Arduino Style framework for our toy cnc

This commit is contained in:
mpboyer 2025-01-09 17:13:34 +01:00
parent 73624b0dff
commit f7b942be71
2 changed files with 295 additions and 1 deletions

289
GCode_Interpreterdc.py Normal file
View file

@ -0,0 +1,289 @@
import time
from collections import defaultdict
from typing import *
import numpy as np
Point = NewType("point", List[float, float, float])
# We will assume everything is up to documentation.
class GCodeToMotors:
# Hardcoded Values for Our Machine
CONTROL = defaultdict(lambda t: False) # Figure out how to initialize this.
X_STEP_PIN = 8
X_DIR_PIN = 9
X_MIN_PIN = 4
X_MAX_PIN = 2
X_ENABLE_PIN = 15
Y_STEP_PIN = 10
Y_DIR_PIN = 11
Y_MIN_PIN = 3
Y_MAX_PIN = 5
Y_ENABLE_PIN = 15
Z_STEP_PIN = 12
Z_DIR_PIN = 13
Z_MIN_PIN = 7
Z_MAX_PIN = 6
Z_ENABLE_PIN = 15
X_STEPS_PER_INCH = x_units = 4800
X_STEPS_PER_MM: float = 188.97
X_MOTOR_STEPS: float = 200
Y_STEPS_PER_INCH = y_units = 4800
Y_STEPS_PER_MM: int = 188.97
Y_MOTOR_STEPS: int = 200
Z_STEPS_PER_INCH = z_units = 4800
Z_STEPS_PER_MM: float = 188.97
Z_MOTOR_STEPS: int = 200
FAST_XY_FEEDRATE: int = 100
FAST_Z_FEEDRATE: int = 100
CURVE_SECTION_INCHES = curve_section = .019685
CURVE_SECTION_MM: float = .5
SENSORS_INVERTING: bool = False
x_direction: int = 1
y_direction: int = 1
z_direction: int = 1
abs_mode: bool = False
current_units: Point = [0., 0., 0.]
target_units: Point = [0., 0., 0.]
delta_units: Point = [0., 0., 0.]
current_steps: Point = [0., 0., 0.]
target_steps: Point = [0., 0., 0.]
delta_steps: Point = [0., 0., 0.]
feedrate: float = 0.
feedrate_micros: int = 0
@staticmethod
def to_steps(steps_per_unit: float, units: float) -> float:
return steps_per_unit * units
def calculate_deltas(self):
self.delta_units = list(map(lambda t: abs(t[0] - t[1]), zip(self.target_units, self.current_units)))
self.delta_steps = list(map(lambda t: abs(t[0] - t[1]), zip(self.target_steps, self.current_steps)))
self.current_steps[0] = self.to_steps(self.x_units, self.current_units[0])
self.current_steps[1] = self.to_steps(self.y_units, self.current_units[1])
self.current_steps[2] = self.to_steps(self.z_units, self.current_units[2])
self.target_steps[0] = self.to_steps(self.x_units, self.target_units[0])
self.target_steps[1] = self.to_steps(self.y_units, self.target_units[1])
self.target_steps[2] = self.to_steps(self.z_units, self.target_units[2])
self.x_direction = (self.target_units[0] >= self.current_units[0])
self.y_direction = (self.target_units[1] >= self.current_units[1])
self.z_direction = (self.target_units[2] >= self.current_units[2])
def set_position(self, x: float, y: float, z: float):
self.current_units[0] = x
self.current_units[1] = y
self.current_units[2] = z
self.calculate_deltas()
def set_target(self, x: float, y: float, z: float):
self.target_units[0] = x
self.target_units[1] = y
self.target_units[2] = z
self.calculate_deltas()
def calculate_feedrate_delay(self, feedrate: float) -> float:
distance: float = np.linalg.norm(self.delta_units)
master_steps: float = max(self.delta_steps)
# Compute delay between steps in microseconds
return ((distance * 600000000.) / feedrate) / master_steps
def get_max_speed(self) -> float:
if self.delta_steps[2] > 0:
return self.calculate_feedrate_delay(self.FAST_Z_FEEDRATE)
return self.calculate_feedrate_delay(self.FAST_XY_FEEDRATE)
def move(self, micro_delay: float):
max_delta = max(self.delta_steps)
x_counter = -max_delta/2
y_counter = -max_delta/2
z_counter = -max_delta/2
if micro_delay >= 16386:
milli_delay = micro_delay / 1000
else:
milli_delay = 0
x_can_step = self.can_step(self.X_MIN_PIN, self.X_MAX_PIN, self.current_steps[0], self.target_steps[0], self.x_direction)
y_can_step = self.can_step(self.Y_MIN_PIN, self.Y_MAX_PIN, self.current_steps[1], self.target_steps[1], self.y_direction)
z_can_step = self.can_step(self.Z_MIN_PIN, self.Z_MAX_PIN, self.current_steps[2], self.target_steps[2], self.z_direction)
while x_can_step or y_can_step or z_can_step:
x_can_step = self.can_step(
self.X_MIN_PIN, self.X_MAX_PIN, self.current_steps[0], self.target_steps[0], self.x_direction
)
y_can_step = self.can_step(
self.Y_MIN_PIN, self.Y_MAX_PIN, self.current_steps[1], self.target_steps[1], self.y_direction
)
z_can_step = self.can_step(
self.Z_MIN_PIN, self.Z_MAX_PIN, self.current_steps[2], self.target_steps[2], self.z_direction
)
if x_can_step:
x_counter += self.delta_steps[0]
