hostapd/src/utils/common.c
Jouni Malinen ecbb0b3dc1 WPS: Reject a Credential with invalid passphrase
WPA/WPA2-Personal passphrase is not allowed to include control
characters. Reject a Credential received from a WPS Registrar both as
STA (Credential) and AP (AP Settings) if the credential is for WPAPSK or
WPA2PSK authentication type and includes an invalid passphrase.

This fixes an issue where hostapd or wpa_supplicant could have updated
the configuration file PSK/passphrase parameter with arbitrary data from
an external device (Registrar) that may not be fully trusted. Should
such data include a newline character, the resulting configuration file
could become invalid and fail to be parsed.

Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com>
2016-05-02 11:08:25 +03:00

1185 lines
22 KiB
C

/*
* wpa_supplicant/hostapd / common helper functions, etc.
* Copyright (c) 2002-2007, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common/ieee802_11_defs.h"
#include "common.h"
static int hex2num(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
return -1;
}
int hex2byte(const char *hex)
{
int a, b;
a = hex2num(*hex++);
if (a < 0)
return -1;
b = hex2num(*hex++);
if (b < 0)
return -1;
return (a << 4) | b;
}
static const char * hwaddr_parse(const char *txt, u8 *addr)
{
size_t i;
for (i = 0; i < ETH_ALEN; i++) {
int a;
a = hex2byte(txt);
if (a < 0)
return NULL;
txt += 2;
addr[i] = a;
if (i < ETH_ALEN - 1 && *txt++ != ':')
return NULL;
}
return txt;
}
/**
* hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
* @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
* @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
* Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
*/
int hwaddr_aton(const char *txt, u8 *addr)
{
return hwaddr_parse(txt, addr) ? 0 : -1;
}
/**
* hwaddr_masked_aton - Convert ASCII string with optional mask to MAC address (colon-delimited format)
* @txt: MAC address with optional mask as a string (e.g., "00:11:22:33:44:55/ff:ff:ff:ff:00:00")
* @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
* @mask: Buffer for the MAC address mask (ETH_ALEN = 6 bytes)
* @maskable: Flag to indicate whether a mask is allowed
* Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
*/
int hwaddr_masked_aton(const char *txt, u8 *addr, u8 *mask, u8 maskable)
{
const char *r;
/* parse address part */
r = hwaddr_parse(txt, addr);
if (!r)
return -1;
/* check for optional mask */
if (*r == '\0' || isspace((unsigned char) *r)) {
/* no mask specified, assume default */
os_memset(mask, 0xff, ETH_ALEN);
} else if (maskable && *r == '/') {
/* mask specified and allowed */
r = hwaddr_parse(r + 1, mask);
/* parser error? */
if (!r)
return -1;
} else {
/* mask specified but not allowed or trailing garbage */
return -1;
}
return 0;
}
/**
* hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
* @txt: MAC address as a string (e.g., "001122334455")
* @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
* Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
*/
int hwaddr_compact_aton(const char *txt, u8 *addr)
{
int i;
for (i = 0; i < 6; i++) {
int a, b;
a = hex2num(*txt++);
if (a < 0)
return -1;
b = hex2num(*txt++);
if (b < 0)
return -1;
*addr++ = (a << 4) | b;
}
return 0;
}
/**
* hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
* @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
* @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
* Returns: Characters used (> 0) on success, -1 on failure
*/
int hwaddr_aton2(const char *txt, u8 *addr)
{
int i;
const char *pos = txt;
for (i = 0; i < 6; i++) {
int a, b;
while (*pos == ':' || *pos == '.' || *pos == '-')
pos++;
a = hex2num(*pos++);
if (a < 0)
return -1;
b = hex2num(*pos++);
if (b < 0)
return -1;
*addr++ = (a << 4) | b;
}
return pos - txt;
}
/**
* hexstr2bin - Convert ASCII hex string into binary data
* @hex: ASCII hex string (e.g., "01ab")
* @buf: Buffer for the binary data
* @len: Length of the text to convert in bytes (of buf); hex will be double
* this size
* Returns: 0 on success, -1 on failure (invalid hex string)
*/
int hexstr2bin(const char *hex, u8 *buf, size_t len)
{
size_t i;
int a;
const char *ipos = hex;
u8 *opos = buf;
for (i = 0; i < len; i++) {
a = hex2byte(ipos);
if (a < 0)
return -1;
*opos++ = a;
ipos += 2;
}
return 0;
}
int hwaddr_mask_txt(char *buf, size_t len, const u8 *addr, const u8 *mask)
{
size_t i;
int print_mask = 0;
int res;
for (i = 0; i < ETH_ALEN; i++) {
if (mask[i] != 0xff) {
print_mask = 1;
break;
}
}
if (print_mask)
res = os_snprintf(buf, len, MACSTR "/" MACSTR,
MAC2STR(addr), MAC2STR(mask));
else
res = os_snprintf(buf, len, MACSTR, MAC2STR(addr));
if (os_snprintf_error(len, res))
return -1;
return res;
}
/**
* inc_byte_array - Increment arbitrary length byte array by one
* @counter: Pointer to byte array
* @len: Length of the counter in bytes
*
* This function increments the last byte of the counter by one and continues
