865 lines
28 KiB
C++
865 lines
28 KiB
C++
|
// Copyright 2017 The Abseil Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
// The implementation of the absl::Duration class, which is declared in
|
||
|
// //absl/time.h. This class behaves like a numeric type; it has no public
|
||
|
// methods and is used only through the operators defined here.
|
||
|
//
|
||
|
// Implementation notes:
|
||
|
//
|
||
|
// An absl::Duration is represented as
|
||
|
//
|
||
|
// rep_hi_ : (int64_t) Whole seconds
|
||
|
// rep_lo_ : (uint32_t) Fractions of a second
|
||
|
//
|
||
|
// The seconds value (rep_hi_) may be positive or negative as appropriate.
|
||
|
// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
|
||
|
// The API for Duration guarantees at least nanosecond resolution, which
|
||
|
// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
|
||
|
// However, to utilize more of the available 32 bits of space in rep_lo_,
|
||
|
// we instead store quarters of a nanosecond in rep_lo_ resulting in a max
|
||
|
// value of 4B - 1. This allows us to correctly handle calculations like
|
||
|
// 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual
|
||
|
// Duration rep using quarters of a nanosecond.
|
||
|
//
|
||
|
// 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000
|
||
|
// -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
|
||
|
//
|
||
|
// Infinite durations are represented as Durations with the rep_lo_ field set
|
||
|
// to all 1s.
|
||
|
//
|
||
|
// +InfiniteDuration:
|
||
|
// rep_hi_ : kint64max
|
||
|
// rep_lo_ : ~0U
|
||
|
//
|
||
|
// -InfiniteDuration:
|
||
|
// rep_hi_ : kint64min
|
||
|
// rep_lo_ : ~0U
|
||
|
//
|
||
|
// Arithmetic overflows/underflows to +/- infinity and saturates.
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cassert>
|
||
|
#include <cctype>
|
||
|
#include <cerrno>
|
||
|
#include <cmath>
|
||
|
#include <cstdint>
|
||
|
#include <cstdlib>
|
||
|
#include <cstring>
|
||
|
#include <ctime>
|
||
|
#include <functional>
|
||
|
#include <limits>
|
||
|
#include <string>
|
||
|
|
||
|
#include "absl/numeric/int128.h"
|
||
|
#include "absl/time/time.h"
|
||
|
|
||
|
namespace absl {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
using time_internal::kTicksPerNanosecond;
|
||
|
using time_internal::kTicksPerSecond;
|
||
|
|
||
|
constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
|
||
|
constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
|
||
|
|
||
|
// Can't use std::isinfinite() because it doesn't exist on windows.
|
||
|
inline bool IsFinite(double d) {
|
||
|
return d != std::numeric_limits<double>::infinity() &&
|
||
|
d != -std::numeric_limits<double>::infinity();
|
||
|
}
|
||
|
|
||
|
// Can't use std::round() because it is only available in C++11.
|
||
|
// Note that we ignore the possibility of floating-point over/underflow.
|
||
|
template <typename Double>
|
||
|
inline double Round(Double d) {
|
||
|
return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
|
||
|
}
|
||
|
|
||
|
// *sec may be positive or negative. *ticks must be in the range
|
||
|
// -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it
|
||
|
// will be normalized to a positive value by adjusting *sec accordingly.
|
||
|
inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
|
||
|
if (*ticks < 0) {
|
||
|
--*sec;
|
||
|
*ticks += kTicksPerSecond;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Makes a uint128 from the absolute value of the given scalar.
|
||
|
inline uint128 MakeU128(int64_t a) {
|
||
|
uint128 u128 = 0;
|
||
|
if (a < 0) {
|
||
|
++u128;
|
||
|
++a; // Makes it safe to negate 'a'
|
||
|
a = -a;
|
||
|
}
|
||
|
u128 += static_cast<uint64_t>(a);
|
||
|
return u128;
|
||
|
}
|
||
|
|
||
|
// Makes a uint128 count of ticks out of the absolute value of the Duration.
|
||
|
inline uint128 MakeU128Ticks(Duration d) {
|
||
|
int64_t rep_hi = time_internal::GetRepHi(d);
|
||
|
uint32_t rep_lo = time_internal::GetRepLo(d);
|
||
|
if (rep_hi < 0) {
|
||
|
++rep_hi;
|
||
|
rep_hi = -rep_hi;
|
||
|
rep_lo = kTicksPerSecond - rep_lo;
|
||
|
}
|
||
|
uint128 u128 = static_cast<uint64_t>(rep_hi);
|
||
|
u128 *= static_cast<uint64_t>(kTicksPerSecond);
|
||
|
u128 += rep_lo;
|
||
|
return u128;
|
||
|
}
|
||
|
|
||
|
// Breaks a uint128 of ticks into a Duration.
|
||
|
inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
|
||
|
int64_t rep_hi;
|
||
|
uint32_t rep_lo;
|
||
|
const uint64_t h64 = Uint128High64(u128);
|
||
|
const uint64_t l64 = Uint128Low64(u128);
|
||
|
if (h64 == 0) { // fastpath
|
||
|
const uint64_t hi = l64 / kTicksPerSecond;
|
||
|
rep_hi = static_cast<int64_t>(hi);
|
||
|
rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
|
||
|
} else {
|
||
|
// kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
|
||
|
// Any positive tick count whose high 64 bits are >= kMaxRepHi64
|
||
|
// is not representable as a Duration. A negative tick count can
|
||
|
// have its high 64 bits == kMaxRepHi64 but only when the low 64
|
||
|
// bits are all zero, otherwise it is not representable either.
|
||
|
const uint64_t kMaxRepHi64 = 0x77359400UL;
|
||
|
if (h64 >= kMaxRepHi64) {
|
||
|
if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
|
||
|
// Avoid trying to represent -kint64min below.
|
||
|
return time_internal::MakeDuration(kint64min);
|
||
|
}
|
||
|
return is_neg ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
|
||
|
const uint128 hi = u128 / kTicksPerSecond128;
|
||
|
rep_hi = static_cast<int64_t>(Uint128Low64(hi));
|
||
|
rep_lo =
|
||
|
static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
|
||
|
}
|
||
|
if (is_neg) {
|
||
|
rep_hi = -rep_hi;
|
||
|
if (rep_lo != 0) {
|
||
|
--rep_hi;
|
||
|
rep_lo = kTicksPerSecond - rep_lo;
|
||
|
}
|
||
|
}
|
||
|
return time_internal::MakeDuration(rep_hi, rep_lo);
|
||
|
}
|
||
|
|
||
|
// Convert int64_t to uint64_t in twos-complement system.
|
||
|
inline uint64_t EncodeTwosComp(int64_t v) { return static_cast<uint64_t>(v); }
|
||
|
|
||
|
// Convert uint64_t to int64_t in twos-complement system.
|
||
|
inline int64_t DecodeTwosComp(uint64_t v) {
|
||
|
if (v <= kint64max) return static_cast<int64_t>(v);
|
||
|
return static_cast<int64_t>(v - kint64max - 1) + kint64min;
|
||
|
}
|
||
|
|
||
|
// Note: The overflow detection in this function is done using greater/less *or
|
||
|
// equal* because kint64max/min is too large to be represented exactly in a
|
||
|
// double (which only has 53 bits of precision). In order to avoid assigning to
|
||
|
// rep->hi a double value that is too large for an int64_t (and therefore is
|
||
|
// undefined), we must consider computations that equal kint64max/min as a
|
||
|
// double as overflow cases.
|
||
|
inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
|
||
|
double c = a_hi + b_hi;
|
||
|
if (c >= kint64max) {
|
||
|
*d = InfiniteDuration();
|
||
|
return false;
|
||
|
}
|
||
|
if (c <= kint64min) {
|
||
|
*d = -InfiniteDuration();
|
||
|
return false;
|
||
|
}
|
||
|
*d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// A functor that's similar to std::multiplies<T>, except this returns the max
|
||
|
// T value instead of overflowing. This is only defined for uint128.
|
||
|
template <typename Ignored>
|
||
|
struct SafeMultiply {
|
||
|
uint128 operator()(uint128 a, uint128 b) const {
|
||
|
// b hi is always zero because it originated as an int64_t.
|
||
|
assert(Uint128High64(b) == 0);
|
||
|
// Fastpath to avoid the expensive overflow check with division.
|
||
|
if (Uint128High64(a) == 0) {
|
||
|
return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
|
||
|
? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
|
||
|
: a * b;
|
||
|
}
|
||
|
return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Scales (i.e., multiplies or divides, depending on the Operation template)
|
||
|
// the Duration d by the int64_t r.