if x_counter > 0:
self.step(self.X_STEP_PIN, self.X_DIR_PIN, self.x_direction)
x_counter -= max_delta
if self.x_direction:
self.current_steps[0] += 1
else:
self.current_steps[0] -= 1
if y_can_step:
y_counter += self.delta_steps[1]
if y_counter > 0:
self.step(self.Y_STEP_PIN, self.Y_DIR_PIN, self.y_direction)
y_counter -= max_delta
if self.y_direction:
self.current_steps[1] += 1
else:
self.current_steps[1] -= 1
if z_can_step:
z_counter += self.delta_steps[2]
if z_counter > 0:
self.step(self.Z_STEP_PIN, self.Z_DIR_PIN, self.z_direction)
z_counter -= max_delta
if self.z_direction:
self.current_steps[2] += 1
else:
self.current_steps[2] -= 1
if milli_delay > 0:
time.sleep(milli_delay*1e-3)
else:
time.sleep(micro_delay*1e-6)
self.current_units = self.target_units.copy()
self.calculate_deltas()
def can_step(self, min_pin: int, max_pin: int, current: float, target: float, direction: bool):
if target == current:
return False
elif self.CONTROL[min_pin] and not direction: # TODO: IMPLEMENT CONTROL ON POSITION
return False
elif self.CONTROL[max_pin] and direction:
return False
return True
def step(self, pinA: int, pinB: int, direction: bool):
pinA = bytes(pinA)
pinB = bytes(pinB)
direction = bytes(direction)
match (direction << 2 | self.CONTROL[pinA] << 1 | self.CONTROL[pinB]): # TODO: IMPLEMENT SPEED CONTROL
case 0, 5:
self.CONTROL[pinA] = True
case 1, 7:
self.CONTROL[pinB] = False
case 2, 4:
self.CONTROL[pinB] = True
case 3, 6:
self.CONTROL[pinA] = False
time.sleep(5e-6)
def instruction_to_velocities(self, instruction: str) -> Optional[List[float]]:
if instruction[0] == "/":
return None
fp: Point = [0., 0., 0.]
code: int = 0
if has_command('G', instruction)\
or has_command('X', instruction)\
or has_command('Y', instruction)\
or has_command('Z', instruction):
code = search_string('G', instruction)
match code:
case 0, 1, 2, 3:
if self.abs_mode:
if has_command('X', instruction):
fp[0] = search_string('X', instruction)
else:
fp[0] = self.current_units[0]
if has_command('Y', instruction):
fp[1] = search_string('Y', instruction)
else:
fp[1] = self.current_units[1]
if has_command('Z', instruction):
fp[2] = search_string('Z', instruction)
else:
fp[2] = self.current_units[2]
else:
fp[0] = self.current_units[0] + search_string('X', instruction)
fp[1] = self.current_units[1] + search_string('Y', instruction)
fp[2] = self.current_units[2] + search_string('Z', instruction)
case _:
pass
match code:
case 0, 1:
self.set_position(fp[0], fp[1], fp[2])
if has_command('G', instruction):
if code == 1:
self.feedrate = search_string('F', instruction)
if self.feedrate > 0:
self.feedrate_micros = self.calculate_feedrate_delay(self.feedrate)
else:
self.feedrate_micros = self.get_max_speed()
else:
self.feedrate_micros = self.get_max_speed()
else:
if self.feedrate > 0:
self.feedrate_micros = self.calculate_feedrate_delay(self.feedrate)
else:
self.feedrate_micros = self.get_max_speed()
self.move(self.feedrate_micros)
return
def execute(self, gcode):
velocities = []
for instruction in gcode:
velocities.append(self.instruction_to_velocities(instruction))
return velocities
def draw(self, file_path: str):
with open(file_path, "r") as gcode_file:
gcode = gcode_file.readlines()
self.execute(gcode)
def velocities_to_positions(self, velocities):
return
def has_command(key: str, instruction: str) -> bool:
return key in instruction
def search_string(key: str, instruction: str) -> int:
index = instruction.find(key)
tmp = instruction[index+1:].split(' ')[0]
return int(tmp)

View file

@ -3,6 +3,10 @@ import math
from typing import List, Optional from typing import List, Optional
class SVGToGCodeConverter: class SVGToGCodeConverter:
"""
General SVG to GCode converter, parametrized with the available functions.
"""
def __init__(self, supported_g_functions: List[str]): def __init__(self, supported_g_functions: List[str]):
"""Initialize the converter with the supported G-functions. """Initialize the converter with the supported G-functions.
@ -18,7 +22,8 @@ class SVGToGCodeConverter:
gcode += f" F{feedrate}" gcode += f" F{feedrate}"
return gcode return gcode
def move_to_gcode(self, x: float, y: float) -> str: @staticmethod
def move_to_gcode(x: float, y: float) -> str:
return f"G0 X{x:.4f} Y{y:.4f}" return f"G0 X{x:.4f} Y{y:.4f}"
def line_to_gcode(self, start: complex, end: complex) -> str: def line_to_gcode(self, start: complex, end: complex) -> str: