GCode-Generator/GCode_Interpreterdc.py
2025-02-05 13:07:49 +01:00

358 lines
13 KiB
Python

import time
from typing import *
import numpy as np
import controller
import hardware
Point = NewType("point", List[float])
# noinspection PyPep8Naming
def bezier_length(x0, y0, I, J, P, Q, X, Y, num_points=1000):
def dx(t):
return -3 * (1 - t)**2 * x0 + 3 * ((1 - t)**2 - 2 * t * (1 - t)) * (x0 + I) + 3 * (2 * t * (1 - t) - t**2) * (x0 + P) + 3 * t**2 * X
def dy(t):
return -3 * (1 - t)**2 * y0 + 3 * ((1 - t)**2 - 2 * t * (1 - t)) * (y0 + J) + 3 * (2 * t * (1 - t) - t**2) * (y0 + Q) + 3 * t**2 * Y
t_values = np.linspace(0, 1, num_points)
length = 0
for i in range(1, len(t_values)):
t1, t2 = t_values[i - 1], t_values[i]
dx1, dy1 = dx(t1), dy(t1)
dx2, dy2 = dx(t2), dy(t2)
segment_length = np.sqrt((dx1**2 + dy1**2) + (dx2**2 + dy2**2)) * (t2 - t1) / 2
length += segment_length
return length
# We will assume everything is up to documentation.
class GCodeToMotors:
def __init__(self, ctrl, hw_interface):
self.CONTROLLER = ctrl
self.HARDWARE = hw_interface
X_STEPS_PER_INCH = 4800
X_STEPS_PER_MM = x_units = 188.97
X_MOTOR_STEPS: float = 200
Y_STEPS_PER_INCH = 4800
Y_STEPS_PER_MM = y_units = 188.97
Y_MOTOR_STEPS: int = 200
Z_STEPS_PER_INCH = 4800
Z_STEPS_PER_MM = z_units = 188.97
Z_MOTOR_STEPS: int = 200
FAST_XY_FEEDRATE: float = 60 # in m/mn
FAST_Z_FEEDRATE: float = 1
CURVE_SECTION_INCHES = curve_section = 4*.019685
CURVE_SECTION_MM: float = .5*4
SENSORS_INVERTING: bool = False
x_direction: int = 1
x_throttle : int = 0 # 0 means no movement, otherwise fast_feedrate/throttle
y_direction: int = 1
y_throttle : int = 0
z_direction: int = 1
z_throttle : int = 0
feedrate: float = 0. # In m/mn
ctrl_step: float = 1e-5 # in s
abs_mode: bool = False
current_units: Point = [0., 0., 0.]
target_units: Point = [0., 0., 0.]
delta_units: Point = [0., 0., 0.]
current_steps: Point = [0., 0., 0.]
target_steps: Point = [0., 0., 0.]
delta_steps: Point = [0., 0., 0.]
is_g5_block: bool = False
prev_g5_p: float = 0.
prev_g5_q: float = 0.
@staticmethod
def to_steps(steps_per_unit: float, units: float) -> float:
return steps_per_unit * units
def calculate_deltas(self):
self.delta_units = list(map(lambda t: (t[0] - t[1]), zip(self.target_units, self.current_units)))
self.current_steps[0] = self.to_steps(self.x_units, self.current_units[0])
self.current_steps[1] = self.to_steps(self.y_units, self.current_units[1])
self.current_steps[2] = self.to_steps(self.z_units, self.current_units[2])
self.target_steps[0] = self.to_steps(self.x_units, self.target_units[0])
self.target_steps[1] = self.to_steps(self.y_units, self.target_units[1])
self.target_steps[2] = self.to_steps(self.z_units, self.target_units[2])
self.delta_steps = list(map(lambda t: (t[0] - t[1]), zip(self.target_steps, self.current_steps)))
self.x_direction = (self.target_units[0] >= self.current_units[0])
self.y_direction = (self.target_units[1] >= self.current_units[1])
self.z_direction = (self.target_units[2] >= self.current_units[2])
def set_position(self, x: float, y: float, z: float):
self.current_units[0] = x
self.current_units[1] = y
self.current_units[2] = z
self.calculate_deltas()
def set_target(self, x: float, y: float, z: float):
self.target_units[0] = x
self.target_units[1] = y
self.target_units[2] = z
self.calculate_deltas()
# This is somewhat naïve : depending on direction we may be able to go faster
def get_max_speed(self) -> float:
if self.delta_steps[2] > 0:
return self.FAST_Z_FEEDRATE
return self.FAST_XY_FEEDRATE
# Try to move to target_units at feedrate
# We honor the following semantics:
# GCodeToMotors translates the GCode to high-level controls/theoretical position and targets
# HARDWARE.probe() updates GCodeToMotors with the actual position
# CONTROLLER() takes the current state and objective, then makes a movement decision
# HARDWARE.realize() applies the current commands to the actual hardware
def move(self):
print(self.target_units)
print(self.feedrate)
self.HARDWARE.probe(self)
while not self.CONTROLLER(self): # Allow controller to alter self
self.HARDWARE.realize(self)
print("realized?")
time.sleep(self.ctrl_step)
self.HARDWARE.probe(self)
self.calculate_deltas()
def instruction_converter(self, instruction: str) -> Optional[List[float]]:
if instruction[0] == "/":
return None
fp: Point = [0., 0., 0.]
code: int = 0
if has_command('G', instruction)\
or has_command('X', instruction)\
or has_command('Y', instruction)\
or has_command('Z', instruction):
code = search_string('G', instruction)
match code:
case 0 | 1 | 2 | 3:
if self.abs_mode:
if has_command('X', instruction):
fp[0] = search_string('X', instruction)
else:
fp[0] = self.current_units[0]
if has_command('Y', instruction):
fp[1] = search_string('Y', instruction)
else:
fp[1] = self.current_units[1]
if has_command('Z', instruction):
fp[2] = search_string('Z', instruction)
else:
fp[2] = self.current_units[2]
else:
fp[0] = self.current_units[0] + search_string('X', instruction)
fp[1] = self.current_units[1] + search_string('Y', instruction)
fp[2] = self.current_units[2] + search_string('Z', instruction)
case _:
pass
match code:
case 0 | 1:
self.set_target(fp[0], fp[1], fp[2])
if has_command('F', instruction) and code == 1:
self.feedrate = search_string('F', instruction)
print("set feedrate to", self.feedrate)
if self.feedrate == 0:
self.feedrate = self.get_max_speed()
self.move()
case 2 | 3:
center = [0., 0., 0.]
center[0] = search_string('I', instruction) + self.current_units[0]
center[1] = search_string('J', instruction) + self.current_units[1]
aX = self.current_units[0] - center[0]
aY = self.current_units[1] - center[1]
bX = fp[0] - center[0]
bY = fp[1] - center[1]
if code == 2: # If in fucked up anti-trigonometric direction
angleA = np.arctan2(bY, bX)
angleB = np.arctan2(aY, aX)
else:
angleA = np.arctan2(aY, aX)
angleB = np.arctan2(bY, bX)
if angleB <= angleA:
angleB += 2 * np.pi
angle = angleB - angleA
if has_command('F', instruction):
self.feedrate = search_string('F', instruction)
print("set feedrate to", self.feedrate)
if self.feedrate == 0:
self.feedrate = self.get_max_speed()
radius = np.linalg.norm([aX, aY])
length = radius * angle
steps = int(length / self.curve_section) + 1
newPoint = [0., 0., 0.]
for step in range(1, steps + 1):
step = step if (code == 3) else steps - step
newPoint[0] = center[0] + radius * np.cos(angleA + angle * (step / steps))
newPoint[1] = center[1] + radius * np.sin(angleA + angle * (step / steps))
self.set_target(newPoint[0], newPoint[1], fp[2])
if self.feedrate == 0:
self.feedrate = self.get_max_speed()
self.move()
case 4:
time.sleep(search_string('P', instruction) * 1e-3)
case 5:
if not self.is_g5_block:
control_1 = [0., 0., 0.]