|
||
|
template <template <typename> class Operation>
|
||
|
inline Duration ScaleFixed(Duration d, int64_t r) {
|
||
|
const uint128 a = MakeU128Ticks(d);
|
||
|
const uint128 b = MakeU128(r);
|
||
|
const uint128 q = Operation<uint128>()(a, b);
|
||
|
const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
|
||
|
return MakeDurationFromU128(q, is_neg);
|
||
|
}
|
||
|
|
||
|
// Scales (i.e., multiplies or divides, depending on the Operation template)
|
||
|
// the Duration d by the double r.
|
||
|
template <template <typename> class Operation>
|
||
|
inline Duration ScaleDouble(Duration d, double r) {
|
||
|
Operation<double> op;
|
||
|
double hi_doub = op(time_internal::GetRepHi(d), r);
|
||
|
double lo_doub = op(time_internal::GetRepLo(d), r);
|
||
|
|
||
|
double hi_int = 0;
|
||
|
double hi_frac = std::modf(hi_doub, &hi_int);
|
||
|
|
||
|
// Moves hi's fractional bits to lo.
|
||
|
lo_doub /= kTicksPerSecond;
|
||
|
lo_doub += hi_frac;
|
||
|
|
||
|
double lo_int = 0;
|
||
|
double lo_frac = std::modf(lo_doub, &lo_int);
|
||
|
|
||
|
// Rolls lo into hi if necessary.
|
||
|
int64_t lo64 = Round(lo_frac * kTicksPerSecond);
|
||
|
|
||
|
Duration ans;
|
||
|
if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
|
||
|
int64_t hi64 = time_internal::GetRepHi(ans);
|
||
|
if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
|
||
|
hi64 = time_internal::GetRepHi(ans);
|
||
|
lo64 %= kTicksPerSecond;
|
||
|
NormalizeTicks(&hi64, &lo64);
|
||
|
return time_internal::MakeDuration(hi64, lo64);
|
||
|
}
|
||
|
|
||
|
// Tries to divide num by den as fast as possible by looking for common, easy
|
||
|
// cases. If the division was done, the quotient is in *q and the remainder is
|
||
|
// in *rem and true will be returned.
|
||
|
inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
|
||
|
Duration* rem) {
|
||
|
// Bail if num or den is an infinity.
|
||
|
if (time_internal::IsInfiniteDuration(num) ||
|
||
|
time_internal::IsInfiniteDuration(den))
|
||
|
return false;
|
||
|
|
||
|
int64_t num_hi = time_internal::GetRepHi(num);
|
||
|
uint32_t num_lo = time_internal::GetRepLo(num);
|
||
|
int64_t den_hi = time_internal::GetRepHi(den);
|
||
|
uint32_t den_lo = time_internal::GetRepLo(den);
|
||
|
|
||
|
if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
|
||
|
// Dividing by 1ns
|
||
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
|
||
|
*q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
|
||
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
||
|
return true;
|
||
|
}
|
||
|
} else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
|
||
|
// Dividing by 100ns (common when converting to Universal time)
|
||
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
|
||
|
*q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
|
||
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
||
|
return true;
|
||
|
}
|
||
|
} else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
|
||
|
// Dividing by 1us
|
||
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
|
||
|
*q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
|
||
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
||
|
return true;
|
||
|
}
|
||
|
} else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
|
||
|
// Dividing by 1ms
|
||
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
|
||
|
*q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
|
||
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
||
|
return true;
|
||
|
}
|
||
|
} else if (den_hi > 0 && den_lo == 0) {
|
||
|
// Dividing by positive multiple of 1s
|
||
|
if (num_hi >= 0) {
|
||
|
if (den_hi == 1) {
|
||
|
*q = num_hi;
|
||
|
*rem = time_internal::MakeDuration(0, num_lo);
|
||
|
return true;
|
||
|
}
|
||
|
*q = num_hi / den_hi;
|
||
|
*rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
|
||
|
return true;
|
||
|
}
|
||
|
if (num_lo != 0) {
|
||
|
num_hi += 1;
|
||
|
}
|
||
|
int64_t quotient = num_hi / den_hi;
|
||
|
int64_t rem_sec = num_hi % den_hi;
|
||
|
if (rem_sec > 0) {
|
||
|
rem_sec -= den_hi;
|
||
|
quotient += 1;
|
||
|
}
|
||
|
if (num_lo != 0) {
|
||
|
rem_sec -= 1;
|
||
|
}
|
||
|
*q = quotient;
|
||
|
*rem = time_internal::MakeDuration(rem_sec, num_lo);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
namespace time_internal {
|
||
|
|
||
|
// The 'satq' argument indicates whether the quotient should saturate at the
|
||
|
// bounds of int64_t. If it does saturate, the difference will spill over to
|
||
|
// the remainder. If it does not saturate, the remainder remain accurate,
|
||
|
// but the returned quotient will over/underflow int64_t and should not be used.
