VIANC/xfer_tracer/script.py

57 lines
1.5 KiB
Python
Raw Normal View History

2024-12-15 19:57:42 +01:00
#!/usr/bin/env python3
import pyvisa
import time
import pyaudio as pa
import numpy as np
phase = 0.0 # in cycles
scaled_frequency = 0.0
# actual frequency = scaled_frequency * sample_rate
# For repeatability, scaled_frequency should ideally fit in
# much fewer than 53 bits.
# More precisely, if scaled_frequency * frame_count is always exact, we get
# negligible phase errors over 1hr.
def audio_callback(in_data, frame_count, time_info, status):
global phase
L = np.sin(2 * np.pi * (phase + np.arange(frame_count) * scaled_frequency)).astype(np.float32) # cast to float
delta_phase = scaled_frequency * frame_count # exact
delta_phase -= np.floor(delta_phase) # exact
phase += delta_phase # error at most ulp(1) = 2^-52
if(phase >= 1):
phase -= int(phase)
outbytes = L.tobytes()
#print(L, frame_count)
return (outbytes, pa.paContinue)
paudio = pa.PyAudio()
2024-12-15 20:46:29 +01:00
output_strm = paudio.open(format=pa.paFloat32,
2024-12-15 19:57:42 +01:00
channels=1,
rate=48000,
output=True,
stream_callback=audio_callback)
2024-12-15 20:46:29 +01:00
output_strm.start_stream()
input_strm = paudio.open(format=pa.paFloat32,
channels=1,
rate=48000,
input=True)
input_strm.stop_stream()
def do_frequency(scaled_f):
scaled_frequency = scaled_f
time.sleep(0.2) # Stall for latency/transitory behavior
input_strm.start_stream()
L = input_strm.read(int(48000 * 0.1)) # We get 1/sqrt(n) noise rejection and 1/n spurious tone rejection
input_strm.stop_stream()
return np.frombuffer(L, dtype=np.float32)
import matplotlib.pyplot as plt
L = do_frequency(440.0/48000)
print(L)
plt.plot(L)
plt.show()
2024-12-15 19:57:42 +01:00