liminix/devices/turris-omnia/default.nix
Daniel Barlow c1ad139310 whitespace
2024-02-02 19:43:34 +00:00

265 lines
9.1 KiB
Nix

{
description = ''
Turris Omnia
************
This is a 32 bit ARMv7 MVEBU device, which is usually shipped with
TurrisOS, an OpenWrt-based system. Rather than reformatting the
builtin storage, we install Liminix on to the existing btrfs
filesystem so that the vendor snapshot/recovery system continues
to work (and provides you an easy rollback if you decide you don't
like Liminix after all).
The install process is designed so that you should not need to open
the device and add a serial console (although it may be handy
for visibility and in case anything goes wrong). In outline
1. build a "recovery" system with useful btrfs tools
2. boot that system using TFTP or a USB stick
3. once booted, mount the real root filesystem on /mnt
4. take a snapshot using schnapps, and then delete everything
5. use min-copy-closure -d /mnt/@ to copy the real configuration
to the device
6. reboot into a fully operational system
Detailed instructions to follow...
'';
system = {
crossSystem = {
config = "armv7l-unknown-linux-musleabihf";
};
};
module = {pkgs, config, lib, lim, ... }:
let
openwrt = pkgs.openwrt;
inherit (lib) mkOption types;
inherit (pkgs.liminix.services) oneshot;
inherit (pkgs) liminix;
mtd_by_name_links = pkgs.liminix.services.oneshot rec {
name = "mtd_by_name_links";
up = ''
mkdir -p /dev/mtd/by-name
cd /dev/mtd/by-name
for i in /sys/class/mtd/mtd*[0-9]; do
ln -s ../../$(basename $i) $(cat $i/name)
done
'';
};
in {
imports = [
../../modules/arch/arm.nix
../../modules/outputs/tftpboot.nix
../../modules/outputs/mbrimage.nix
../../modules/outputs/extlinux.nix
];
config = {
services.mtd-name-links = mtd_by_name_links;
kernel = {
src = pkgs.pkgsBuildBuild.fetchurl {
name = "linux.tar.gz";
url = "https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.15.137.tar.gz";
hash = "sha256-PkdzUKZ0IpBiWe/RS70J76JKnBFzRblWcKlaIFNxnHQ=";
};
extraPatchPhase = ''
${pkgs.openwrt.applyPatches.mvebu}
'';
config = {
PCI = "y";
OF = "y";
MEMORY = "y"; # for MVEBU_DEVBUS
DMADEVICES = "y"; # for MV_XOR
CPU_V7 = "y";
ARCH_MULTIPLATFORM = "y";
ARCH_MVEBU = "y";
ARCH_MULTI_V7= "y";
PCI_MVEBU = "y";
AHCI_MVEBU = "y";
MACH_ARMADA_38X = "y";
SMP = "y";
# this is disabled for the moment because it relies on a GCC
# plugin that requires gmp.h to build, and I can't see right now
# how to confgure it to find gmp
STACKPROTECTOR_PER_TASK = "n";
NR_CPUS = "4";
VFP = "y";
NEON= "y";
# WARNING: unmet direct dependencies detected for ARCH_WANT_LIBATA_LEDS
ATA = "y";
PSTORE = "y";
PSTORE_RAM = "y";
PSTORE_CONSOLE = "y";
PSTORE_DEFLATE_COMPRESS = "n";
BLOCK = "y";
MMC="y";
PWRSEQ_EMMC="y"; # ???
PWRSEQ_SIMPLE="y"; # ???