|
||
|
int64_t IDivDuration(bool satq, const Duration num, const Duration den,
|
||
|
Duration* rem) {
|
||
|
int64_t q = 0;
|
||
|
if (IDivFastPath(num, den, &q, rem)) {
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
const bool num_neg = num < ZeroDuration();
|
||
|
const bool den_neg = den < ZeroDuration();
|
||
|
const bool quotient_neg = num_neg != den_neg;
|
||
|
|
||
|
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
|
||
|
*rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
|
||
|
return quotient_neg ? kint64min : kint64max;
|
||
|
}
|
||
|
if (time_internal::IsInfiniteDuration(den)) {
|
||
|
*rem = num;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const uint128 a = MakeU128Ticks(num);
|
||
|
const uint128 b = MakeU128Ticks(den);
|
||
|
uint128 quotient128 = a / b;
|
||
|
|
||
|
if (satq) {
|
||
|
// Limits the quotient to the range of int64_t.
|
||
|
if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
|
||
|
quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
|
||
|
: uint128(static_cast<uint64_t>(kint64max));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const uint128 remainder128 = a - quotient128 * b;
|
||
|
*rem = MakeDurationFromU128(remainder128, num_neg);
|
||
|
|
||
|
if (!quotient_neg || quotient128 == 0) {
|
||
|
return Uint128Low64(quotient128) & kint64max;
|
||
|
}
|
||
|
// The quotient needs to be negated, but we need to carefully handle
|
||
|
// quotient128s with the top bit on.
|
||
|
return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
|
||
|
}
|
||
|
|
||
|
} // namespace time_internal
|
||
|
|
||
|
//
|
||
|
// Additive operators.
|
||
|
//
|
||
|
|
||
|
Duration& Duration::operator+=(Duration rhs) {
|
||
|
if (time_internal::IsInfiniteDuration(*this)) return *this;
|
||
|
if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
|
||
|
const int64_t orig_rep_hi = rep_hi_;
|
||
|
rep_hi_ =
|
||
|
DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
|
||
|
if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
|
||
|
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
|
||
|
rep_lo_ -= kTicksPerSecond;
|
||
|
}
|
||
|
rep_lo_ += rhs.rep_lo_;
|
||
|
if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
|
||
|
return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Duration& Duration::operator-=(Duration rhs) {
|
||
|
if (time_internal::IsInfiniteDuration(*this)) return *this;
|
||
|
if (time_internal::IsInfiniteDuration(rhs)) {
|
||
|
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
const int64_t orig_rep_hi = rep_hi_;
|
||
|
rep_hi_ =
|
||
|
DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
|
||
|
if (rep_lo_ < rhs.rep_lo_) {
|
||
|
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
|
||
|
rep_lo_ += kTicksPerSecond;
|
||
|
}
|
||
|
rep_lo_ -= rhs.rep_lo_;
|
||
|
if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
|
||
|
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Multiplicative operators.
|
||
|
//
|
||
|
|
||
|
Duration& Duration::operator*=(int64_t r) {
|
||
|
if (time_internal::IsInfiniteDuration(*this)) {
|
||
|
const bool is_neg = (r < 0) != (rep_hi_ < 0);
|
||
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
return *this = ScaleFixed<SafeMultiply>(*this, r);
|
||
|
}
|
||
|
|
||
|
Duration& Duration::operator*=(double r) {
|
||
|
if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
|
||
|
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
|
||
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
return *this = ScaleDouble<std::multiplies>(*this, r);
|
||
|
}
|
||
|
|
||
|
Duration& Duration::operator/=(int64_t r) {
|
||
|
if (time_internal::IsInfiniteDuration(*this) || r == 0) {
|
||
|
const bool is_neg = (r < 0) != (rep_hi_ < 0);
|
||
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
return *this = ScaleFixed<std::divides>(*this, r);
|
||
|
}
|
||
|
|
||
|
Duration& Duration::operator/=(double r) {
|
||
|
if (time_internal::IsInfiniteDuration(*this) || r == 0.0) {
|
||
|
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
|
||
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
||
|
}
|
||
|
return *this = ScaleDouble<std::divides>(*this, r);
|
||
|
}
|
||
|
|
||
|
Duration& Duration::operator%=(Duration rhs) {
|
||
|
time_internal::IDivDuration(false, *this, rhs, this);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
double FDivDuration(Duration num, Duration den) {
|
||
|
// Arithmetic with infinity is sticky.
|
||
|
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
|
||
|
return (num < ZeroDuration()) == (den < ZeroDuration())
|
||
|
? std::numeric_limits<double>::infinity()
|
||
|
: -std::numeric_limits<double>::infinity();
|
||
|
}
|
||
|
if (time_internal::IsInfiniteDuration(den)) return 0.0;
|
||
|
|
||
|
double a =
|
||
|
static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
|
||
|
time_internal::GetRepLo(num);
|
||
|
double b =
|
||
|
static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
|
||
|
time_internal::GetRepLo(den);
|
||
|
return a / b;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Trunc/Floor/Ceil.
|
||
|
//
|
||
|
|
||
|
Duration Trunc(Duration d, Duration unit) {
|
||
|
return d - (d % unit);
|
||
|
}
|
||
|
|
||
|
Duration Floor(const Duration d, const Duration unit) {
|
||
|
const absl::Duration td = Trunc(d, unit);
|
||
|
return td <= d ? td : td - AbsDuration(unit);
|
||
|
}
|
||
|
|
||
|
Duration Ceil(const Duration d, const Duration unit) {
|
||
|
const absl::Duration td = Trunc(d, unit);
|
||
|
return td >= d ? td : td + AbsDuration(unit);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Factory functions.
|
||
|
//
|
||
|
|
||
|
Duration DurationFromTimespec(timespec ts) {
|
||
|
if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
|
||
|
int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
|
||
|
return time_internal::MakeDuration(ts.tv_sec, ticks);
|
||
|
}
|
||
|
return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
|
||
|
}
|
||
|
|
||
|
Duration DurationFromTimeval(timeval tv) {
|
||
|
if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
|
||
|
int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
|
||
|
return time_internal::MakeDuration(tv.tv_sec, ticks);
|
||
|
}
|
||
|
return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Conversion to other duration types.
|
||
|
//
|
||
|
|
||
|
int64_t ToInt64Nanoseconds(Duration d) {
|
||
|
if (time_internal::GetRepHi(d) >= 0 &&
|
||
|
time_internal::GetRepHi(d) >> 33 == 0) {
|
||
|
return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
|
||
|
(time_internal::GetRepLo(d) / kTicksPerNanosecond);
|
||
|
}
|
||
|
return d / Nanoseconds(1);
|
||
|
}
|
||
|
int64_t ToInt64Microseconds(Duration d) {
|
||
|
if (time_internal::GetRepHi(d) >= 0 &&
|
||
|
time_internal::GetRepHi(d) >> 43 == 0) {
|
||
|
return (time_internal::GetRepHi(d) * 1000 * 1000) +
|
||
|