control_1[0] = search_string('I', instruction) + self.current_units[0]
control_1[1] = search_string('J', instruction) + self.current_units[1]
else:
control_1 = [0., 0., 0.]
control_1[0] = -self.prev_g5_p + self.current_units[0]
control_1[1] = -self.prev_g5_q + self.current_units[1]
control_2 = [0., 0., 0.]
self.prev_g5_p = search_string('P', instruction)
self.prev_g5_q = search_string('Q', instruction)
control_2[0] = self.prev_g5_p + self.current_units[0]
control_2[1] = self.prev_g5_q + self.current_units[1]
length = bezier_length(self.current_units[0], self.current_units[1], *control_1, *control_2, fp[0], fp[1])
steps = int(length/self.curve_section) + 1
newPoint = [0., 0., 0.]
for t in [i / steps for i in range(1, steps + 1)]:
newPoint[0] = (1 - t) ** 3 * self.current_units[0] + 3 * (1 - t) ** 2 * t * control_1[0] + 3 * (
1 - t) * t ** 2 * control_2[0] + t ** 3 * fp[0]
newPoint[1] = (1 - t) ** 3 * self.current_units[1] + 3 * (1 - t) ** 2 * t * control_1[1] + 3 * (
1 - t) * t ** 2 * control_2[1] + t ** 3 * fp[1]
self.set_target(newPoint[0], newPoint[1], fp[2])
if self.feedrate == 0.:
self.feedrate = self.get_max_speed()
self.move()
case 5.1:
raise NotImplementedError("PAS DE SPLINE QUADRATIQUE J'AI LA FLEMME")
case 5.2 | 5.3:
raise NotImplementedError("Experimental Unimplemented Feature")
case 6:
# Not canonical, but parabolas maybe
pass
case 7:
# Not canonical, but ellipses
pass
case 20:
self.x_units = self.X_STEPS_PER_INCH
self.y_units = self.Y_STEPS_PER_INCH
self.z_units = self.Z_STEPS_PER_INCH
self.curve_section = self.CURVE_SECTION_INCHES
self.calculate_deltas()
case 21:
self.x_units = self.X_STEPS_PER_MM
self.y_units = self.Y_STEPS_PER_MM
self.z_units = self.Z_STEPS_PER_MM
self.curve_section = self.CURVE_SECTION_MM
self.calculate_deltas()
case 28:
self.set_target(0., 0., 0.)
self.move()
case 30:
fp = [0., 0., 0.]
fp[0] = search_string('X', instruction)
fp[1] = search_string('Y', instruction)
fp[2] = search_string('Z', instruction)
if self.abs_mode:
if not has_command('X', instruction):
fp[0] = self.current_units[0]
if not has_command('Y', instruction):
fp[1] = self.current_units[1]
if not has_command('Z', instruction):
fp[2] = self.current_units[2]
self.set_target(fp[0], fp[1], fp[2])
else:
self.set_target(self.current_units[0] + fp[0], self.current_units[1] + fp[1], self.current_units[2] + fp[2])
self.feedrate = self.get_max_speed()
self.move()
self.set_target(0., 0., 0.)
self.feedrate = self.get_max_speed()
self.move()
case _:
raise ValueError("No Associated GCode Implemented/Known")
return
def execute(self, gcode):
velocities = []
for instruction in gcode:
velocities.append(self.instruction_converter(instruction))
return velocities
def draw(self, file_path: str):
with open(file_path, "r") as gcode_file:
gcode = gcode_file.readlines()
self.execute(gcode)
def velocities_to_positions(self, velocities):
return
def has_command(key: str, instruction: str) -> bool:
return key in instruction
def search_string(key: str, instruction: str) -> float:
index = instruction.find(key)
if(index==-1):
return float(0.)
tmp = instruction[index+1:].split(' ')[0]
return float(tmp)