2019-06-21 22:11:42 +02:00
|
|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
|
//
|
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
|
//
|
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
//
|
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
|
|
#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|
|
|
|
|
#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|
|
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
|
#include <cmath>
|
|
|
|
|
#include <istream>
|
|
|
|
|
#include <limits>
|
|
|
|
|
#include <numeric>
|
|
|
|
|
#include <type_traits>
|
|
|
|
|
#include <utility>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
#include "absl/random/bernoulli_distribution.h"
|
|
|
|
|
#include "absl/random/internal/iostream_state_saver.h"
|
|
|
|
|
#include "absl/random/uniform_int_distribution.h"
|
|
|
|
|
|
|
|
|
|
namespace absl {
|
2019-12-12 19:36:03 +01:00
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
2019-06-21 22:11:42 +02:00
|
|
|
|
|
|
|
|
|
// absl::discrete_distribution
|
|
|
|
|
//
|
|
|
|
|
// A discrete distribution produces random integers i, where 0 <= i < n
|
|
|
|
|
// distributed according to the discrete probability function:
|
|
|
|
|
//
|
|
|
|
|
// P(i|p0,...,pn−1)=pi
|
|
|
|
|
//
|
|
|
|
|
// This class is an implementation of discrete_distribution (see
|
|
|
|
|
// [rand.dist.samp.discrete]).
|
|
|
|
|
//
|
|
|
|
|
// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
|
|
|
|
|
// absl::discrete_distribution takes O(N) time to precompute the probabilities
|
|
|
|
|
// (where N is the number of possible outcomes in the distribution) at
|
|
|
|
|
// construction, and then takes O(1) time for each variate generation. Many
|
|
|
|
|
// other implementations also take O(N) time to construct an ordered sequence of
|
|
|
|
|
// partial sums, plus O(log N) time per variate to binary search.
|
|
|
|
|
//
|
|
|
|
|
template <typename IntType = int>
|
|
|
|
|
class discrete_distribution {
|
|
|
|
|
public:
|
|
|
|
|
using result_type = IntType;
|
|
|
|
|
|
|
|
|
|
class param_type {
|
|
|
|
|
public:
|
|
|
|
|
using distribution_type = discrete_distribution;
|
|
|
|
|
|
|
|
|
|
param_type() { init(); }
|
|
|
|
|
|
|
|
|
|
template <typename InputIterator>
|
|
|
|
|
explicit param_type(InputIterator begin, InputIterator end)
|
|
|
|
|
: p_(begin, end) {
|
|
|
|
|
init();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
explicit param_type(std::initializer_list<double> weights) : p_(weights) {
|
|
|
|
|
init();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class UnaryOperation>
|
|
|
|
|
explicit param_type(size_t nw, double xmin, double xmax,
|
|
|
|
|
UnaryOperation fw) {
|
|
|
|
|
if (nw > 0) {
|
|
|
|
|
p_.reserve(nw);
|
|
|
|
|
double delta = (xmax - xmin) / static_cast<double>(nw);
|
|
|
|
|
assert(delta > 0);
|
|
|
|
|
double t = delta * 0.5;
|
|
|
|
|
for (size_t i = 0; i < nw; ++i) {
|
|
|
|
|
p_.push_back(fw(xmin + i * delta + t));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
init();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const std::vector<double>& probabilities() const { return p_; }
|
|
|
|
|
size_t n() const { return p_.size() - 1; }
|
|
|
|
|
|
|
|
|
|
friend bool operator==(const param_type& a, const param_type& b) {
|
|
|
|
|
return a.probabilities() == b.probabilities();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) {
|
|
|
|
|
return !(a == b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
friend class discrete_distribution;
|
|
|
|
|
|
|
|
|
|
void init();
|
|
|
|
|
|
|
|
|
|
std::vector<double> p_; // normalized probabilities
|
|
|
|
|
std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
|
|
|
|
|
|
|
|
|
|
static_assert(std::is_integral<result_type>::value,
|
|
|
|
|
"Class-template absl::discrete_distribution<> must be "
|
|
|
|
|
"parameterized using an integral type.");
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
discrete_distribution() : param_() {}
|
|
|
|
|
|
|
|
|
|
explicit discrete_distribution(const param_type& p) : param_(p) {}
|
|
|
|
|
|
|
|
|
|
template <typename InputIterator>
|
|
|
|
|
explicit discrete_distribution(InputIterator begin, InputIterator end)
|
|
|
|
|
: param_(begin, end) {}
|
|
|
|
|
|
|
|
|
|
explicit discrete_distribution(std::initializer_list<double> weights)
|
|
|
|
|
: param_(weights) {}
|
|
|
|
|
|
|
|
|
|
template <class UnaryOperation>
|
|
|
|
|
explicit discrete_distribution(size_t nw, double xmin, double xmax,
|
|
|
|
|
UnaryOperation fw)
|
|
|
|
|
: param_(nw, xmin, xmax, std::move(fw)) {}
|
|
|
|
|
|
|
|
|
|
void reset() {}
|
|
|
|
|
|
|
|
|
|
// generating functions
|
|
|
|
|
template <typename URBG>
|
|
|
|
|
result_type operator()(URBG& g) { // NOLINT(runtime/references)
|
|
|
|
|
return (*this)(g, param_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename URBG>
|
|
|
|
|
result_type operator()(URBG& g, // NOLINT(runtime/references)
|
|
|
|
|
const param_type& p);
|
|
|
|
|
|
|
|
|
|
const param_type& param() const { return param_; }
|
|
|
|
|
void param(const param_type& p) { param_ = p; }
|
|
|
|
|
|
|
|
|
|
result_type(min)() const { return 0; }
|
|
|
|
|
result_type(max)() const {
|
|
|
|
|
return static_cast<result_type>(param_.n());
|
|
|
|
|
} // inclusive
|
|
|
|
|
|
|
|
|
|
// NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
|
|
|
|
|
// const std::vector<double>&.