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
|
||
|
}
|
||
|
return d / Microseconds(1);
|
||
|
}
|
||
|
int64_t ToInt64Milliseconds(Duration d) {
|
||
|
if (time_internal::GetRepHi(d) >= 0 &&
|
||
|
time_internal::GetRepHi(d) >> 53 == 0) {
|
||
|
return (time_internal::GetRepHi(d) * 1000) +
|
||
|
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
|
||
|
}
|
||
|
return d / Milliseconds(1);
|
||
|
}
|
||
|
int64_t ToInt64Seconds(Duration d) {
|
||
|
int64_t hi = time_internal::GetRepHi(d);
|
||
|
if (time_internal::IsInfiniteDuration(d)) return hi;
|
||
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
|
||
|
return hi;
|
||
|
}
|
||
|
int64_t ToInt64Minutes(Duration d) {
|
||
|
int64_t hi = time_internal::GetRepHi(d);
|
||
|
if (time_internal::IsInfiniteDuration(d)) return hi;
|
||
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
|
||
|
return hi / 60;
|
||
|
}
|
||
|
int64_t ToInt64Hours(Duration d) {
|
||
|
int64_t hi = time_internal::GetRepHi(d);
|
||
|
if (time_internal::IsInfiniteDuration(d)) return hi;
|
||
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
|
||
|
return hi / (60 * 60);
|
||
|
}
|
||
|
|
||
|
double ToDoubleNanoseconds(Duration d) {
|
||
|
return FDivDuration(d, Nanoseconds(1));
|
||
|
}
|
||
|
double ToDoubleMicroseconds(Duration d) {
|
||
|
return FDivDuration(d, Microseconds(1));
|
||
|
}
|
||
|
double ToDoubleMilliseconds(Duration d) {
|
||
|
return FDivDuration(d, Milliseconds(1));
|
||
|
}
|
||
|
double ToDoubleSeconds(Duration d) {
|
||
|
return FDivDuration(d, Seconds(1));
|
||
|
}
|
||
|
double ToDoubleMinutes(Duration d) {
|
||
|
return FDivDuration(d, Minutes(1));
|
||
|
}
|
||
|
double ToDoubleHours(Duration d) {
|
||
|
return FDivDuration(d, Hours(1));
|
||
|
}
|
||
|
|
||
|
timespec ToTimespec(Duration d) {
|
||
|
timespec ts;
|
||
|
if (!time_internal::IsInfiniteDuration(d)) {
|
||
|
int64_t rep_hi = time_internal::GetRepHi(d);
|
||
|
uint32_t rep_lo = time_internal::GetRepLo(d);
|
||
|
if (rep_hi < 0) {
|
||
|
// Tweak the fields so that unsigned division of rep_lo
|
||
|
// maps to truncation (towards zero) for the timespec.
|
||
|
rep_lo += kTicksPerNanosecond - 1;
|
||
|
if (rep_lo >= kTicksPerSecond) {
|
||
|
rep_hi += 1;
|
||
|
rep_lo -= kTicksPerSecond;
|
||
|
}
|
||
|
}
|
||
|
ts.tv_sec = rep_hi;
|
||
|
if (ts.tv_sec == rep_hi) { // no time_t narrowing
|
||
|
ts.tv_nsec = rep_lo / kTicksPerNanosecond;
|
||
|
return ts;
|
||
|
}
|
||
|
}
|
||
|
if (d >= ZeroDuration()) {
|
||
|
ts.tv_sec = std::numeric_limits<time_t>::max();
|
||
|
ts.tv_nsec = 1000 * 1000 * 1000 - 1;
|
||
|
} else {
|
||
|
ts.tv_sec = std::numeric_limits<time_t>::min();
|
||
|
ts.tv_nsec = 0;
|
||
|
}
|
||
|
return ts;
|
||
|
}
|
||
|
|
||
|
timeval ToTimeval(Duration d) {
|
||
|
timeval tv;
|
||
|
timespec ts = ToTimespec(d);
|
||
|
if (ts.tv_sec < 0) {
|
||
|
// Tweak the fields so that positive division of tv_nsec
|
||
|
// maps to truncation (towards zero) for the timeval.
|
||
|
ts.tv_nsec += 1000 - 1;
|
||
|
if (ts.tv_nsec >= 1000 * 1000 * 1000) {
|
||
|
ts.tv_sec += 1;
|
||
|
ts.tv_nsec -= 1000 * 1000 * 1000;
|
||
|
}
|
||
|
}
|
||
|
tv.tv_sec = ts.tv_sec;
|
||
|
if (tv.tv_sec != ts.tv_sec) { // narrowing
|
||
|
if (ts.tv_sec < 0) {
|
||
|
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
|
||
|
tv.tv_usec = 0;
|
||
|
} else {
|
||
|
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
|
||
|
tv.tv_usec = 1000 * 1000 - 1;
|
||
|
}
|
||
|
return tv;
|
||
|
}
|
||
|
tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t
|
||
|
return tv;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// To/From std::string formatting.
|
||
|
//
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// Formats a positive 64-bit integer in the given field width. Note that
|
||
|
// it is up to the caller of Format64() to ensure that there is sufficient
|
||
|
// space before ep to hold the conversion.
