tvl-depot/third_party/abseil_cpp/absl/status/statusor_test.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1812 lines
58 KiB
C++
Raw Normal View History

// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/status/statusor.h"
#include <array>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/casts.h"
#include "absl/memory/memory.h"
#include "absl/status/status.h"
#include "absl/types/any.h"
#include "absl/utility/utility.h"
namespace {
using ::testing::AllOf;
using ::testing::AnyWith;
using ::testing::ElementsAre;
using ::testing::Field;
using ::testing::Ne;
using ::testing::Not;
using ::testing::Pointee;
using ::testing::VariantWith;
#ifdef GTEST_HAS_STATUS_MATCHERS
using ::testing::status::IsOk;
using ::testing::status::IsOkAndHolds;
#else // GTEST_HAS_STATUS_MATCHERS
inline const ::absl::Status& GetStatus(const ::absl::Status& status) {
return status;
}
template <typename T>
inline const ::absl::Status& GetStatus(const ::absl::StatusOr<T>& status) {
return status.status();
}
// Monomorphic implementation of matcher IsOkAndHolds(m). StatusOrType is a
// reference to StatusOr<T>.
template <typename StatusOrType>
class IsOkAndHoldsMatcherImpl
: public ::testing::MatcherInterface<StatusOrType> {
public:
typedef
typename std::remove_reference<StatusOrType>::type::value_type value_type;
template <typename InnerMatcher>
explicit IsOkAndHoldsMatcherImpl(InnerMatcher&& inner_matcher)
: inner_matcher_(::testing::SafeMatcherCast<const value_type&>(
std::forward<InnerMatcher>(inner_matcher))) {}
void DescribeTo(std::ostream* os) const override {
*os << "is OK and has a value that ";
inner_matcher_.DescribeTo(os);
}
void DescribeNegationTo(std::ostream* os) const override {
*os << "isn't OK or has a value that ";
inner_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(
StatusOrType actual_value,
::testing::MatchResultListener* result_listener) const override {
if (!actual_value.ok()) {
*result_listener << "which has status " << actual_value.status();
return false;
}
::testing::StringMatchResultListener inner_listener;
const bool matches =
inner_matcher_.MatchAndExplain(*actual_value, &inner_listener);
const std::string inner_explanation = inner_listener.str();
if (!inner_explanation.empty()) {
*result_listener << "which contains value "
<< ::testing::PrintToString(*actual_value) << ", "
<< inner_explanation;
}
return matches;
}
private:
const ::testing::Matcher<const value_type&> inner_matcher_;
};
// Implements IsOkAndHolds(m) as a polymorphic matcher.
template <typename InnerMatcher>
class IsOkAndHoldsMatcher {
public:
explicit IsOkAndHoldsMatcher(InnerMatcher inner_matcher)
: inner_matcher_(std::move(inner_matcher)) {}
// Converts this polymorphic matcher to a monomorphic matcher of the
// given type. StatusOrType can be either StatusOr<T> or a
// reference to StatusOr<T>.
template <typename StatusOrType>
operator ::testing::Matcher<StatusOrType>() const { // NOLINT
return ::testing::Matcher<StatusOrType>(
new IsOkAndHoldsMatcherImpl<const StatusOrType&>(inner_matcher_));
}
private:
const InnerMatcher inner_matcher_;
};
// Monomorphic implementation of matcher IsOk() for a given type T.
// T can be Status, StatusOr<>, or a reference to either of them.
template <typename T>
class MonoIsOkMatcherImpl : public ::testing::MatcherInterface<T> {
public:
void DescribeTo(std::ostream* os) const override { *os << "is OK"; }
void DescribeNegationTo(std::ostream* os) const override {
*os << "is not OK";
}
bool MatchAndExplain(T actual_value,
::testing::MatchResultListener*) const override {
return GetStatus(actual_value).ok();
}
};
// Implements IsOk() as a polymorphic matcher.
class IsOkMatcher {
public:
template <typename T>
operator ::testing::Matcher<T>() const { // NOLINT
return ::testing::Matcher<T>(new MonoIsOkMatcherImpl<T>());
}
};
// Macros for testing the results of functions that return absl::Status or
// absl::StatusOr<T> (for any type T).
#define EXPECT_OK(expression) EXPECT_THAT(expression, IsOk())
// Returns a gMock matcher that matches a StatusOr<> whose status is
// OK and whose value matches the inner matcher.
template <typename InnerMatcher>
IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type> IsOkAndHolds(
InnerMatcher&& inner_matcher) {
return IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type>(
std::forward<InnerMatcher>(inner_matcher));
}
// Returns a gMock matcher that matches a Status or StatusOr<> which is OK.
inline IsOkMatcher IsOk() { return IsOkMatcher(); }
#endif // GTEST_HAS_STATUS_MATCHERS
struct CopyDetector {
CopyDetector() = default;
explicit CopyDetector(int xx) : x(xx) {}
CopyDetector(CopyDetector&& d) noexcept
: x(d.x), copied(false), moved(true) {}
CopyDetector(const CopyDetector& d) : x(d.x), copied(true), moved(false) {}
CopyDetector& operator=(const CopyDetector& c) {
x = c.x;
copied = true;
moved = false;
return *this;
}
CopyDetector& operator=(CopyDetector&& c) noexcept {
x = c.x;
copied = false;
moved = true;
return *this;
}
int x = 0;
bool copied = false;
bool moved = false;
};
testing::Matcher<const CopyDetector&> CopyDetectorHas(int a, bool b, bool c) {
return AllOf(Field(&CopyDetector::x, a), Field(&CopyDetector::moved, b),
Field(&CopyDetector::copied, c));
}
class Base1 {
public:
virtual ~Base1() {}
int pad;
};
class Base2 {
public:
virtual ~Base2() {}
int yetotherpad;
};
class Derived : public Base1, public Base2 {
public:
virtual ~Derived() {}
int evenmorepad;
};
class CopyNoAssign {
public:
explicit CopyNoAssign(int value) : foo(value) {}
CopyNoAssign(const CopyNoAssign& other) : foo(other.foo) {}
int foo;
private:
const CopyNoAssign& operator=(const CopyNoAssign&);
};
absl::StatusOr<std::unique_ptr<int>> ReturnUniquePtr() {
// Uses implicit constructor from T&&
return absl::make_unique<int>(0);
}
TEST(StatusOr, ElementType) {
static_assert(std::is_same<absl::StatusOr<int>::value_type, int>(), "");
static_assert(std::is_same<absl::StatusOr<char>::value_type, char>(), "");
}
TEST(StatusOr, TestMoveOnlyInitialization) {
absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
ASSERT_TRUE(thing.ok());
EXPECT_EQ(0, **thing);
int* previous = thing->get();
thing = ReturnUniquePtr();
EXPECT_TRUE(thing.ok());
EXPECT_EQ(0, **thing);
EXPECT_NE(previous, thing->get());
}
TEST(StatusOr, TestMoveOnlyValueExtraction) {
absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
ASSERT_TRUE(thing.ok());
std::unique_ptr<int> ptr = *std::move(thing);
EXPECT_EQ(0, *ptr);
thing = std::move(ptr);
ptr = std::move(*thing);
EXPECT_EQ(0, *ptr);
}
TEST(StatusOr, TestMoveOnlyInitializationFromTemporaryByValueOrDie) {
std::unique_ptr<int> ptr(*ReturnUniquePtr());
EXPECT_EQ(0, *ptr);
}
TEST(StatusOr, TestValueOrDieOverloadForConstTemporary) {
static_assert(
std::is_same<const int&&,
decltype(
std::declval<const absl::StatusOr<int>&&>().value())>(),
"value() for const temporaries should return const T&&");
}
TEST(StatusOr, TestMoveOnlyConversion) {
absl::StatusOr<std::unique_ptr<const int>> const_thing(ReturnUniquePtr());
EXPECT_TRUE(const_thing.ok());
EXPECT_EQ(0, **const_thing);
// Test rvalue converting assignment
const int* const_previous = const_thing->get();
const_thing = ReturnUniquePtr();
EXPECT_TRUE(const_thing.ok());
EXPECT_EQ(0, **const_thing);
EXPECT_NE(const_previous, const_thing->get());
}
TEST(StatusOr, TestMoveOnlyVector) {
// Sanity check that absl::StatusOr<MoveOnly> works in vector.
