size(), 4);
EXPECT_EQ(*nh.value(), 3);
s.insert(std::move(nh));
EXPECT_EQ(s.size(), 5);
}
TEST(Btree, ExtractAndInsertNodeHandleMultiSet) {
absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5));
absl::btree_multiset<int> other;
auto res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3));
EXPECT_EQ(res, other.find(3));
absl::btree_multiset<int> src2 = {3, 4};
nh = src2.extract(src2.find(3));
EXPECT_THAT(src2, ElementsAre(4));
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(3, 3));
EXPECT_EQ(res, ++other.find(3));
}
TEST(Btree, ExtractAndInsertNodeHandleMap) {
absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
absl::btree_map<int, int> other;
absl::btree_map<int, int>::insert_return_type res =
other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
EXPECT_EQ(res.position, other.find(3));
EXPECT_TRUE(res.inserted);
EXPECT_TRUE(res.node.empty());
absl::btree_map<int, int> src2 = {{3, 6}};
nh = src2.extract(src2.find(3));
EXPECT_TRUE(src2.empty());
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
EXPECT_EQ(res.position, other.find(3));
EXPECT_FALSE(res.inserted);
ASSERT_FALSE(res.node.empty());
EXPECT_EQ(res.node.key(), 3);
EXPECT_EQ(res.node.mapped(), 6);
}
TEST(Btree, ExtractAndInsertNodeHandleMultiMap) {
absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
auto nh = src1.extract(src1.find(3));
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
absl::btree_multimap<int, int> other;
auto res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
EXPECT_EQ(res, other.find(3));
absl::btree_multimap<int, int> src2 = {{3, 6}};
nh = src2.extract(src2.find(3));
EXPECT_TRUE(src2.empty());
res = other.insert(std::move(nh));
EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6)));
EXPECT_EQ(res, ++other.begin());
}
// For multisets, insert with hint also affects correctness because we need to
// insert immediately before the hint if possible.
struct InsertMultiHintData {
int key;
int not_key;
bool operator==(const InsertMultiHintData other) const {
return key == other.key && not_key == other.not_key;
}
};
struct InsertMultiHintDataKeyCompare {
using is_transparent = void;
bool operator()(const InsertMultiHintData a,
const InsertMultiHintData b) const {
return a.key < b.key;
}
bool operator()(const int a, const InsertMultiHintData b) const {
return a < b.key;
}
bool operator()(const InsertMultiHintData a, const int b) const {
return a.key < b;
}
};
TEST(Btree, InsertHintNodeHandle) {
// For unique sets, insert with hint is just a performance optimization.
// Test that insert works correctly when the hint is right or wrong.
{
absl::btree_set<int> src = {1, 2, 3, 4, 5};
auto nh = src.extract(src.find(3));
EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
absl::btree_set<int> other = {0, 100};
// Test a correct hint.
auto it = other.insert(other.lower_bound(3), std::move(nh));
EXPECT_THAT(other, ElementsAre(0, 3, 100));
EXPECT_EQ(it, other.find(3));
nh = src.extract(src.find(5));
// Test an incorrect hint.
it = other.insert(other.end(), std::move(nh));
EXPECT_THAT(other, ElementsAre(0, 3, 5, 100));
EXPECT_EQ(it, other.find(5));
}
absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src =
{{1, 2}, {3, 4}, {3, 5}};
auto nh = src.extract(src.lower_bound(3));
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4}));
absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare>
other = {{3, 1}, {3, 2}, {3, 3}};
auto it = other.insert(--other.end(), std::move(nh));
EXPECT_THAT(
other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2},
InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3}));
EXPECT_EQ(it, --(--other.end()));
nh = src.extract(src.find(3));
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5}));
it = other.insert(other.begin(), std::move(nh));
EXPECT_THAT(other,
ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1},
InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4},
InsertMultiHintData{3, 3}));
EXPECT_EQ(it, other.begin());
}
struct IntCompareToCmp {
absl::weak_ordering operator()(int a, int b) const {
if (a < b) return absl::weak_ordering::less;
if (a > b) return absl::weak_ordering::greater;
return absl::weak_ordering::equivalent;
}
};
TEST(Btree, MergeIntoUniqueContainers) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_set<int> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_THAT(src2, ElementsAre(3, 4));
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
}
TEST(Btree, MergeIntoUniqueContainersWithCompareTo) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_set<int, IntCompareToCmp> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_THAT(src2, ElementsAre(3, 4));
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
}
TEST(Btree, MergeIntoMultiContainers) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_multiset<int> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_TRUE(src2.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
}
TEST(Btree, MergeIntoMultiContainersWithCompareTo) {
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
absl::btree_multiset<int> src2 = {3, 4, 4, 5};
absl::btree_multiset<int, IntCompareToCmp> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
dst.merge(src2);
EXPECT_TRUE(src2.empty());
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
}
TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) {
absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}};
absl::btree_multimap<int, int, std::greater<int>> src2 = {
{5, 5}, {4, 1}, {4, 4}, {3, 2}};
absl::btree_multimap<int, int> dst;
dst.merge(src1);
EXPECT_TRUE(src1.empty());
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3)));
dst.merge(src2);
EXPECT_TRUE(src2.empty());
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2),
Pair(4, 1), Pair(4, 4), Pair(5, 5)));
}
struct KeyCompareToWeakOrdering {
template <typename T>
absl::weak_ordering operator()(const T &a, const T &b) const {
return a < b ? absl::weak_ordering::less
: a == b ? absl::weak_ordering::equivalent
: absl::weak_ordering::greater;
}
};
struct KeyCompareToStrongOrdering {
template <typename T>
absl::strong_ordering operator()(const T &a, const T &b) const {
return a < b ? absl::strong_ordering::less
: a == b ? absl::strong_ordering::equal
: absl::strong_ordering::greater;
}
};
TEST(Btree, UserProvidedKeyCompareToComparators) {
absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3};
EXPECT_TRUE(weak_set.contains(2));
EXPECT_FALSE(weak_set.contains(4));
absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3};
EXPECT_TRUE(strong_set.contains(2));
EXPECT_FALSE(strong_set.contains(4));
}
TEST(Btree, TryEmplaceBasicTest) {
absl::btree_map<int, std::string> m;
// Should construct a std::string from the literal.
m.try_emplace(1, "one");
EXPECT_EQ(1, m.size());
// Try other std::string constructors and const lvalue key.
const int key(42);
m.try_emplace(key, 3, 'a');
m.try_emplace(2, std::string("two"));
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{
{1, "one"}, {2, "two"}, {42, "aaa"}}));
}
TEST(Btree, TryEmplaceWithHintWorks) {
// Use a counting comparator here to verify that hint is used.
int calls = 0;
auto cmp = [&calls](int x, int y) {
++calls;
return x < y;
};
using Cmp = decltype(cmp);
absl::btree_map<int, int, Cmp> m(cmp);
for (int i = 0; i < 128; ++i) {
m.emplace(i, i);
}
// Sanity check for the comparator
calls = 0;
m.emplace(127, 127);
EXPECT_GE(calls, 4);
// Try with begin hint:
calls = 0;
auto it = m.try_emplace(m.begin(), -1, -1);
EXPECT_EQ(129, m.size());
EXPECT_EQ(it, m.begin());
EXPECT_LE(calls, 2);
// Try with end hint:
calls = 0;
std::pair<int, int> pair1024 = {1024, 1024};
it = m.try_emplace(m.end(), pair1024.first, pair1024.second);
EXPECT_EQ(130, m.size());
EXPECT_EQ(it, --m.end());
EXPECT_LE(calls, 2);
// Try value already present, bad hint; ensure no duplicate added:
calls = 0;
it = m.try_emplace(m.end(), 16, 17);
EXPECT_EQ(130, m.size());
EXPECT_GE(calls, 4);
EXPECT_EQ(it, m.find(16));
// Try value already present, hint points directly to it:
calls = 0;
it = m.try_emplace(it, 16, 17);
EXPECT_EQ(130, m.size());
EXPECT_LE(calls, 2);
EXPECT_EQ(it, m.find(16));
m.erase(2);
EXPECT_EQ(129, m.size());
auto hint = m.find(3);
// Try emplace in the middle of two other elements.
calls = 0;
m.try_emplace(hint, 2, 2);
EXPECT_EQ(130, m.size());
EXPECT_LE(calls, 2);
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
}
TEST(Btree, TryEmplaceWithBadHint) {
absl::btree_map<int, int> m = {{1, 1}, {9, 9}};
// Bad hint (too small), should still emplace:
auto it = m.try_emplace(m.begin(), 2, 2);
EXPECT_EQ(it, ++m.begin());
EXPECT_THAT(m, ElementsAreArray(
std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}}));
// Bad hint, too large this time:
it = m.try_emplace(++(++m.begin()), 0, 0);
EXPECT_EQ(it, m.begin());
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{
{0, 0}, {1, 1}, {2, 2}, {9, 9}}));
}
TEST(Btree, TryEmplaceMaintainsSortedOrder) {
absl::btree_map<int, std::string> m;
std::pair<int, std::string> pair5 = {5, "five"};
// Test both lvalue & rvalue emplace.
m.try_emplace(10, "ten");
m.try_emplace(pair5.first, pair5.second);
EXPECT_EQ(2, m.size());
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
int int100{100};
m.try_emplace(int100, "hundred");
m.try_emplace(1, "one");
EXPECT_EQ(4, m.size());
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
}
TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) {
absl::btree_map<int, int> m;
m.try_emplace(m.end(), 1);
EXPECT_EQ(0, m[1]);
}
TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) {
absl::btree_map<int, std::string> m;
m.try_emplace(m.end(), 1, 10, 'a');
EXPECT_EQ(std::string(10, 'a'), m[1]);
}
TEST(Btree, MoveAssignmentAllocatorPropagation) {
InstanceTracker tracker;
int64_t bytes1 = 0, bytes2 = 0;
PropagatingCountingAlloc<MovableOnlyInstance> allocator1(&bytes1);
PropagatingCountingAlloc<MovableOnlyInstance> allocator2(&bytes2);
std::less<MovableOnlyInstance> cmp;
// Test propagating allocator_type.
{
absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
PropagatingCountingAlloc<MovableOnlyInstance>>
set1(cmp, allocator1), set2(cmp, allocator2);
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
tracker.ResetCopiesMovesSwaps();
set2 = std::move(set1);
EXPECT_EQ(tracker.moves(), 0);
}
// Test non-propagating allocator_type with equal allocators.
{
absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
CountingAllocator<MovableOnlyInstance>>
set1(cmp, allocator1), set2(cmp, allocator1);
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
tracker.ResetCopiesMovesSwaps();
set2 = std::move(set1);
EXPECT_EQ(tracker.moves(), 0);
}
// Test non-propagating allocator_type with different allocators.
{
absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
CountingAllocator<MovableOnlyInstance>>
set1(cmp, allocator1), set2(cmp, allocator2);
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
tracker.ResetCopiesMovesSwaps();
set2 = std::move(set1);
EXPECT_GE(tracker.moves(), 100);
}
}
} // namespace
} // namespace container_internal
} // namespace absl