|
||
|
char* Format64(char* ep, int width, int64_t v) {
|
||
|
do {
|
||
|
--width;
|
||
|
*--ep = "0123456789"[v % 10];
|
||
|
} while (v /= 10);
|
||
|
while (--width >= 0) *--ep = '0'; // zero pad
|
||
|
return ep;
|
||
|
}
|
||
|
|
||
|
// Helpers for FormatDuration() that format 'n' and append it to 'out'
|
||
|
// followed by the given 'unit'. If 'n' formats to "0", nothing is
|
||
|
// appended (not even the unit).
|
||
|
|
||
|
// A type that encapsulates how to display a value of a particular unit. For
|
||
|
// values that are displayed with fractional parts, the precision indicates
|
||
|
// where to round the value. The precision varies with the display unit because
|
||
|
// a Duration can hold only quarters of a nanosecond, so displaying information
|
||
|
// beyond that is just noise.
|
||
|
//
|
||
|
// For example, a microsecond value of 42.00025xxxxx should not display beyond 5
|
||
|
// fractional digits, because it is in the noise of what a Duration can
|
||
|
// represent.
|
||
|
struct DisplayUnit {
|
||
|
const char* abbr;
|
||
|
int prec;
|
||
|
double pow10;
|
||
|
};
|
||
|
const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
|
||
|
const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
|
||
|
const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
|
||
|
const DisplayUnit kDisplaySec = {"s", 11, 1e11};
|
||
|
const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored
|
||
|
const DisplayUnit kDisplayHour = {"h", -1, 0.0}; // prec ignored
|
||
|
|
||
|
void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
|
||
|
char buf[sizeof("2562047788015216")]; // hours in max duration
|
||
|
char* const ep = buf + sizeof(buf);
|
||
|
char* bp = Format64(ep, 0, n);
|
||
|
if (*bp != '0' || bp + 1 != ep) {
|
||
|
out->append(bp, ep - bp);
|
||
|
out->append(unit.abbr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Note: unit.prec is limited to double's digits10 value (typically 15) so it
|
||
|
// always fits in buf[].
|
||
|
void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
|
||
|
const int buf_size = std::numeric_limits<double>::digits10;
|
||
|
const int prec = std::min(buf_size, unit.prec);
|
||
|
char buf[buf_size]; // also large enough to hold integer part
|
||
|
char* ep = buf + sizeof(buf);
|
||
|
double d = 0;
|
||
|
int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
|
||
|
int64_t int_part = d;
|
||
|
if (int_part != 0 || frac_part != 0) {
|
||
|
char* bp = Format64(ep, 0, int_part); // always < 1000
|
||
|
out->append(bp, ep - bp);
|
||
|
if (frac_part != 0) {
|
||
|
out->push_back('.');
|
||
|
bp = Format64(ep, prec, frac_part);
|
||
|
while (ep[-1] == '0') --ep;
|
||
|
out->append(bp, ep - bp);
|
||
|
}
|
||
|
out->append(unit.abbr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
// From Go's doc at http://golang.org/pkg/time/#Duration.String
|
||
|
// [FormatDuration] returns a std::string representing the duration in the
|
||
|
// form "72h3m0.5s". Leading zero units are omitted. As a special
|
||
|
// case, durations less than one second format use a smaller unit
|
||
|
// (milli-, micro-, or nanoseconds) to ensure that the leading digit
|
||
|
// is non-zero. The zero duration formats as 0, with no unit.
|
||
|
std::string FormatDuration(Duration d) {
|
||
|
const Duration min_duration = Seconds(kint64min);
|
||
|
if (d == min_duration) {
|
||
|
// Avoid needing to negate kint64min by directly returning what the
|
||
|
// following code should produce in that case.
|
||
|
return "-2562047788015215h30m8s";
|
||
|
}
|
||
|
std::string s;
|
||
|
if (d < ZeroDuration()) {
|
||
|
s.append("-");
|
||
|
d = -d;
|
||
|
}
|
||
|
if (d == InfiniteDuration()) {
|
||
|
s.append("inf");
|
||
|
} else if (d < Seconds(1)) {
|
||
|
// Special case for durations with a magnitude < 1 second. The duration
|
||
|
// is printed as a fraction of a single unit, e.g., "1.2ms".
