2022-11-06 15:58:22 +01:00
|
|
|
use builtin_macros::builtins;
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
use genawaiter::rc::Gen;
|
2022-12-12 18:02:39 +01:00
|
|
|
use smol_str::SmolStr;
|
|
|
|
|
2022-10-03 10:26:32 +02:00
|
|
|
use std::{
|
2022-12-12 18:02:39 +01:00
|
|
|
env,
|
2022-10-03 10:26:32 +02:00
|
|
|
time::{SystemTime, UNIX_EPOCH},
|
|
|
|
};
|
|
|
|
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
use crate::{
|
|
|
|
errors::ErrorKind,
|
|
|
|
io::FileType,
|
|
|
|
value::NixAttrs,
|
|
|
|
vm::generators::{self, GenCo},
|
|
|
|
Value,
|
|
|
|
};
|
2022-10-03 10:26:32 +02:00
|
|
|
|
2022-11-06 15:58:22 +01:00
|
|
|
#[builtins]
|
|
|
|
mod impure_builtins {
|
|
|
|
use super::*;
|
|
|
|
use crate::builtins::coerce_value_to_path;
|
|
|
|
|
|
|
|
#[builtin("getEnv")]
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
async fn builtin_get_env(co: GenCo, var: Value) -> Result<Value, ErrorKind> {
|
2022-11-06 15:58:22 +01:00
|
|
|
Ok(env::var(var.to_str()?).unwrap_or_else(|_| "".into()).into())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[builtin("pathExists")]
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
async fn builtin_path_exists(co: GenCo, path: Value) -> Result<Value, ErrorKind> {
|
|
|
|
let path = coerce_value_to_path(&co, path).await?;
|
|
|
|
Ok(generators::request_path_exists(&co, path).await)
|
2022-11-06 15:58:22 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#[builtin("readDir")]
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
async fn builtin_read_dir(co: GenCo, path: Value) -> Result<Value, ErrorKind> {
|
|
|
|
let path = coerce_value_to_path(&co, path).await?;
|
2022-11-06 15:58:22 +01:00
|
|
|
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
let dir = generators::request_read_dir(&co, path).await;
|
|
|
|
let res = dir.into_iter().map(|(name, ftype)| {
|
2022-12-12 18:02:39 +01:00
|
|
|
(
|
|
|
|
name,
|
|
|
|
Value::String(
|
|
|
|
SmolStr::new(match ftype {
|
|
|
|
FileType::Directory => "directory",
|
|
|
|
FileType::Regular => "regular",
|
|
|
|
FileType::Symlink => "symlink",
|
|
|
|
FileType::Unknown => "unknown",
|
|
|
|
})
|
|
|
|
.into(),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
});
|
|
|
|
|
2022-12-03 06:18:58 +01:00
|
|
|
Ok(Value::attrs(NixAttrs::from_iter(res)))
|
2022-11-06 15:58:22 +01:00
|
|
|
}
|
2022-09-06 22:56:40 +02:00
|
|
|
|
2022-11-06 15:58:22 +01:00
|
|
|
#[builtin("readFile")]
|
refactor(tvix/eval): flatten call stack of VM using generators
Warning: This is probably the biggest refactor in tvix-eval history,
so far.
This replaces all instances of trampolines and recursion during
evaluation of the VM loop with generators. A generator is an
asynchronous function that can be suspended to yield a message (in our
case, vm::generators::GeneratorRequest) and receive a
response (vm::generators::GeneratorResponsee).
The `genawaiter` crate provides an interpreter for generators that can
drive their execution and lets us move control flow between the VM and
suspended generators.
To do this, massive changes have occured basically everywhere in the
code. On a high-level:
1. The VM is now organised around a frame stack. A frame is either a
call frame (execution of Tvix bytecode) or a generator frame (a
running or suspended generator).
The VM has an outer loop that pops a frame off the frame stack, and
then enters an inner loop either driving the execution of the
bytecode or the execution of a generator.
Both types of frames have several branches that can result in the
frame re-enqueuing itself, and enqueuing some other work (in the
form of a different frame) on top of itself. The VM will eventually
resume the frame when everything "above" it has been suspended.
In this way, the VM's new frame stack takes over much of the work
that was previously achieved by recursion.
2. All methods previously taking a VM have been refactored into async
functions that instead emit/receive generator messages for
communication with the VM.
Notably, this includes *all* builtins.
This has had some other effects:
- Some test have been removed or commented out, either because they
tested code that was mostly already dead (nix_eq) or because they
now require generator scaffolding which we do not have in place for
tests (yet).