std::vector<absl::StatusOr<std::unique_ptr<int>>> vec;
vec.push_back(ReturnUniquePtr());
vec.resize(2);
auto another_vec = std::move(vec);
EXPECT_EQ(0, **another_vec[0]);
EXPECT_EQ(absl::UnknownError(""), another_vec[1].status());
}
TEST(StatusOr, TestDefaultCtor) {
absl::StatusOr<int> thing;
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOr, StatusCtorForwards) {
absl::Status status(absl::StatusCode::kInternal, "Some error");
EXPECT_EQ(absl::StatusOr<int>(status).status().message(), "Some error");
EXPECT_EQ(status.message(), "Some error");
EXPECT_EQ(absl::StatusOr<int>(std::move(status)).status().message(),
"Some error");
EXPECT_NE(status.message(), "Some error");
}
// Define `EXPECT_DEATH_OR_THROW` to test the behavior of `StatusOr::value`,
// which either throws `BadStatusOrAccess` or `LOG(FATAL)` based on whether
// exceptions are enabled.
#ifdef ABSL_HAVE_EXCEPTIONS
#define EXPECT_DEATH_OR_THROW(statement, status_) \
EXPECT_THROW( \
{ \
try { \
statement; \
} catch (const absl::BadStatusOrAccess& e) { \
EXPECT_EQ(e.status(), status_); \
throw; \
} \
}, \
absl::BadStatusOrAccess);
#else // ABSL_HAVE_EXCEPTIONS
#define EXPECT_DEATH_OR_THROW(statement, status) \
EXPECT_DEATH_IF_SUPPORTED(statement, status.ToString());
#endif // ABSL_HAVE_EXCEPTIONS
TEST(StatusOrDeathTest, TestDefaultCtorValue) {
absl::StatusOr<int> thing;
EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
const absl::StatusOr<int> thing2;
EXPECT_DEATH_OR_THROW(thing2.value(), absl::UnknownError(""));
}
TEST(StatusOrDeathTest, TestValueNotOk) {
absl::StatusOr<int> thing(absl::CancelledError());
EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
}
TEST(StatusOrDeathTest, TestValueNotOkConst) {
const absl::StatusOr<int> thing(absl::UnknownError(""));
EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
}
TEST(StatusOrDeathTest, TestPointerDefaultCtorValue) {
absl::StatusOr<int*> thing;
EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
}
TEST(StatusOrDeathTest, TestPointerValueNotOk) {
absl::StatusOr<int*> thing(absl::CancelledError());
EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
}
TEST(StatusOrDeathTest, TestPointerValueNotOkConst) {
const absl::StatusOr<int*> thing(absl::CancelledError());
EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
}
#if GTEST_HAS_DEATH_TEST
TEST(StatusOrDeathTest, TestStatusCtorStatusOk) {
EXPECT_DEBUG_DEATH(
{
// This will DCHECK
absl::StatusOr<int> thing(absl::OkStatus());
// In optimized mode, we are actually going to get error::INTERNAL for
// status here, rather than crashing, so check that.
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kInternal);
},
"An OK status is not a valid constructor argument");
}
TEST(StatusOrDeathTest, TestPointerStatusCtorStatusOk) {
EXPECT_DEBUG_DEATH(
{
absl::StatusOr<int*> thing(absl::OkStatus());
// In optimized mode, we are actually going to get error::INTERNAL for
// status here, rather than crashing, so check that.
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kInternal);
},
"An OK status is not a valid constructor argument");
}
#endif
TEST(StatusOr, ValueAccessor) {
const int kIntValue = 110;
{
absl::StatusOr<int> status_or(kIntValue);
EXPECT_EQ(kIntValue, status_or.value());
EXPECT_EQ(kIntValue, std::move(status_or).value());
}
{
absl::StatusOr<CopyDetector> status_or(kIntValue);
EXPECT_THAT(status_or,
IsOkAndHolds(CopyDetectorHas(kIntValue, false, false)));
CopyDetector copy_detector = status_or.value();
EXPECT_THAT(copy_detector, CopyDetectorHas(kIntValue, false, true));
copy_detector = std::move(status_or).value();
EXPECT_THAT(copy_detector, CopyDetectorHas(kIntValue, true, false));
}
}
TEST(StatusOr, BadValueAccess) {
const absl::Status kError = absl::CancelledError("message");
absl::StatusOr<int> status_or(kError);
EXPECT_DEATH_OR_THROW(status_or.value(), kError);
}
TEST(StatusOr, TestStatusCtor) {
absl::StatusOr<int> thing(absl::CancelledError());
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestValueCtor) {
const int kI = 4;
const absl::StatusOr<int> thing(kI);
EXPECT_TRUE(thing.ok());
EXPECT_EQ(kI, *thing);
}
struct Foo {
const int x;
explicit Foo(int y) : x(y) {}
};
TEST(StatusOr, InPlaceConstruction) {
EXPECT_THAT(absl::StatusOr<Foo>(absl::in_place, 10),
IsOkAndHolds(Field(&Foo::x, 10)));
}
struct InPlaceHelper {
InPlaceHelper(std::initializer_list<int> xs, std::unique_ptr<int> yy)
: x(xs), y(std::move(yy)) {}
const std::vector<int> x;
std::unique_ptr<int> y;
};
TEST(StatusOr, InPlaceInitListConstruction) {
absl::StatusOr<InPlaceHelper> status_or(absl::in_place, {10, 11, 12},
absl::make_unique<int>(13));
EXPECT_THAT(status_or, IsOkAndHolds(AllOf(
Field(&InPlaceHelper::x, ElementsAre(10, 11, 12)),
Field(&InPlaceHelper::y, Pointee(13)))));
}
TEST(StatusOr, Emplace) {
absl::StatusOr<Foo> status_or_foo(10);
status_or_foo.emplace(20);
EXPECT_THAT(status_or_foo, IsOkAndHolds(Field(&Foo::x, 20)));
status_or_foo = absl::InvalidArgumentError("msg");
EXPECT_FALSE(status_or_foo.ok());
EXPECT_EQ(status_or_foo.status().code(), absl::StatusCode::kInvalidArgument);
EXPECT_EQ(status_or_foo.status().message(), "msg");
status_or_foo.emplace(20);
EXPECT_THAT(status_or_foo, IsOkAndHolds(Field(&Foo::x, 20)));
}
TEST(StatusOr, EmplaceInitializerList) {
absl::StatusOr<InPlaceHelper> status_or(absl::in_place, {10, 11, 12},
absl::make_unique<int>(13));
status_or.emplace({1, 2, 3}, absl::make_unique<int>(4));
EXPECT_THAT(status_or,
IsOkAndHolds(AllOf(Field(&InPlaceHelper::x, ElementsAre(1, 2, 3)),
Field(&InPlaceHelper::y, Pointee(4)))));
status_or = absl::InvalidArgumentError("msg");
EXPECT_FALSE(status_or.ok());
EXPECT_EQ(status_or.status().code(), absl::StatusCode::kInvalidArgument);
EXPECT_EQ(status_or.status().message(), "msg");
status_or.emplace({1, 2, 3}, absl::make_unique<int>(4));
EXPECT_THAT(status_or,
IsOkAndHolds(AllOf(Field(&InPlaceHelper::x, ElementsAre(1, 2, 3)),
Field(&InPlaceHelper::y, Pointee(4)))));
}
TEST(StatusOr, TestCopyCtorStatusOk) {
const int kI = 4;
const absl::StatusOr<int> original(kI);
const absl::StatusOr<int> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(*original, *copy);
}
TEST(StatusOr, TestCopyCtorStatusNotOk) {
absl::StatusOr<int> original(absl::CancelledError());
absl::StatusOr<int> copy(original);
EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestCopyCtorNonAssignable) {
const int kI = 4;
CopyNoAssign value(kI);
absl::StatusOr<CopyNoAssign> original(value);
absl::StatusOr<CopyNoAssign> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(original->foo, copy->foo);
}
TEST(StatusOr, TestCopyCtorStatusOKConverting) {
const int kI = 4;
absl::StatusOr<int> original(kI);
absl::StatusOr<double> copy(original);
EXPECT_OK(copy.status());
EXPECT_DOUBLE_EQ(*original, *copy);
}
TEST(StatusOr, TestCopyCtorStatusNotOkConverting) {
absl::StatusOr<int> original(absl::CancelledError());
absl::StatusOr<double> copy(original);
EXPECT_EQ(copy.status(), original.status());
}
TEST(StatusOr, TestAssignmentStatusOk) {
// Copy assignmment
{
const auto p = std::make_shared<int>(17);
absl::StatusOr<std::shared_ptr<int>> source(p);
absl::StatusOr<std::shared_ptr<int>> target;
target = source;
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_EQ(p, *target);
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_EQ(p, *source);
}
// Move asssignment
{
const auto p = std::make_shared<int>(17);
absl::StatusOr<std::shared_ptr<int>> source(p);
absl::StatusOr<std::shared_ptr<int>> target;
target = std::move(source);
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_EQ(p, *target);
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_EQ(nullptr, *source);
}
}
TEST(StatusOr, TestAssignmentStatusNotOk) {
// Copy assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<int> target;
target = source;
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(expected, source.status());
}
// Move assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<int> target;
target = std::move(source);
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(source.status().code(), absl::StatusCode::kInternal);
}
}
TEST(StatusOr, TestAssignmentStatusOKConverting) {
// Copy assignment
{
const int kI = 4;
absl::StatusOr<int> source(kI);
absl::StatusOr<double> target;
target = source;
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_DOUBLE_EQ(kI, *target);
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_DOUBLE_EQ(kI, *source);
}
// Move assignment
{
const auto p = new int(17);
absl::StatusOr<std::unique_ptr<int>> source(absl::WrapUnique(p));
absl::StatusOr<std::shared_ptr<int>> target;
target = std::move(source);
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_EQ(p, target->get());
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_EQ(nullptr, source->get());
}
}
struct A {
int x;
};
struct ImplicitConstructibleFromA {
int x;
bool moved;
ImplicitConstructibleFromA(const A& a) // NOLINT
: x(a.x), moved(false) {}
ImplicitConstructibleFromA(A&& a) // NOLINT
: x(a.x), moved(true) {}
};
TEST(StatusOr, ImplicitConvertingConstructor) {
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromA>>(
absl::StatusOr<A>(A{11})),
IsOkAndHolds(AllOf(Field(&ImplicitConstructibleFromA::x, 11),
Field(&ImplicitConstructibleFromA::moved, true))));
absl::StatusOr<A> a(A{12});
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromA>>(a),
IsOkAndHolds(AllOf(Field(&ImplicitConstructibleFromA::x, 12),
Field(&ImplicitConstructibleFromA::moved, false))));
}
struct ExplicitConstructibleFromA {
int x;
bool moved;
explicit ExplicitConstructibleFromA(const A& a) : x(a.x), moved(false) {}
explicit ExplicitConstructibleFromA(A&& a) : x(a.x), moved(true) {}
};
TEST(StatusOr, ExplicitConvertingConstructor) {
EXPECT_FALSE(
(std::is_convertible<const absl::StatusOr<A>&,
absl::StatusOr<ExplicitConstructibleFromA>>::value));
EXPECT_FALSE(
(std::is_convertible<absl::StatusOr<A>&&,
absl::StatusOr<ExplicitConstructibleFromA>>::value));
EXPECT_THAT(
absl::StatusOr<ExplicitConstructibleFromA>(absl::StatusOr<A>(A{11})),
IsOkAndHolds(AllOf(Field(&ExplicitConstructibleFromA::x, 11),
Field(&ExplicitConstructibleFromA::moved, true))));
absl::StatusOr<A> a(A{12});
EXPECT_THAT(
absl::StatusOr<ExplicitConstructibleFromA>(a),
IsOkAndHolds(AllOf(Field(&ExplicitConstructibleFromA::x, 12),
Field(&ExplicitConstructibleFromA::moved, false))));
}
struct ImplicitConstructibleFromBool {
ImplicitConstructibleFromBool(bool y) : x(y) {} // NOLINT
bool x = false;
};
struct ConvertibleToBool {
explicit ConvertibleToBool(bool y) : x(y) {}
operator bool() const { return x; } // NOLINT
bool x = false;
};
TEST(StatusOr, ImplicitBooleanConstructionWithImplicitCasts) {
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromBool>>(
absl::StatusOr<bool>(false)),
IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
EXPECT_FALSE((std::is_convertible<
absl::StatusOr<ConvertibleToBool>,
absl::StatusOr<ImplicitConstructibleFromBool>>::value));
}
TEST(StatusOr, BooleanConstructionWithImplicitCasts) {
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<bool>(false)},
IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<bool>(absl::InvalidArgumentError(""))},
Not(IsOk()));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<ConvertibleToBool>(ConvertibleToBool{false})},
IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<ConvertibleToBool>(absl::InvalidArgumentError(""))},
Not(IsOk()));
}
TEST(StatusOr, ConstImplicitCast) {
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<bool>>(
absl::StatusOr<const bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<bool>>(
absl::StatusOr<const bool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const bool>>(
absl::StatusOr<bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const bool>>(
absl::StatusOr<bool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const std::string>>(
absl::StatusOr<std::string>("foo")),
IsOkAndHolds("foo"));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<std::string>>(
absl::StatusOr<const std::string>("foo")),
IsOkAndHolds("foo"));
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<std::shared_ptr<const std::string>>>(
absl::StatusOr<std::shared_ptr<std::string>>(
std::make_shared<std::string>("foo"))),
IsOkAndHolds(Pointee(std::string("foo"))));
}
TEST(StatusOr, ConstExplicitConstruction) {
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<const bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<const bool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(absl::StatusOr<const bool>(absl::StatusOr<bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<const bool>(absl::StatusOr<bool>(false)),
IsOkAndHolds(false));
}
struct ExplicitConstructibleFromInt {
int x;
explicit ExplicitConstructibleFromInt(int y) : x(y) {}
};
TEST(StatusOr, ExplicitConstruction) {
EXPECT_THAT(absl::StatusOr<ExplicitConstructibleFromInt>(10),
IsOkAndHolds(Field(&ExplicitConstructibleFromInt::x, 10)));
}
TEST(StatusOr, ImplicitConstruction) {
// Check implicit casting works.
auto status_or =
absl::implicit_cast<absl::StatusOr<absl::variant<int, std::string>>>(10);
EXPECT_THAT(status_or, IsOkAndHolds(VariantWith<int>(10)));
}
TEST(StatusOr, ImplicitConstructionFromInitliazerList) {
// Note: dropping the explicit std::initializer_list<int> is not supported
// by absl::StatusOr or absl::optional.
auto status_or =
absl::implicit_cast<absl::StatusOr<std::vector<int>>>({{10, 20, 30}});
EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
}
TEST(StatusOr, UniquePtrImplicitConstruction) {
auto status_or = absl::implicit_cast<absl::StatusOr<std::unique_ptr<Base1>>>(
absl::make_unique<Derived>());
EXPECT_THAT(status_or, IsOkAndHolds(Ne(nullptr)));
}
TEST(StatusOr, NestedStatusOrCopyAndMoveConstructorTests) {
absl::StatusOr<absl::StatusOr<CopyDetector>> status_or = CopyDetector(10);
absl::StatusOr<absl::StatusOr<CopyDetector>> status_error =
absl::InvalidArgumentError("foo");
EXPECT_THAT(status_or,
IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::StatusOr<CopyDetector>> a = status_or;
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
absl::StatusOr<absl::StatusOr<CopyDetector>> a_err = status_error;
EXPECT_THAT(a_err, Not(IsOk()));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref = status_or;
absl::StatusOr<absl::StatusOr<CopyDetector>> b = cref; // NOLINT
EXPECT_THAT(b, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref_err = status_error;
absl::StatusOr<absl::StatusOr<CopyDetector>> b_err = cref_err; // NOLINT
EXPECT_THAT(b_err, Not(IsOk()));
absl::StatusOr<absl::StatusOr<CopyDetector>> c = std::move(status_or);
EXPECT_THAT(c, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::StatusOr<CopyDetector>> c_err = std::move(status_error);
EXPECT_THAT(c_err, Not(IsOk()));
}
TEST(StatusOr, NestedStatusOrCopyAndMoveAssignment) {
absl::StatusOr<absl::StatusOr<CopyDetector>> status_or = CopyDetector(10);
absl::StatusOr<absl::StatusOr<CopyDetector>> status_error =
absl::InvalidArgumentError("foo");
absl::StatusOr<absl::StatusOr<CopyDetector>> a;
a = status_or;
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
a = status_error;
EXPECT_THAT(a, Not(IsOk()));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref = status_or;
a = cref;
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref_err = status_error;
a = cref_err;
EXPECT_THAT(a, Not(IsOk()));
a = std::move(status_or);
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
a = std::move(status_error);
EXPECT_THAT(a, Not(IsOk()));
}
struct Copyable {
Copyable() {}
Copyable(const Copyable&) {}
Copyable& operator=(const Copyable&) { return *this; }
};
struct MoveOnly {
MoveOnly() {}
MoveOnly(MoveOnly&&) {}
MoveOnly& operator=(MoveOnly&&) { return *this; }
};
struct NonMovable {
NonMovable() {}
NonMovable(const NonMovable&) = delete;
NonMovable(NonMovable&&) = delete;
NonMovable& operator=(const NonMovable&) = delete;
NonMovable& operator=(NonMovable&&) = delete;
};
TEST(StatusOr, CopyAndMoveAbility) {
EXPECT_TRUE(std::is_copy_constructible<Copyable>::value);
EXPECT_TRUE(std::is_copy_assignable<Copyable>::value);
EXPECT_TRUE(std::is_move_constructible<Copyable>::value);
EXPECT_TRUE(std::is_move_assignable<Copyable>::value);
EXPECT_FALSE(std::is_copy_constructible<MoveOnly>::value);
EXPECT_FALSE(std::is_copy_assignable<MoveOnly>::value);
EXPECT_TRUE(std::is_move_constructible<MoveOnly>::value);
EXPECT_TRUE(std::is_move_assignable<MoveOnly>::value);
EXPECT_FALSE(std::is_copy_constructible<NonMovable>::value);
EXPECT_FALSE(std::is_copy_assignable<NonMovable>::value);
EXPECT_FALSE(std::is_move_constructible<NonMovable>::value);
EXPECT_FALSE(std::is_move_assignable<NonMovable>::value);
}
TEST(StatusOr, StatusOrAnyCopyAndMoveConstructorTests) {
absl::StatusOr<absl::any> status_or = CopyDetector(10);
absl::StatusOr<absl::any> status_error = absl::InvalidArgumentError("foo");
EXPECT_THAT(
status_or,
IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::any> a = status_or;
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
absl::StatusOr<absl::any> a_err = status_error;
EXPECT_THAT(a_err, Not(IsOk()));
const absl::StatusOr<absl::any>& cref = status_or;
// No lint for no-change copy.
