fda7660106
tmp2 (y^2) was derived once in each iteration of the loop and only freed after all the loop iterations. Fix this by freeing the temporary value during each iteration. Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
419 lines
11 KiB
C
419 lines
11 KiB
C
/*
|
|
* EAP server/peer: EAP-pwd shared routines
|
|
* Copyright (c) 2010, Dan Harkins <dharkins@lounge.org>
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
#include "common.h"
|
|
#include "crypto/sha256.h"
|
|
#include "crypto/crypto.h"
|
|
#include "eap_defs.h"
|
|
#include "eap_pwd_common.h"
|
|
|
|
/* The random function H(x) = HMAC-SHA256(0^32, x) */
|
|
struct crypto_hash * eap_pwd_h_init(void)
|
|
{
|
|
u8 allzero[SHA256_MAC_LEN];
|
|
os_memset(allzero, 0, SHA256_MAC_LEN);
|
|
return crypto_hash_init(CRYPTO_HASH_ALG_HMAC_SHA256, allzero,
|
|
SHA256_MAC_LEN);
|
|
}
|
|
|
|
|
|
void eap_pwd_h_update(struct crypto_hash *hash, const u8 *data, size_t len)
|
|
{
|
|
crypto_hash_update(hash, data, len);
|
|
}
|
|
|
|
|
|
void eap_pwd_h_final(struct crypto_hash *hash, u8 *digest)
|
|
{
|
|
size_t len = SHA256_MAC_LEN;
|
|
crypto_hash_finish(hash, digest, &len);
|
|
}
|
|
|
|
|
|
/* a counter-based KDF based on NIST SP800-108 */
|
|
static int eap_pwd_kdf(const u8 *key, size_t keylen, const u8 *label,
|
|
size_t labellen, u8 *result, size_t resultbitlen)
|
|
{
|
|
struct crypto_hash *hash;
|
|
u8 digest[SHA256_MAC_LEN];
|
|
u16 i, ctr, L;
|
|
size_t resultbytelen, len = 0, mdlen;
|
|
|
|
resultbytelen = (resultbitlen + 7) / 8;
|
|
ctr = 0;
|
|
L = htons(resultbitlen);
|
|
while (len < resultbytelen) {
|
|
ctr++;
|
|
i = htons(ctr);
|
|
hash = crypto_hash_init(CRYPTO_HASH_ALG_HMAC_SHA256,
|
|
key, keylen);
|
|
if (hash == NULL)
|
|
return -1;
|
|
if (ctr > 1)
|
|
crypto_hash_update(hash, digest, SHA256_MAC_LEN);
|
|
crypto_hash_update(hash, (u8 *) &i, sizeof(u16));
|
|
crypto_hash_update(hash, label, labellen);
|
|
crypto_hash_update(hash, (u8 *) &L, sizeof(u16));
|
|
mdlen = SHA256_MAC_LEN;
|
|
if (crypto_hash_finish(hash, digest, &mdlen) < 0)
|
|
return -1;
|
|
if ((len + mdlen) > resultbytelen)
|
|
os_memcpy(result + len, digest, resultbytelen - len);
|
|
else
|
|
os_memcpy(result + len, digest, mdlen);
|
|
len += mdlen;
|
|
}
|
|
|
|
/* since we're expanding to a bit length, mask off the excess */
|
|
if (resultbitlen % 8) {
|
|
u8 mask = 0xff;
|
|
mask <<= (8 - (resultbitlen % 8));
|
|
result[resultbytelen - 1] &= mask;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
EAP_PWD_group * get_eap_pwd_group(u16 num)
|
|
{
|
|
EAP_PWD_group *grp;
|
|
|
|
grp = os_zalloc(sizeof(EAP_PWD_group));
|
|
if (!grp)
|
|
return NULL;
|
|
grp->group = crypto_ec_init(num);
|
|
if (!grp->group) {
|
|
wpa_printf(MSG_INFO, "EAP-pwd: unable to create EC group");
|
|
os_free(grp);
|
|
return NULL;
|
|
}
|
|
|
|
grp->group_num = num;
|
|
wpa_printf(MSG_INFO, "EAP-pwd: provisioned group %d", num);
|
|
|
|
return grp;
|
|
}
|
|
|
|
|
|
/*
|
|
* compute a "random" secret point on an elliptic curve based
|
|
* on the password and identities.