MMC_BLOCK="y";
MMC_SDHCI= "y";
MMC_SDHCI_PLTFM= "y";
MMC_SDHCI_PXAV3= "y";
MMC_MVSDIO= "y";
SERIAL_8250 = "y";
SERIAL_8250_CONSOLE = "y";
SERIAL_OF_PLATFORM="y";
SERIAL_MVEBU_UART = "y";
SERIAL_MVEBU_CONSOLE = "y";
SERIAL_8250_DMA= "y";
SERIAL_8250_DW= "y";
SERIAL_8250_EXTENDED= "y";
SERIAL_8250_MANY_PORTS= "y";
SERIAL_8250_SHARE_IRQ= "y";
OF_ADDRESS= "y";
OF_MDIO= "y";
WATCHDOG = "y"; # watchdog is enabled by u-boot
ORION_WATCHDOG = "y"; # so is non-optional to keep feeding
MVEBU_DEVBUS = "y"; # "Device Bus controller ... flash devices such as NOR, NAND, SRAM, and FPGA"
MVMDIO = "y";
MVNETA = "y";
MVNETA_BM = "y";
MVNETA_BM_ENABLE = "y";
SRAM = "y"; # mmio-sram is "compatible" for bm_bppi reqd by BM
PHY_MVEBU_A38X_COMPHY = "y"; # for eth2
MARVELL_PHY = "y";
USB_XHCI_MVEBU = "y";
USB_XHCI_HCD = "y";
MVPP2 = "y";
MV_XOR = "y";
# there is NOR flash on this device, which is used for U-Boot
# and the rescue system (which we don't interfere with) but
# also for the U-Boot environment variables (which we might
# need to meddle with)
MTD_SPI_NOR = "y";
SPI = "y";
SPI_MASTER = "y";
SPI_ORION = "y";
NET_DSA = "y";
NET_DSA_MV88E6XXX = "y"; # depends on PTP_1588_CLOCK_OPTIONAL
};
};
boot = {
commandLine = [
"console=ttyS0,115200"
"pcie_aspm=off" # ath9k pci incompatible with PCIe ASPM
];
};
filesystem =
let
inherit (pkgs.pseudofile) dir symlink;
firmware = pkgs.stdenv.mkDerivation {
name = "wlan-firmware";
phases = ["installPhase"];
installPhase = ''
mkdir $out
cp -r ${pkgs.linux-firmware}/lib/firmware/ath10k/QCA988X $out
'';
};
in dir {
lib = dir {
firmware = dir {
ath10k = symlink firmware;
};
};
etc = dir {
"fw_env.config" =
let f = pkgs.writeText "fw_env.config" ''
/dev/mtd/by-name/u-boot-env 0x0 0x10000 0x10000
'';
in symlink f;
};
};
boot.tftp = {
loadAddress = lim.parseInt "0x1700000";
kernelFormat = "zimage";
compressRoot = true;
};
hardware = let
mac80211 = pkgs.mac80211.override {
drivers = ["ath9k_pci" "ath10k_pci"];
klibBuild = config.system.outputs.kernel.modulesupport;
};
in {
defaultOutput = "mtdimage";
loadAddress = lim.parseInt "0x00800000"; # "0x00008000";
entryPoint = lim.parseInt "0x00800000"; # "0x00008000";
rootDevice = "/dev/mmcblk0p1";
dts = {
src = "${config.system.outputs.kernel.modulesupport}/arch/arm/boot/dts/armada-385-turris-omnia.dts";
includes = [
"${config.system.outputs.kernel.modulesupport}/arch/arm/boot/dts/"
];
};
flash.eraseBlockSize = 65536; # only used for tftpboot
networkInterfaces =
let
inherit (config.system.service.network) link;
inherit (config.system.service) bridge;
in rec {
en70000 = link.build {
# in armada-38x.dtsi this is eth0.
# It's connected to port 5 of the 88E6176 switch
devpath = "/devices/platform/soc/soc:internal-regs/f1070000.ethernet";
# name is unambiguous but not very semantic
ifname = "en70000";
};
en30000 = link.build {
# in armada-38x.dtsi this is eth1
# It's connected to port 6 of the 88E6176 switch
devpath = "/devices/platform/soc/soc:internal-regs/f1030000.ethernet";
# name is unambiguous but not very semantic
ifname = "en30000";
};
# the default (from the dts? I'm guessing) behavour for
# lan ports on the switch is to attach them to
# en30000. It should be possible to do something better,
# per
# https://www.kernel.org/doc/html/latest/networking/dsa/configuration.html#affinity-of-user-ports-to-cpu-ports
# but apparently OpenWrt doesn't either so maybe it's more
# complicated than it looks.
wan = link.build {
# in armada-38x.dtsi this is eth2. It may be connected to
# an ethernet phy or to the SFP cage, depending on a gpio
devpath = "/devices/platform/soc/soc:internal-regs/f1034000.ethernet";
ifname = "wan";
};
lan0 = link.build { ifname = "lan0"; };
lan1 = link.build { ifname = "lan1"; };
lan2 = link.build { ifname = "lan2"; };
lan3 = link.build { ifname = "lan3"; };
lan4 = link.build { ifname = "lan4"; };
lan5 = link.build { ifname = "lan5"; };
lan = lan0; # maybe we should build a bridge?
wlan = link.build {
ifname = "wlan0";
dependencies = [ mac80211 ];
};
wlan5 = link.build {
ifname = "wlan1";
dependencies = [ mac80211 ];
};
};
};
};
};
}