|
|
|
|
|
const std::vector<double>& probabilities() const {
|
|
|
|
|
return param_.probabilities();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
friend bool operator==(const discrete_distribution& a,
|
|
|
|
|
const discrete_distribution& b) {
|
|
|
|
|
return a.param_ == b.param_;
|
|
|
|
|
}
|
|
|
|
|
friend bool operator!=(const discrete_distribution& a,
|
|
|
|
|
const discrete_distribution& b) {
|
|
|
|
|
return a.param_ != b.param_;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
param_type param_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// --------------------------------------------------------------------------
|
|
|
|
|
// Implementation details only below
|
|
|
|
|
// --------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
namespace random_internal {
|
|
|
|
|
|
|
|
|
|
// Using the vector `*probabilities`, whose values are the weights or
|
|
|
|
|
// probabilities of an element being selected, constructs the proportional
|
|
|
|
|
// probabilities used by the discrete distribution. `*probabilities` will be
|
|
|
|
|
// scaled, if necessary, so that its entries sum to a value sufficiently close
|
|
|
|
|
// to 1.0.
|
|
|
|
|
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
|
|
|
|
|
std::vector<double>* probabilities);
|
|
|
|
|
|
|
|
|
|
} // namespace random_internal
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
void discrete_distribution<IntType>::param_type::init() {
|
|
|
|
|
if (p_.empty()) {
|
|
|
|
|
p_.push_back(1.0);
|
|
|
|
|
q_.emplace_back(1.0, 0);
|
|
|
|
|
} else {
|
|
|
|
|
assert(n() <= (std::numeric_limits<IntType>::max)());
|
|
|
|
|
q_ = random_internal::InitDiscreteDistribution(&p_);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
template <typename URBG>
|
|
|
|
|
typename discrete_distribution<IntType>::result_type
|
|
|
|
|
discrete_distribution<IntType>::operator()(
|
|
|
|
|
URBG& g, // NOLINT(runtime/references)
|
|
|
|
|
const param_type& p) {
|
|
|
|
|
const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
|
|
|
|
|
const auto& q = p.q_[idx];
|
|
|
|
|
const bool selected = absl::bernoulli_distribution(q.first)(g);
|
|
|
|
|
return selected ? idx : static_cast<result_type>(q.second);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
|
|
|
std::basic_ostream<CharT, Traits>& operator<<(
|
|
|
|
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
|
|
|
|
const discrete_distribution<IntType>& x) {
|
|
|
|
|
auto saver = random_internal::make_ostream_state_saver(os);
|
|
|
|
|
const auto& probabilities = x.param().probabilities();
|
|
|
|
|
os << probabilities.size();
|
|
|
|
|
|
|
|
|
|
os.precision(random_internal::stream_precision_helper<double>::kPrecision);
|
|
|
|
|
for (const auto& p : probabilities) {
|
|
|
|
|
os << os.fill() << p;
|
|
|
|
|
}
|
|
|
|
|
return os;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
|
|
|
std::basic_istream<CharT, Traits>& operator>>(
|
|
|
|
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
|
|
|
|
discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
|
|
|
|
|
using param_type = typename discrete_distribution<IntType>::param_type;
|
|
|
|
|
auto saver = random_internal::make_istream_state_saver(is);
|
|
|
|
|
|
|
|
|
|
size_t n;
|
|
|
|
|
std::vector<double> p;
|
|
|
|
|
|
|
|
|
|
is >> n;
|
|
|
|
|
if (is.fail()) return is;
|
|
|
|
|
if (n > 0) {
|
|
|
|
|
p.reserve(n);
|
|
|
|
|
for (IntType i = 0; i < n && !is.fail(); ++i) {
|
|
|
|
|
auto tmp = random_internal::read_floating_point<double>(is);
|
|
|
|
|
if (is.fail()) return is;
|
|
|
|
|
p.push_back(tmp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
x.param(param_type(p.begin(), p.end()));
|
|
|
|
|
return is;
|
|
|
|
|
}
|
|
|
|
|
|
2019-12-12 19:36:03 +01:00
|
|
|
|
ABSL_NAMESPACE_END
|
2019-06-21 22:11:42 +02:00
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
|
|
#endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|