- Because generator functions are technically async (though no async
IO is involved), we lose the ability to use much of the Rust
standard library e.g. in builtins. This has led to many algorithms
being unrolled into iterative versions instead of iterator
combinations, and things like sorting had to be implemented from scratch.
- Many call sites that previously saw a `Result<..., ErrorKind>`
bubble up now only see the result value, as the error handling is
encapsulated within the generator loop.
This reduces number of places inside of builtin implementations
where error context can be attached to calls that can fail.
Currently what we gain in this tradeoff is significantly more
detailed span information (which we still need to bubble up, this
commit does not change the error display).
We'll need to do some analysis later of how useful the errors turn
out to be and potentially introduce some methods for attaching
context to a generator frame again.
This change is very difficult to do in stages, as it is very much an
"all or nothing" change that affects huge parts of the codebase. I've
tried to isolate changes that can be isolated into the parent CLs of
this one, but this change is still quite difficult to wrap one's mind
and I'm available to discuss it and explain things to any reviewer.
Fixes: b/238, b/237, b/251 and potentially others.
Change-Id: I39244163ff5bbecd169fe7b274df19262b515699
Reviewed-on: https://cl.tvl.fyi/c/depot/+/8104
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Reviewed-by: Adam Joseph <adam@westernsemico.com>
Tested-by: BuildkiteCI
2023-02-14 13:02:39 +01:00
|
|
|
async fn builtin_read_file(co: GenCo, path: Value) -> Result<Value, ErrorKind> {
|
|
|
|
let path = coerce_value_to_path(&co, path).await?;
|
|
|
|
Ok(generators::request_read_to_string(&co, path).await)
|
2022-11-06 15:58:22 +01:00
|
|
|
}
|
2022-10-03 10:26:32 +02:00
|
|
|
}
|
2022-09-18 22:34:41 +02:00
|
|
|
|
2022-10-04 17:27:49 +02:00
|
|
|
/// Return all impure builtins, that is all builtins which may perform I/O
|
|
|
|
/// outside of the VM and so cannot be used in all contexts (e.g. WASM).
|
refactor(tvix/eval): streamline construction of globals/builtins
Previously the construction of globals (a compiler-only concept) and
builtins (a (now) user-facing API) was intermingled between multiple
different modules, and kind of difficult to understand.
The complexity of this had grown in large part due to the
implementation of `builtins.import`, which required the notorious
"knot-tying" trick using Rc::new_cyclic (see cl/7097) for constructing
the set of globals.
As part of the new `Evaluation` API users should have the ability to
bring their own builtins, and control explicitly whether or not impure
builtins are available (regardless of whether they're compiled in or
not).
To streamline the construction and allow the new API features to work,
this commit restructures things by making these changes:
1. The `tvix_eval::builtins` module is now only responsible for
exporting sets of builtins. It no longer has any knowledge of
whether or not certain sets (e.g. only pure, or pure+impure) are
enabled, and it has no control over which builtins are globally
available (this is now handled in the compiler).
2. The compiler module is now responsible for both constructing the
final attribute set of builtins from the set of builtins supplied
by a user, as well as for populating its globals (that is
identifiers which are available at the top-level scope).
3. The `Evaluation` API now carries a `builtins` field which is
populated with the pure builtins by default, and can be extended by
users.
4. The `import` feature has been moved into the compiler, as a
special case. In general, builtins no longer have the ability to
reference the "fix point" of the globals set.
This should not change any functionality, and in fact preserves minor
differences between Tvix/Nix that we already had (such as
`builtins.builtins` not existing).
Change-Id: Icdf5dd50eb81eb9260d89269d6e08b1e67811a2c
Reviewed-on: https://cl.tvl.fyi/c/depot/+/7738
Reviewed-by: sterni <sternenseemann@systemli.org>
Autosubmit: tazjin <tazjin@tvl.su>
Tested-by: BuildkiteCI
Reviewed-by: flokli <flokli@flokli.de>
2023-01-03 20:30:49 +01:00
|
|
|
pub fn impure_builtins() -> Vec<(&'static str, Value)> {
|
2023-01-13 12:18:01 +01:00
|
|
|
let mut result = impure_builtins::builtins();
|
2022-10-03 10:26:32 +02:00
|
|
|
|
2022-10-02 19:15:51 +02:00
|
|
|
// currentTime pins the time at which evaluation was started
|
|
|
|
{
|
|
|
|
let seconds = match SystemTime::now().duration_since(UNIX_EPOCH) {
|
|
|
|
Ok(dur) => dur.as_secs() as i64,
|
|
|
|
|
|
|
|
// This case is hit if the system time is *before* epoch.
|
|
|
|
Err(err) => -(err.duration().as_secs() as i64),
|
|
|
|
};
|
|
|
|
|
refactor(tvix/eval): streamline construction of globals/builtins
Previously the construction of globals (a compiler-only concept) and
builtins (a (now) user-facing API) was intermingled between multiple
different modules, and kind of difficult to understand.