|
|
*/
|
|
int compute_password_element(EAP_PWD_group *grp, u16 num,
|
|
const u8 *password, size_t password_len,
|
|
const u8 *id_server, size_t id_server_len,
|
|
const u8 *id_peer, size_t id_peer_len,
|
|
const u8 *token)
|
|
{
|
|
struct crypto_bignum *qr = NULL, *qnr = NULL, *one = NULL;
|
|
struct crypto_bignum *tmp1 = NULL, *tmp2 = NULL, *pm1 = NULL;
|
|
struct crypto_hash *hash;
|
|
unsigned char pwe_digest[SHA256_MAC_LEN], *prfbuf = NULL, ctr;
|
|
int is_odd, ret = 0, check, found = 0;
|
|
size_t primebytelen, primebitlen;
|
|
struct crypto_bignum *x_candidate = NULL, *rnd = NULL, *cofactor = NULL;
|
|
const struct crypto_bignum *prime;
|
|
|
|
if (grp->pwe)
|
|
return -1;
|
|
|
|
prime = crypto_ec_get_prime(grp->group);
|
|
cofactor = crypto_bignum_init();
|
|
grp->pwe = crypto_ec_point_init(grp->group);
|
|
tmp1 = crypto_bignum_init();
|
|
pm1 = crypto_bignum_init();
|
|
one = crypto_bignum_init_set((const u8 *) "\x01", 1);
|
|
if (!cofactor || !grp->pwe || !tmp1 || !pm1 || !one) {
|
|
wpa_printf(MSG_INFO, "EAP-pwd: unable to create bignums");
|
|
goto fail;
|
|
}
|
|
|
|
if (crypto_ec_cofactor(grp->group, cofactor) < 0) {
|
|
wpa_printf(MSG_INFO, "EAP-pwd: unable to get cofactor for "
|
|
"curve");
|
|
goto fail;
|
|
}
|
|
primebitlen = crypto_ec_prime_len_bits(grp->group);
|
|
primebytelen = crypto_ec_prime_len(grp->group);
|
|
if ((prfbuf = os_malloc(primebytelen)) == NULL) {
|
|
wpa_printf(MSG_INFO, "EAP-pwd: unable to malloc space for prf "
|
|
"buffer");
|
|
goto fail;
|
|
}
|
|
if (crypto_bignum_sub(prime, one, pm1) < 0)
|
|
goto fail;
|
|
|
|
/* get a random quadratic residue and nonresidue */
|
|
while (!qr || !qnr) {
|
|
int res;
|
|
|
|
if (crypto_bignum_rand(tmp1, prime) < 0)
|
|
goto fail;
|
|
res = crypto_bignum_legendre(tmp1, prime);
|
|
if (!qr && res == 1) {
|
|
qr = tmp1;
|
|
tmp1 = crypto_bignum_init();
|
|
} else if (!qnr && res == -1) {
|
|
qnr = tmp1;
|
|
tmp1 = crypto_bignum_init();
|
|
}
|
|
if (!tmp1)
|
|
goto fail;
|
|
}
|
|
|
|
os_memset(prfbuf, 0, primebytelen);
|
|
ctr = 0;
|
|
|
|
/*
|
|
* Run through the hunting-and-pecking loop 40 times to mask the time
|
|
* necessary to find PWE. The odds of PWE not being found in 40 loops is
|
|
* roughly 1 in 1 trillion.
|
|
*/
|
|
while (ctr < 40) {
|
|
ctr++;
|
|
|
|
/*
|
|
* compute counter-mode password value and stretch to prime
|
|
* pwd-seed = H(token | peer-id | server-id | password |
|
|
* counter)
|
|
*/
|
|
hash = eap_pwd_h_init();
|
|
if (hash == NULL)
|
|
goto fail;
|
|
eap_pwd_h_update(hash, token, sizeof(u32));
|
|
eap_pwd_h_update(hash, id_peer, id_peer_len);
|
|
eap_pwd_h_update(hash, id_server, id_server_len);
|
|
eap_pwd_h_update(hash, password, password_len);
|
|
eap_pwd_h_update(hash, &ctr, sizeof(ctr));
|
|
eap_pwd_h_final(hash, pwe_digest);
|
|
|
|
crypto_bignum_deinit(rnd, 1);
|
|
rnd = crypto_bignum_init_set(pwe_digest, SHA256_MAC_LEN);
|
|
if (!rnd) {
|
|
wpa_printf(MSG_INFO, "EAP-pwd: unable to create rnd");
|
|
goto fail;
|
|
}
|
|
if (eap_pwd_kdf(pwe_digest, SHA256_MAC_LEN,
|
|
(u8 *) "EAP-pwd Hunting And Pecking",
|
|
os_strlen("EAP-pwd Hunting And Pecking"),
|
|
prfbuf, primebitlen) < 0)
|
|
goto fail;
|
|
|
|
crypto_bignum_deinit(x_candidate, 1);
|
|
x_candidate = crypto_bignum_init_set(prfbuf, primebytelen);
|
|
if (!x_candidate) {
|
|
wpa_printf(MSG_INFO,
|
|
"EAP-pwd: unable to create x_candidate");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* eap_pwd_kdf() returns a string of bits 0..primebitlen but
|
|
* BN_bin2bn will treat that string of bits as a big endian
|
|
* number. If the primebitlen is not an even multiple of 8
|
|
* then excessive bits-- those _after_ primebitlen-- so now
|
|
* we have to shift right the amount we masked off.
|
|
*/
|
|
if ((primebitlen % 8) &&
|
|
crypto_bignum_rshift(x_candidate,
|
|
(8 - (primebitlen % 8)),
|
|
x_candidate) < 0)
|
|
goto fail;
|
|
|
|
if (crypto_bignum_cmp(x_candidate, prime) >= 0)
|
|
continue;
|
|
|
|
wpa_hexdump(MSG_DEBUG, "EAP-pwd: x_candidate",
|
|
prfbuf, primebytelen);
|
|
|
|
/*
|
|
* compute y^2 using the equation of the curve
|
|
*
|
|
* y^2 = x^3 + ax + b
|
|
*/
|
|
crypto_bignum_deinit(tmp2, 1);
|
|
tmp2 = crypto_ec_point_compute_y_sqr(grp->group, x_candidate);
|
|
if (!tmp2)
|
|
goto fail;
|
|
|
|
/*
|
|
* mask tmp2 so doing legendre won't leak timing info
|
|
*
|
|
* tmp1 is a random number between 1 and p-1
|
|
*/
|
|
if (crypto_bignum_rand(tmp1, pm1) < 0 ||
|
|
crypto_bignum_mulmod(tmp2, tmp1, prime, tmp2) < 0 ||
|
|
crypto_bignum_mulmod(tmp2, tmp1, prime, tmp2) < 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* Now tmp2 (y^2) is masked, all values between 1 and p-1
|
|
* are equally probable. Multiplying by r^2 does not change
|
|
* whether or not tmp2 is a quadratic residue, just masks it.
|
|
*
|
|
* Flip a coin, multiply by the random quadratic residue or the
|
|
* random quadratic nonresidue and record heads or tails.
|
|
*/
|
|
if (crypto_bignum_is_odd(tmp1)) {
|
|
crypto_bignum_mulmod(tmp2, qr, prime, tmp2);
|
|
check = 1;
|
|
} else {
|
|
crypto_bignum_mulmod(tmp2, qnr, prime, tmp2);
|
|
check = -1;
|
|
}
|
|
|
|
/*
|
|
* Now it's safe to do legendre, if check is 1 then it's
|
|
* a straightforward test (multiplying by qr does not
|
|
* change result), if check is -1 then it's the opposite test
|
|
* (multiplying a qr by qnr would make a qnr).
|
|
*/
|
|
if (crypto_bignum_legendre(tmp2, prime) == check) {
|
|
if (found == 1)
|
|
continue;
|
|
|
|
/* need to unambiguously identify the solution */
|
|
is_odd = crypto_bignum_is_odd(rnd);
|
|
|
|
/*
|
|
* We know x_candidate is a quadratic residue so set
|
|
* it here.
|
|
*/
|
|
if (crypto_ec_point_solve_y_coord(grp->group, grp->pwe,
|
|
x_candidate,
|
|
is_odd) != 0) {
|
|
wpa_printf(MSG_INFO,
|
|
"EAP-pwd: Could not solve for y");
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If there's a solution to the equation then the point
|
|
* must be on the curve so why check again explicitly?
|
|
* OpenSSL code says this is required by X9.62. We're
|
|
* not X9.62 but it can't hurt just to be sure.
|
|
*/
|
|
if (!crypto_ec_point_is_on_curve(grp->group,
|
|
grp->pwe)) {
|
|
wpa_printf(MSG_INFO,
|
|
"EAP-pwd: point is not on curve");
|
|
continue;
|
|
}
|
|
|
|
if (!crypto_bignum_is_one(cofactor)) {
|
|
/* make sure the point is not in a small
|
|
* sub-group */
|
|
if (crypto_ec_point_mul(grp->group, grp->pwe,
|
|
cofactor,
|
|
grp->pwe) != 0) {
|
|
wpa_printf(MSG_INFO,
|
|
"EAP-pwd: cannot multiply generator by order");
|
|
continue;
|
|
}
|
|
if (crypto_ec_point_is_at_infinity(grp->group,
|
|
grp->pwe)) {
|
|
wpa_printf(MSG_INFO,
|
|
"EAP-pwd: point is at infinity");
|
|
continue;
|
|
}
|
|
}
|
|
wpa_printf(MSG_DEBUG,
|
|
"EAP-pwd: found a PWE in %d tries", ctr);
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found == 0) {
|
|
wpa_printf(MSG_INFO,
|
|
"EAP-pwd: unable to find random point on curve for group %d, something's fishy",
|
|
num);
|
|
goto fail;
|
|
}
|
|
if (0) {
|
|
fail:
|
|
crypto_ec_point_deinit(grp->pwe, 1);
|
|
grp->pwe = NULL;
|
|
ret = 1;
|
|
}
|
|
/* cleanliness and order.... */
|
|
crypto_bignum_deinit(cofactor, 1);
|
|
crypto_bignum_deinit(x_candidate, 1);
|
|
crypto_bignum_deinit(rnd, 1);
|
|
crypto_bignum_deinit(pm1, 0);
|
|
crypto_bignum_deinit(tmp1, 1);
|
|
crypto_bignum_deinit(tmp2, 1);
|
|
crypto_bignum_deinit(qr, 1);
|
|
crypto_bignum_deinit(qnr, 1);
|
|
crypto_bignum_deinit(one, 0);
|
|
os_free(prfbuf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int compute_keys(EAP_PWD_group *grp, const struct crypto_bignum *k,
|
|
const struct crypto_bignum *peer_scalar,
|
|
const struct crypto_bignum *server_scalar,
|
|
const u8 *confirm_peer, const u8 *confirm_server,
|
|
const u32 *ciphersuite, u8 *msk, u8 *emsk, u8 *session_id)
|
|
{
|
|
struct crypto_hash *hash;
|
|
u8 mk[SHA256_MAC_LEN], *cruft;
|
|
u8 msk_emsk[EAP_MSK_LEN + EAP_EMSK_LEN];
|
|
size_t prime_len, order_len;
|
|
|
|
prime_len = crypto_ec_prime_len(grp->group);
|
|
order_len = crypto_ec_order_len(grp->group);
|
|
|
|
cruft = os_malloc(prime_len);
|
|
if (!cruft)
|
|
return -1;
|
|
|
|
/*
|
|
* first compute the session-id = TypeCode | H(ciphersuite | scal_p |
|
|
* scal_s)
|
|
*/
|
|
session_id[0] = EAP_TYPE_PWD;
|
|
hash = eap_pwd_h_init();
|
|
if (hash == NULL) {
|
|
os_free(cruft);
|
|
return -1;
|
|
}
|
|
eap_pwd_h_update(hash, (const u8 *) ciphersuite, sizeof(u32));
|
|
crypto_bignum_to_bin(peer_scalar, cruft, order_len, order_len);
|
|
eap_pwd_h_update(hash, cruft, order_len);
|
|
crypto_bignum_to_bin(server_scalar, cruft, order_len, order_len);
|
|
eap_pwd_h_update(hash, cruft, order_len);
|
|
eap_pwd_h_final(hash, &session_id[1]);
|
|
|
|
/* then compute MK = H(k | confirm-peer | confirm-server) */
|
|
hash = eap_pwd_h_init();
|
|
if (hash == NULL) {
|
|
os_free(cruft);
|
|
return -1;
|
|
}
|
|
crypto_bignum_to_bin(k, cruft, prime_len, prime_len);
|
|
eap_pwd_h_update(hash, cruft, prime_len);
|
|
os_free(cruft);
|
|
eap_pwd_h_update(hash, confirm_peer, SHA256_MAC_LEN);
|
|
eap_pwd_h_update(hash, confirm_server, SHA256_MAC_LEN);
|
|
eap_pwd_h_final(hash, mk);
|
|
|
|
/* stretch the mk with the session-id to get MSK | EMSK */
|
|
if (eap_pwd_kdf(mk, SHA256_MAC_LEN,
|
|
session_id, SHA256_MAC_LEN + 1,
|
|
msk_emsk, (EAP_MSK_LEN + EAP_EMSK_LEN) * 8) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
os_memcpy(msk, msk_emsk, EAP_MSK_LEN);
|
|
os_memcpy(emsk, msk_emsk + EAP_MSK_LEN, EAP_EMSK_LEN);
|
|
|
|
return 1;
|
|
}
|