Added congruence domain

This commit is contained in:
soyouzpanda 2024-06-04 23:46:00 +02:00
parent 5a3177825f
commit 614e73bfb7

143
domains/congruence.ml Normal file
View file

@ -0,0 +1,143 @@
open Naked
open Abstract_syntax_tree
module Congruence : NAKED_VALUE_DOMAIN = struct
type t = { multiple : Z.t; offset : Z.t }
let all_numbers = { multiple = Z.one; offset = Z.zero }
let const a = { multiple = Z.zero; offset = a }
let rand a b = if Z.equal a b then const a else all_numbers
let minus z = { multiple = z.multiple; offset = Z.neg z.offset }
let is_only_zero z = Z.equal z.multiple Z.zero && Z.equal z.offset Z.zero
let has_zero z = Z.equal (Z.rem z.offset z.multiple) Z.zero
let join z1 z2 =
{
multiple =
Z.gcd
(Z.gcd z1.multiple z2.multiple)
(Z.abs (Z.sub z1.offset z2.offset));
offset = z1.offset;
}
let meet z1 z2 =
let lcm = Z.lcm z1.multiple z2.multiple in
let gcd = Z.gcd z1.multiple z2.multiple in
if Z.equal (Z.rem z1.offset gcd) (Z.rem z2.offset gcd) then
{ multiple = lcm; offset = Z.rem z1.offset gcd }
else raise Absurd
let multiples_of z =
if is_only_zero z then z
else if
(not (Z.equal z.multiple Z.zero))
&& Z.equal (Z.rem z.offset z.multiple) Z.zero
then z
else all_numbers
let divisors_of z = z
let remainders z = z
let convex_sym z = z
let binary z1 z2 = function
| AST_PLUS ->
{
multiple = Z.gcd z1.multiple z2.multiple;
offset = Z.add z1.offset z2.offset;
}
| AST_MINUS ->
{
multiple = Z.gcd z1.multiple z2.multiple;
offset = Z.sub z1.offset z2.offset;
}
| AST_MULTIPLY ->
{
multiple =
Z.gcd
(Z.gcd
(Z.mul z1.multiple z2.multiple)
(Z.mul z1.multiple z2.offset))
(Z.mul z1.offset z2.multiple);
offset = Z.mul z1.offset z2.offset;
}
| AST_DIVIDE ->
if is_only_zero z2 then raise Absurd
else if
Z.equal z2.multiple Z.zero
&& Z.divisible z1.offset z2.offset
&& Z.divisible z1.multiple z2.offset
then
{
multiple = Z.div z1.multiple (Z.abs z2.offset);
offset = Z.div z1.offset z2.offset;
}
else all_numbers
| AST_MODULO -> all_numbers
let compatible z = function AST_EQUAL -> z | _ -> raise NeedTop
let rec compare z1 z2 = function
| AST_EQUAL ->
let r = meet z1 z2 in
(r, r)
| AST_NOT_EQUAL ->
if
Z.equal z1.multiple Z.zero && Z.equal z2.multiple Z.zero
&& Z.equal z1.offset z2.offset
then raise Absurd
else (z1, z2)
| AST_LESS ->
if
(not (Z.equal z1.multiple Z.zero))
&& not (Z.equal z2.multiple Z.zero)
|| Z.equal z1.multiple Z.zero && Z.equal z2.multiple Z.zero
&& Z.lt z1.offset z2.offset
then (z1, z2)
else raise Absurd
| AST_LESS_EQUAL ->
if
(not (Z.equal z1.multiple Z.zero))
&& not (Z.equal z2.multiple Z.zero)
|| Z.equal z1.multiple Z.zero && Z.equal z2.multiple Z.zero
&& Z.leq z1.offset z2.offset
then (z1, z2)
else raise Absurd
| AST_GREATER ->
let r1, r2 = compare z2 z1 AST_LESS in
(r2, r1)
| AST_GREATER_EQUAL ->
let r1, r2 = compare z2 z1 AST_LESS_EQUAL in
(r2, r1)
let bwd_binary z1 z2 op r =
match op with
| AST_PLUS ->
(meet z1 (binary r z2 AST_MINUS), meet z2 (binary r z1 AST_MINUS))
| AST_MINUS ->
(meet z1 (binary r z2 AST_PLUS), meet z2 (binary z1 r AST_MINUS))
| AST_MULTIPLY ->
if is_only_zero z1 || is_only_zero z2 then
if has_zero r then (z1, z2) else raise Absurd
else
let z2' = meet z2 (binary r z1 AST_DIVIDE) in
let z1' = meet z1 (binary r z2 AST_DIVIDE) in
if has_zero r then
( (if has_zero z1' then join z1' (const Z.zero) else z1'),
if has_zero z2' then join z2' (const Z.zero) else z2' )
else (z1', z2')
| AST_DIVIDE ->
(meet z1 (binary r z2 AST_MULTIPLY), meet z2 (binary z1 r AST_DIVIDE))
| AST_MODULO -> (z1, z2)
let widen = join
let narrow = meet
let subset z1 z2 =
Z.divisible z2.multiple z1.multiple
&& Z.equal (Z.rem z1.offset z2.multiple) (Z.rem z2.offset z2.multiple)
let print fmt z =
Z.pp_print fmt z.multiple;
Format.pp_print_string fmt "Z + ";
Z.pp_print fmt z.offset
end