The complexity of this had grown in large part due to the
implementation of `builtins.import`, which required the notorious
"knot-tying" trick using Rc::new_cyclic (see cl/7097) for constructing
the set of globals.
As part of the new `Evaluation` API users should have the ability to
bring their own builtins, and control explicitly whether or not impure
builtins are available (regardless of whether they're compiled in or
not).
To streamline the construction and allow the new API features to work,
this commit restructures things by making these changes:
1. The `tvix_eval::builtins` module is now only responsible for
exporting sets of builtins. It no longer has any knowledge of
whether or not certain sets (e.g. only pure, or pure+impure) are
enabled, and it has no control over which builtins are globally
available (this is now handled in the compiler).
2. The compiler module is now responsible for both constructing the
final attribute set of builtins from the set of builtins supplied
by a user, as well as for populating its globals (that is
identifiers which are available at the top-level scope).
3. The `Evaluation` API now carries a `builtins` field which is
populated with the pure builtins by default, and can be extended by
users.
4. The `import` feature has been moved into the compiler, as a
special case. In general, builtins no longer have the ability to
reference the "fix point" of the globals set.
This should not change any functionality, and in fact preserves minor
differences between Tvix/Nix that we already had (such as
`builtins.builtins` not existing).
Change-Id: Icdf5dd50eb81eb9260d89269d6e08b1e67811a2c
Reviewed-on: https://cl.tvl.fyi/c/depot/+/7738
Reviewed-by: sterni <sternenseemann@systemli.org>
Autosubmit: tazjin <tazjin@tvl.su>
Tested-by: BuildkiteCI
Reviewed-by: flokli <flokli@flokli.de>
2023-01-03 20:30:49 +01:00
|
|
|
result.push(("currentTime", Value::Integer(seconds)));
|
2022-10-02 19:15:51 +02:00
|
|
|
}
|
|
|
|
|
refactor(tvix/eval): streamline construction of globals/builtins
Previously the construction of globals (a compiler-only concept) and
builtins (a (now) user-facing API) was intermingled between multiple
different modules, and kind of difficult to understand.
The complexity of this had grown in large part due to the
implementation of `builtins.import`, which required the notorious
"knot-tying" trick using Rc::new_cyclic (see cl/7097) for constructing
the set of globals.
As part of the new `Evaluation` API users should have the ability to
bring their own builtins, and control explicitly whether or not impure
builtins are available (regardless of whether they're compiled in or
not).
To streamline the construction and allow the new API features to work,
this commit restructures things by making these changes:
1. The `tvix_eval::builtins` module is now only responsible for
exporting sets of builtins. It no longer has any knowledge of
whether or not certain sets (e.g. only pure, or pure+impure) are
enabled, and it has no control over which builtins are globally
available (this is now handled in the compiler).
2. The compiler module is now responsible for both constructing the
final attribute set of builtins from the set of builtins supplied
by a user, as well as for populating its globals (that is
identifiers which are available at the top-level scope).
3. The `Evaluation` API now carries a `builtins` field which is
populated with the pure builtins by default, and can be extended by
users.
4. The `import` feature has been moved into the compiler, as a
special case. In general, builtins no longer have the ability to
reference the "fix point" of the globals set.
This should not change any functionality, and in fact preserves minor
differences between Tvix/Nix that we already had (such as
`builtins.builtins` not existing).
Change-Id: Icdf5dd50eb81eb9260d89269d6e08b1e67811a2c
Reviewed-on: https://cl.tvl.fyi/c/depot/+/7738
Reviewed-by: sterni <sternenseemann@systemli.org>
Autosubmit: tazjin <tazjin@tvl.su>
Tested-by: BuildkiteCI
Reviewed-by: flokli <flokli@flokli.de>
2023-01-03 20:30:49 +01:00
|
|
|
result
|
2022-10-04 17:27:49 +02:00
|
|
|
}
|