absl::StatusOr<absl::any> b = cref; // NOLINT
EXPECT_THAT(
b, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::any>& cref_err = status_error;
// No lint for no-change copy.
absl::StatusOr<absl::any> b_err = cref_err; // NOLINT
EXPECT_THAT(b_err, Not(IsOk()));
absl::StatusOr<absl::any> c = std::move(status_or);
EXPECT_THAT(
c, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::any> c_err = std::move(status_error);
EXPECT_THAT(c_err, Not(IsOk()));
}
TEST(StatusOr, StatusOrAnyCopyAndMoveAssignment) {
absl::StatusOr<absl::any> status_or = CopyDetector(10);
absl::StatusOr<absl::any> status_error = absl::InvalidArgumentError("foo");
absl::StatusOr<absl::any> a;
a = status_or;
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
a = status_error;
EXPECT_THAT(a, Not(IsOk()));
const absl::StatusOr<absl::any>& cref = status_or;
a = cref;
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::any>& cref_err = status_error;
a = cref_err;
EXPECT_THAT(a, Not(IsOk()));
a = std::move(status_or);
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
a = std::move(status_error);
EXPECT_THAT(a, Not(IsOk()));
}
TEST(StatusOr, StatusOrCopyAndMoveTestsConstructor) {
absl::StatusOr<CopyDetector> status_or(10);
ASSERT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(10, false, false)));
absl::StatusOr<CopyDetector> a(status_or);
EXPECT_THAT(a, IsOkAndHolds(CopyDetectorHas(10, false, true)));
const absl::StatusOr<CopyDetector>& cref = status_or;
absl::StatusOr<CopyDetector> b(cref); // NOLINT
EXPECT_THAT(b, IsOkAndHolds(CopyDetectorHas(10, false, true)));
absl::StatusOr<CopyDetector> c(std::move(status_or));
EXPECT_THAT(c, IsOkAndHolds(CopyDetectorHas(10, true, false)));
}
TEST(StatusOr, StatusOrCopyAndMoveTestsAssignment) {
absl::StatusOr<CopyDetector> status_or(10);
ASSERT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(10, false, false)));
absl::StatusOr<CopyDetector> a;
a = status_or;
EXPECT_THAT(a, IsOkAndHolds(CopyDetectorHas(10, false, true)));
const absl::StatusOr<CopyDetector>& cref = status_or;
absl::StatusOr<CopyDetector> b;
b = cref;
EXPECT_THAT(b, IsOkAndHolds(CopyDetectorHas(10, false, true)));
absl::StatusOr<CopyDetector> c;
c = std::move(status_or);
EXPECT_THAT(c, IsOkAndHolds(CopyDetectorHas(10, true, false)));
}
TEST(StatusOr, AbslAnyAssignment) {
EXPECT_FALSE((std::is_assignable<absl::StatusOr<absl::any>,
absl::StatusOr<int>>::value));
absl::StatusOr<absl::any> status_or;
status_or = absl::InvalidArgumentError("foo");
EXPECT_THAT(status_or, Not(IsOk()));
}
TEST(StatusOr, ImplicitAssignment) {
absl::StatusOr<absl::variant<int, std::string>> status_or;
status_or = 10;
EXPECT_THAT(status_or, IsOkAndHolds(VariantWith<int>(10)));
}
TEST(StatusOr, SelfDirectInitAssignment) {
absl::StatusOr<std::vector<int>> status_or = {{10, 20, 30}};
status_or = *status_or;
EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
}
TEST(StatusOr, ImplicitCastFromInitializerList) {
absl::StatusOr<std::vector<int>> status_or = {{10, 20, 30}};
EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
}
TEST(StatusOr, UniquePtrImplicitAssignment) {
absl::StatusOr<std::unique_ptr<Base1>> status_or;
status_or = absl::make_unique<Derived>();
EXPECT_THAT(status_or, IsOkAndHolds(Ne(nullptr)));
}
TEST(StatusOr, Pointer) {
struct A {};
struct B : public A {};
struct C : private A {};
EXPECT_TRUE((std::is_constructible<absl::StatusOr<A*>, B*>::value));
EXPECT_TRUE((std::is_convertible<B*, absl::StatusOr<A*>>::value));
EXPECT_FALSE((std::is_constructible<absl::StatusOr<A*>, C*>::value));
EXPECT_FALSE((std::is_convertible<C*, absl::StatusOr<A*>>::value));
}
TEST(StatusOr, TestAssignmentStatusNotOkConverting) {
// Copy assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<double> target;
target = source;
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(expected, source.status());
}
// Move assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<double> target;
target = std::move(source);
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(source.status().code(), absl::StatusCode::kInternal);
}
}
TEST(StatusOr, SelfAssignment) {
// Copy-assignment, status OK
{
// A string long enough that it's likely to defeat any inline representation
// optimization.
const std::string long_str(128, 'a');
absl::StatusOr<std::string> so = long_str;
so = *&so;
ASSERT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(long_str, *so);
}
// Copy-assignment, error status
{
absl::StatusOr<int> so = absl::NotFoundError("taco");
so = *&so;
EXPECT_FALSE(so.ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
EXPECT_EQ(so.status().message(), "taco");
}
// Move-assignment with copyable type, status OK
{
absl::StatusOr<int> so = 17;
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
ASSERT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(17, *so);
}
// Move-assignment with copyable type, error status
{
absl::StatusOr<int> so = absl::NotFoundError("taco");
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
EXPECT_FALSE(so.ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
EXPECT_EQ(so.status().message(), "taco");
}
// Move-assignment with non-copyable type, status OK
{
const auto raw = new int(17);
absl::StatusOr<std::unique_ptr<int>> so = absl::WrapUnique(raw);
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
ASSERT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(raw, so->get());
}
// Move-assignment with non-copyable type, error status
{
absl::StatusOr<std::unique_ptr<int>> so = absl::NotFoundError("taco");
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
EXPECT_FALSE(so.ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
EXPECT_EQ(so.status().message(), "taco");
}
}
// These types form the overload sets of the constructors and the assignment
// operators of `MockValue`. They distinguish construction from assignment,
// lvalue from rvalue.
struct FromConstructibleAssignableLvalue {};
struct FromConstructibleAssignableRvalue {};
struct FromImplicitConstructibleOnly {};
struct FromAssignableOnly {};
// This class is for testing the forwarding value assignments of `StatusOr`.
// `from_rvalue` indicates whether the constructor or the assignment taking
// rvalue reference is called. `from_assignment` indicates whether any
// assignment is called.
struct MockValue {
// Constructs `MockValue` from `FromConstructibleAssignableLvalue`.
MockValue(const FromConstructibleAssignableLvalue&) // NOLINT
: from_rvalue(false), assigned(false) {}
// Constructs `MockValue` from `FromConstructibleAssignableRvalue`.
MockValue(FromConstructibleAssignableRvalue&&) // NOLINT
: from_rvalue(true), assigned(false) {}
// Constructs `MockValue` from `FromImplicitConstructibleOnly`.
// `MockValue` is not assignable from `FromImplicitConstructibleOnly`.
MockValue(const FromImplicitConstructibleOnly&) // NOLINT
: from_rvalue(false), assigned(false) {}
// Assigns `FromConstructibleAssignableLvalue`.
MockValue& operator=(const FromConstructibleAssignableLvalue&) {
from_rvalue = false;
assigned = true;
return *this;
}
// Assigns `FromConstructibleAssignableRvalue` (rvalue only).
MockValue& operator=(FromConstructibleAssignableRvalue&&) {
from_rvalue = true;
assigned = true;
return *this;
}
// Assigns `FromAssignableOnly`, but not constructible from
// `FromAssignableOnly`.
MockValue& operator=(const FromAssignableOnly&) {
from_rvalue = false;
assigned = true;
return *this;
}
bool from_rvalue;
bool assigned;
};
// operator=(U&&)
TEST(StatusOr, PerfectForwardingAssignment) {
// U == T
constexpr int kValue1 = 10, kValue2 = 20;
absl::StatusOr<CopyDetector> status_or;
CopyDetector lvalue(kValue1);
status_or = lvalue;
EXPECT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(kValue1, false, true)));
status_or = CopyDetector(kValue2);
EXPECT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(kValue2, true, false)));
// U != T
EXPECT_TRUE(
(std::is_assignable<absl::StatusOr<MockValue>&,
const FromConstructibleAssignableLvalue&>::value));
EXPECT_TRUE((std::is_assignable<absl::StatusOr<MockValue>&,
FromConstructibleAssignableLvalue&&>::value));
EXPECT_FALSE(
(std::is_assignable<absl::StatusOr<MockValue>&,
const FromConstructibleAssignableRvalue&>::value));
EXPECT_TRUE((std::is_assignable<absl::StatusOr<MockValue>&,
FromConstructibleAssignableRvalue&&>::value));
EXPECT_TRUE(
(std::is_assignable<absl::StatusOr<MockValue>&,
const FromImplicitConstructibleOnly&>::value));
EXPECT_FALSE((std::is_assignable<absl::StatusOr<MockValue>&,
const FromAssignableOnly&>::value));
absl::StatusOr<MockValue> from_lvalue(FromConstructibleAssignableLvalue{});
EXPECT_FALSE(from_lvalue->from_rvalue);
EXPECT_FALSE(from_lvalue->assigned);
from_lvalue = FromConstructibleAssignableLvalue{};
EXPECT_FALSE(from_lvalue->from_rvalue);
EXPECT_TRUE(from_lvalue->assigned);
absl::StatusOr<MockValue> from_rvalue(FromConstructibleAssignableRvalue{});
EXPECT_TRUE(from_rvalue->from_rvalue);
EXPECT_FALSE(from_rvalue->assigned);
from_rvalue = FromConstructibleAssignableRvalue{};
EXPECT_TRUE(from_rvalue->from_rvalue);
EXPECT_TRUE(from_rvalue->assigned);
absl::StatusOr<MockValue> from_implicit_constructible(
FromImplicitConstructibleOnly{});
EXPECT_FALSE(from_implicit_constructible->from_rvalue);
EXPECT_FALSE(from_implicit_constructible->assigned);
// construct a temporary `StatusOr` object and invoke the `StatusOr` move
// assignment operator.
from_implicit_constructible = FromImplicitConstructibleOnly{};
EXPECT_FALSE(from_implicit_constructible->from_rvalue);
EXPECT_FALSE(from_implicit_constructible->assigned);
}
TEST(StatusOr, TestStatus) {
absl::StatusOr<int> good(4);
EXPECT_TRUE(good.ok());
absl::StatusOr<int> bad(absl::CancelledError());
EXPECT_FALSE(bad.ok());
EXPECT_EQ(bad.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, OperatorStarRefQualifiers) {
static_assert(
std::is_same<const int&,
decltype(*std::declval<const absl::StatusOr<int>&>())>(),
"Unexpected ref-qualifiers");
static_assert(
std::is_same<int&, decltype(*std::declval<absl::StatusOr<int>&>())>(),
"Unexpected ref-qualifiers");
static_assert(
std::is_same<const int&&,
decltype(*std::declval<const absl::StatusOr<int>&&>())>(),
"Unexpected ref-qualifiers");
static_assert(
std::is_same<int&&, decltype(*std::declval<absl::StatusOr<int>&&>())>(),
"Unexpected ref-qualifiers");
}
TEST(StatusOr, OperatorStar) {
const absl::StatusOr<std::string> const_lvalue("hello");
EXPECT_EQ("hello", *const_lvalue);
absl::StatusOr<std::string> lvalue("hello");
EXPECT_EQ("hello", *lvalue);
// Note: Recall that std::move() is equivalent to a static_cast to an rvalue
// reference type.
const absl::StatusOr<std::string> const_rvalue("hello");
EXPECT_EQ("hello", *std::move(const_rvalue)); // NOLINT
absl::StatusOr<std::string> rvalue("hello");
EXPECT_EQ("hello", *std::move(rvalue));
}
TEST(StatusOr, OperatorArrowQualifiers) {
static_assert(
std::is_same<
const int*,
decltype(std::declval<const absl::StatusOr<int>&>().operator->())>(),
"Unexpected qualifiers");
static_assert(
std::is_same<
int*, decltype(std::declval<absl::StatusOr<int>&>().operator->())>(),
"Unexpected qualifiers");
static_assert(
std::is_same<
const int*,
decltype(std::declval<const absl::StatusOr<int>&&>().operator->())>(),
"Unexpected qualifiers");
static_assert(
std::is_same<
int*, decltype(std::declval<absl::StatusOr<int>&&>().operator->())>(),
"Unexpected qualifiers");
}
TEST(StatusOr, OperatorArrow) {
const absl::StatusOr<std::string> const_lvalue("hello");
EXPECT_EQ(std::string("hello"), const_lvalue->c_str());
absl::StatusOr<std::string> lvalue("hello");
EXPECT_EQ(std::string("hello"), lvalue->c_str());
}
TEST(StatusOr, RValueStatus) {
absl::StatusOr<int> so(absl::NotFoundError("taco"));
const absl::Status s = std::move(so).status();
EXPECT_EQ(s.code(), absl::StatusCode::kNotFound);
EXPECT_EQ(s.message(), "taco");
// Check that !ok() still implies !status().ok(), even after moving out of the
// object. See the note on the rvalue ref-qualified status method.