|
||
|
if (d < Microseconds(1)) {
|
||
|
AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
|
||
|
} else if (d < Milliseconds(1)) {
|
||
|
AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
|
||
|
} else {
|
||
|
AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
|
||
|
}
|
||
|
} else {
|
||
|
AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
|
||
|
AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
|
||
|
AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
|
||
|
}
|
||
|
if (s.empty() || s == "-") {
|
||
|
s = "0";
|
||
|
}
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// A helper for ParseDuration() that parses a leading number from the given
|
||
|
// std::string and stores the result in *n. The given std::string pointer is modified
|
||
|
// to point to the first unconsumed char.
|
||
|
bool ConsumeDurationNumber(const char** start, double* n) {
|
||
|
const char* s = *start;
|
||
|
char* end = nullptr;
|
||
|
errno = 0;
|
||
|
*n = strtod(s, &end);
|
||
|
*start = end;
|
||
|
return !std::isspace(*s) && errno == 0 && end != s && *n >= 0;
|
||
|
}
|
||
|
|
||
|
// A helper for ParseDuration() that parses a leading unit designator (e.g.,
|
||
|
// ns, us, ms, s, m, h) from the given std::string and stores the resulting unit
|
||
|
// in "*unit". The given std::string pointer is modified to point to the first
|
||
|
// unconsumed char.
|
||
|
bool ConsumeDurationUnit(const char** start, Duration* unit) {
|
||
|
const char *s = *start;
|
||
|
bool ok = true;
|
||
|
if (strncmp(s, "ns", 2) == 0) {
|
||
|
s += 2;
|
||
|
*unit = Nanoseconds(1);
|
||
|
} else if (strncmp(s, "us", 2) == 0) {
|
||
|
s += 2;
|
||
|
*unit = Microseconds(1);
|
||
|
} else if (strncmp(s, "ms", 2) == 0) {
|
||
|
s += 2;
|
||
|
*unit = Milliseconds(1);
|
||
|
} else if (strncmp(s, "s", 1) == 0) {
|
||
|
s += 1;
|
||
|
*unit = Seconds(1);
|
||
|
} else if (strncmp(s, "m", 1) == 0) {
|
||
|
s += 1;
|
||
|
*unit = Minutes(1);
|
||
|
} else if (strncmp(s, "h", 1) == 0) {
|
||
|
s += 1;
|
||
|
*unit = Hours(1);
|
||
|
} else {
|
||
|
ok = false;
|
||
|
}
|
||
|
*start = s;
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
// From Go's doc at http://golang.org/pkg/time/#ParseDuration
|
||
|
// [ParseDuration] parses a duration std::string. A duration std::string is
|
||
|
// a possibly signed sequence of decimal numbers, each with optional
|
||
|
// fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
|
||
|
// Valid time units are "ns", "us" "ms", "s", "m", "h".
|
||
|
bool ParseDuration(const std::string& dur_string, Duration* d) {
|
||
|
const char* start = dur_string.c_str();
|
||
|
int sign = 1;
|
||
|
|
||
|
if (*start == '-' || *start == '+') {
|
||
|
sign = *start == '-' ? -1 : 1;
|
||
|
++start;
|
||
|
}
|
||
|
|
||
|
// Can't parse a duration from an empty std::string.
|
||
|
if (*start == '\0') {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Special case for a std::string of "0".
|
||
|
if (*start == '0' && *(start + 1) == '\0') {
|
||
|
*d = ZeroDuration();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (strcmp(start, "inf") == 0) {
|
||
|
*d = sign * InfiniteDuration();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Duration dur;
|
||
|
while (*start != '\0') {
|
||
|
double n = 0;
|
||
|
Duration unit;
|
||
|
if (!ConsumeDurationNumber(&start, &n) ||
|
||
|
!ConsumeDurationUnit(&start, &unit)) {
|
||
|
return false;
|
||
|
}
|
||
|
dur += sign * n * unit;
|
||
|
}
|
||
|
*d = dur;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// TODO(b/63899288) copybara strip once dependencies are removed.
|
||
|
bool ParseFlag(const std::string& text, Duration* dst, std::string* /* err */) {
|
||
|
return ParseDuration(text, dst);
|
||
|
}
|
||
|
|
||
|
std::string UnparseFlag(Duration d) {
|
||
|
return FormatDuration(d);
|
||
|
}
|
||
|
|
||
|
} // namespace absl
|