EXPECT_FALSE(so.ok()); // NOLINT
EXPECT_FALSE(so.status().ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kInternal);
EXPECT_EQ(so.status().message(), "Status accessed after move.");
}
TEST(StatusOr, TestValue) {
const int kI = 4;
absl::StatusOr<int> thing(kI);
EXPECT_EQ(kI, *thing);
}
TEST(StatusOr, TestValueConst) {
const int kI = 4;
const absl::StatusOr<int> thing(kI);
EXPECT_EQ(kI, *thing);
}
TEST(StatusOr, TestPointerDefaultCtor) {
absl::StatusOr<int*> thing;
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOr, TestPointerStatusCtor) {
absl::StatusOr<int*> thing(absl::CancelledError());
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerValueCtor) {
const int kI = 4;
// Construction from a non-null pointer
{
absl::StatusOr<const int*> so(&kI);
EXPECT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(&kI, *so);
}
// Construction from a null pointer constant
{
absl::StatusOr<const int*> so(nullptr);
EXPECT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(nullptr, *so);
}
// Construction from a non-literal null pointer
{
const int* const p = nullptr;
absl::StatusOr<const int*> so(p);
EXPECT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(nullptr, *so);
}
}
TEST(StatusOr, TestPointerCopyCtorStatusOk) {
const int kI = 0;
absl::StatusOr<const int*> original(&kI);
absl::StatusOr<const int*> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(*original, *copy);
}
TEST(StatusOr, TestPointerCopyCtorStatusNotOk) {
absl::StatusOr<int*> original(absl::CancelledError());
absl::StatusOr<int*> copy(original);
EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerCopyCtorStatusOKConverting) {
Derived derived;
absl::StatusOr<Derived*> original(&derived);
absl::StatusOr<Base2*> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(static_cast<const Base2*>(*original), *copy);
}
TEST(StatusOr, TestPointerCopyCtorStatusNotOkConverting) {
absl::StatusOr<Derived*> original(absl::CancelledError());
absl::StatusOr<Base2*> copy(original);
EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerAssignmentStatusOk) {
const int kI = 0;
absl::StatusOr<const int*> source(&kI);
absl::StatusOr<const int*> target;
target = source;
EXPECT_OK(target.status());
EXPECT_EQ(*source, *target);
}
TEST(StatusOr, TestPointerAssignmentStatusNotOk) {
absl::StatusOr<int*> source(absl::CancelledError());
absl::StatusOr<int*> target;
target = source;
EXPECT_EQ(target.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerAssignmentStatusOKConverting) {
Derived derived;
absl::StatusOr<Derived*> source(&derived);
absl::StatusOr<Base2*> target;
target = source;
EXPECT_OK(target.status());
EXPECT_EQ(static_cast<const Base2*>(*source), *target);
}
TEST(StatusOr, TestPointerAssignmentStatusNotOkConverting) {
absl::StatusOr<Derived*> source(absl::CancelledError());
absl::StatusOr<Base2*> target;
target = source;
EXPECT_EQ(target.status(), source.status());
}
TEST(StatusOr, TestPointerStatus) {
const int kI = 0;
absl::StatusOr<const int*> good(&kI);
EXPECT_TRUE(good.ok());
absl::StatusOr<const int*> bad(absl::CancelledError());
EXPECT_EQ(bad.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerValue) {
const int kI = 0;
absl::StatusOr<const int*> thing(&kI);
EXPECT_EQ(&kI, *thing);
}
TEST(StatusOr, TestPointerValueConst) {
const int kI = 0;
const absl::StatusOr<const int*> thing(&kI);
EXPECT_EQ(&kI, *thing);
}
TEST(StatusOr, StatusOrVectorOfUniquePointerCanReserveAndResize) {
using EvilType = std::vector<std::unique_ptr<int>>;
static_assert(std::is_copy_constructible<EvilType>::value, "");
std::vector<::absl::StatusOr<EvilType>> v(5);
v.reserve(v.capacity() + 10);
v.resize(v.capacity() + 10);
}
TEST(StatusOr, ConstPayload) {
// A reduced version of a problematic type found in the wild. All of the
// operations below should compile.
absl::StatusOr<const int> a;
// Copy-construction
absl::StatusOr<const int> b(a);
// Copy-assignment
EXPECT_FALSE(std::is_copy_assignable<absl::StatusOr<const int>>::value);
// Move-construction
absl::StatusOr<const int> c(std::move(a));
// Move-assignment
EXPECT_FALSE(std::is_move_assignable<absl::StatusOr<const int>>::value);
}
TEST(StatusOr, MapToStatusOrUniquePtr) {
// A reduced version of a problematic type found in the wild. All of the
// operations below should compile.
using MapType = std::map<std::string, absl::StatusOr<std::unique_ptr<int>>>;
MapType a;
// Move-construction
MapType b(std::move(a));
// Move-assignment
a = std::move(b);
}
TEST(StatusOr, ValueOrOk) {
const absl::StatusOr<int> status_or = 0;
EXPECT_EQ(status_or.value_or(-1), 0);
}
TEST(StatusOr, ValueOrDefault) {
const absl::StatusOr<int> status_or = absl::CancelledError();
EXPECT_EQ(status_or.value_or(-1), -1);
}
TEST(StatusOr, MoveOnlyValueOrOk) {
EXPECT_THAT(absl::StatusOr<std::unique_ptr<int>>(absl::make_unique<int>(0))
.value_or(absl::make_unique<int>(-1)),
Pointee(0));
}
TEST(StatusOr, MoveOnlyValueOrDefault) {
EXPECT_THAT(absl::StatusOr<std::unique_ptr<int>>(absl::CancelledError())
.value_or(absl::make_unique<int>(-1)),
Pointee(-1));
}
static absl::StatusOr<int> MakeStatus() { return 100; }
TEST(StatusOr, TestIgnoreError) { MakeStatus().IgnoreError(); }
TEST(StatusOr, EqualityOperator) {
constexpr int kNumCases = 4;
std::array<absl::StatusOr<int>, kNumCases> group1 = {
absl::StatusOr<int>(1), absl::StatusOr<int>(2),
absl::StatusOr<int>(absl::InvalidArgumentError("msg")),
absl::StatusOr<int>(absl::InternalError("msg"))};
std::array<absl::StatusOr<int>, kNumCases> group2 = {
absl::StatusOr<int>(1), absl::StatusOr<int>(2),
absl::StatusOr<int>(absl::InvalidArgumentError("msg")),
absl::StatusOr<int>(absl::InternalError("msg"))};
for (int i = 0; i < kNumCases; ++i) {
for (int j = 0; j < kNumCases; ++j) {
if (i == j) {
EXPECT_TRUE(group1[i] == group2[j]);
EXPECT_FALSE(group1[i] != group2[j]);
} else {
EXPECT_FALSE(group1[i] == group2[j]);
EXPECT_TRUE(group1[i] != group2[j]);
}
}
}
}
struct MyType {
bool operator==(const MyType&) const { return true; }
};
enum class ConvTraits { kNone = 0, kImplicit = 1, kExplicit = 2 };
// This class has conversion operator to `StatusOr<T>` based on value of
// `conv_traits`.
template <typename T, ConvTraits conv_traits = ConvTraits::kNone>
struct StatusOrConversionBase {};
template <typename T>
struct StatusOrConversionBase<T, ConvTraits::kImplicit> {
operator absl::StatusOr<T>() const& { // NOLINT
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
operator absl::StatusOr<T>() && { // NOLINT
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
};
template <typename T>
struct StatusOrConversionBase<T, ConvTraits::kExplicit> {
explicit operator absl::StatusOr<T>() const& {
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
explicit operator absl::StatusOr<T>() && {
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
};
// This class has conversion operator to `T` based on the value of
// `conv_traits`.
template <typename T, ConvTraits conv_traits = ConvTraits::kNone>
struct ConversionBase {};
template <typename T>
struct ConversionBase<T, ConvTraits::kImplicit> {
operator T() const& { return t; } // NOLINT
operator T() && { return std::move(t); } // NOLINT
T t;
};
template <typename T>
struct ConversionBase<T, ConvTraits::kExplicit> {
explicit operator T() const& { return t; }
explicit operator T() && { return std::move(t); }
T t;
};
// This class has conversion operator to `absl::Status` based on the value of
// `conv_traits`.
template <ConvTraits conv_traits = ConvTraits::kNone>
struct StatusConversionBase {};
template <>
struct StatusConversionBase<ConvTraits::kImplicit> {
operator absl::Status() const& { // NOLINT
return absl::InternalError("conversion to Status");
}
operator absl::Status() && { // NOLINT
return absl::InternalError("conversion to Status");
}
};
template <>
struct StatusConversionBase<ConvTraits::kExplicit> {
explicit operator absl::Status() const& { // NOLINT
return absl::InternalError("conversion to Status");
}
explicit operator absl::Status() && { // NOLINT
return absl::InternalError("conversion to Status");
}
};
static constexpr int kConvToStatus = 1;
static constexpr int kConvToStatusOr = 2;
static constexpr int kConvToT = 4;
static constexpr int kConvExplicit = 8;
constexpr ConvTraits GetConvTraits(int bit, int config) {
return (config & bit) == 0
? ConvTraits::kNone
: ((config & kConvExplicit) == 0 ? ConvTraits::kImplicit
: ConvTraits::kExplicit);
}
// This class conditionally has conversion operator to `absl::Status`, `T`,
// `StatusOr<T>`, based on values of the template parameters.
template <typename T, int config>
struct CustomType
: StatusOrConversionBase<T, GetConvTraits(kConvToStatusOr, config)>,
ConversionBase<T, GetConvTraits(kConvToT, config)>,
StatusConversionBase<GetConvTraits(kConvToStatus, config)> {};
struct ConvertibleToAnyStatusOr {
template <typename T>
operator absl::StatusOr<T>() const { // NOLINT
return absl::InvalidArgumentError("Conversion to absl::StatusOr");
}
};
// Test the rank of overload resolution for `StatusOr<T>` constructor and
// assignment, from highest to lowest:
// 1. T/Status
// 2. U that has conversion operator to absl::StatusOr<T>
// 3. U that is convertible to Status
// 4. U that is convertible to T
TEST(StatusOr, ConstructionFromT) {
// Construct absl::StatusOr<T> from T when T is convertible to
// absl::StatusOr<T>
{
ConvertibleToAnyStatusOr v;
absl::StatusOr<ConvertibleToAnyStatusOr> statusor(v);
EXPECT_TRUE(statusor.ok());
}
{
ConvertibleToAnyStatusOr v;
absl::StatusOr<ConvertibleToAnyStatusOr> statusor = v;
EXPECT_TRUE(statusor.ok());
}
// Construct absl::StatusOr<T> from T when T is explicitly convertible to
// Status
{
CustomType<MyType, kConvToStatus | kConvExplicit> v;
absl::StatusOr<CustomType<MyType, kConvToStatus | kConvExplicit>> statusor(
v);
EXPECT_TRUE(statusor.ok());
}
{
CustomType<MyType, kConvToStatus | kConvExplicit> v;
absl::StatusOr<CustomType<MyType, kConvToStatus | kConvExplicit>> statusor =
v;
EXPECT_TRUE(statusor.ok());
}
}
// Construct absl::StatusOr<T> from U when U is explicitly convertible to T
TEST(StatusOr, ConstructionFromTypeConvertibleToT) {
{
CustomType<MyType, kConvToT | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_TRUE(statusor.ok());
}
{
CustomType<MyType, kConvToT> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_TRUE(statusor.ok());
}
}
// Construct absl::StatusOr<T> from U when U has explicit conversion operator to
// absl::StatusOr<T>
TEST(StatusOr, ConstructionFromTypeWithConversionOperatorToStatusOrT) {
{
CustomType<MyType, kConvToStatusOr | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr | kConvToStatus | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType,
kConvToT | kConvToStatusOr | kConvToStatus | kConvExplicit>
v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
}
TEST(StatusOr, ConstructionFromTypeConvertibleToStatus) {
// Construction fails because conversion to `Status` is explicit.
{
CustomType<MyType, kConvToStatus | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToT | kConvToStatus | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToT | kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
}
TEST(StatusOr, AssignmentFromT) {
// Assign to absl::StatusOr<T> from T when T is convertible to
// absl::StatusOr<T>
{
ConvertibleToAnyStatusOr v;
absl::StatusOr<ConvertibleToAnyStatusOr> statusor;
statusor = v;
EXPECT_TRUE(statusor.ok());
}
// Assign to absl::StatusOr<T> from T when T is convertible to Status
{
CustomType<MyType, kConvToStatus> v;
absl::StatusOr<CustomType<MyType, kConvToStatus>> statusor;
statusor = v;
EXPECT_TRUE(statusor.ok());
}
}
TEST(StatusOr, AssignmentFromTypeConvertibleToT) {
// Assign to absl::StatusOr<T> from U when U is convertible to T
{
CustomType<MyType, kConvToT> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_TRUE(statusor.ok());
}
}
TEST(StatusOr, AssignmentFromTypeWithConversionOperatortoStatusOrT) {
// Assign to absl::StatusOr<T> from U when U has conversion operator to
// absl::StatusOr<T>
{
CustomType<MyType, kConvToStatusOr> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
}
TEST(StatusOr, AssignmentFromTypeConvertibleToStatus) {
// Assign to absl::StatusOr<T> from U when U is convertible to Status
{
CustomType<MyType, kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToT | kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
}
} // namespace