* rolling over to more significant bytes if the byte was incremented from
* 0xff to 0x00.
*/
void inc_byte_array(u8 *counter, size_t len)
{
int pos = len - 1;
while (pos >= 0) {
counter[pos]++;
if (counter[pos] != 0)
break;
pos--;
}
}
void wpa_get_ntp_timestamp(u8 *buf)
{
struct os_time now;
u32 sec, usec;
be32 tmp;
/* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
os_get_time(&now);
sec = now.sec + 2208988800U; /* Epoch to 1900 */
/* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
usec = now.usec;
usec = 4295 * usec - (usec >> 5) - (usec >> 9);
tmp = host_to_be32(sec);
os_memcpy(buf, (u8 *) &tmp, 4);
tmp = host_to_be32(usec);
os_memcpy(buf + 4, (u8 *) &tmp, 4);
}
/**
* wpa_scnprintf - Simpler-to-use snprintf function
* @buf: Output buffer
* @size: Buffer size
* @fmt: format
*
* Simpler snprintf version that doesn't require further error checks - the
* return value only indicates how many bytes were actually written, excluding
* the NULL byte (i.e., 0 on error, size-1 if buffer is not big enough).
*/
int wpa_scnprintf(char *buf, size_t size, const char *fmt, ...)
{
va_list ap;
int ret;
if (!size)
return 0;
va_start(ap, fmt);
ret = vsnprintf(buf, size, fmt, ap);
va_end(ap);
if (ret < 0)
return 0;
if ((size_t) ret >= size)
return size - 1;
return ret;
}
int wpa_snprintf_hex_sep(char *buf, size_t buf_size, const u8 *data, size_t len,
char sep)
{
size_t i;
char *pos = buf, *end = buf + buf_size;
int ret;
if (buf_size == 0)
return 0;
for (i = 0; i < len; i++) {
ret = os_snprintf(pos, end - pos, "%02x%c",
data[i], sep);
if (os_snprintf_error(end - pos, ret)) {
end[-1] = '\0';
return pos - buf;
}
pos += ret;
}
pos[-1] = '\0';
return pos - buf;
}
static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
size_t len, int uppercase)
{
size_t i;
char *pos = buf, *end = buf + buf_size;
int ret;
if (buf_size == 0)
return 0;
for (i = 0; i < len; i++) {
ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
data[i]);
if (os_snprintf_error(end - pos, ret)) {
end[-1] = '\0';
return pos - buf;
}
pos += ret;
}
end[-1] = '\0';
return pos - buf;
}
/**
* wpa_snprintf_hex - Print data as a hex string into a buffer
* @buf: Memory area to use as the output buffer
* @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
* @data: Data to be printed
* @len: Length of data in bytes
* Returns: Number of bytes written
*/
int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
{
return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
}
/**
* wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
* @buf: Memory area to use as the output buffer
* @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
* @data: Data to be printed
* @len: Length of data in bytes
* Returns: Number of bytes written
*/
int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
size_t len)
{
return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
}
#ifdef CONFIG_ANSI_C_EXTRA
#ifdef _WIN32_WCE
void perror(const char *s)
{
wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
s, (int) GetLastError());
}
#endif /* _WIN32_WCE */
int optind = 1;
int optopt;
char *optarg;
int getopt(int argc, char *const argv[], const char *optstring)
{
static int optchr = 1;
char *cp;
if (optchr == 1) {
if (optind >= argc) {
/* all arguments processed */
return EOF;
}
if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
/* no option characters */
return EOF;
}
}
if (os_strcmp(argv[optind], "--") == 0) {
/* no more options */
optind++;
return EOF;
}
optopt = argv[optind][optchr];
cp = os_strchr(optstring, optopt);
if (cp == NULL || optopt == ':') {
if (argv[optind][++optchr] == '\0') {
optchr = 1;
optind++;
}
return '?';
}
if (cp[1] == ':') {
/* Argument required */
optchr = 1;
if (argv[optind][optchr + 1]) {
/* No space between option and argument */
optarg = &argv[optind++][optchr + 1];
} else if (++optind >= argc) {
/* option requires an argument */
return '?';
} else {
/* Argument in the next argv */
optarg = argv[optind++];
}
} else {
/* No argument */
if (argv[optind][++optchr] == '\0') {
optchr = 1;
optind++;
}
optarg = NULL;
}
return *cp;
}
#endif /* CONFIG_ANSI_C_EXTRA */
#ifdef CONFIG_NATIVE_WINDOWS
/**
* wpa_unicode2ascii_inplace - Convert unicode string into ASCII
* @str: Pointer to string to convert
*
* This function converts a unicode string to ASCII using the same
* buffer for output. If UNICODE is not set, the buffer is not
* modified.
*/
void wpa_unicode2ascii_inplace(TCHAR *str)
{
#ifdef UNICODE
char *dst = (char *) str;
while (*str)
*dst++ = (char) *str++;
*dst = '\0';
#endif /* UNICODE */
}
TCHAR * wpa_strdup_tchar(const char *str)
{
#ifdef UNICODE
TCHAR *buf;
buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
if (buf == NULL)
return NULL;
wsprintf(buf, L"%S", str);
return buf;
#else /* UNICODE */
return os_strdup(str);
#endif /* UNICODE */
}
#endif /* CONFIG_NATIVE_WINDOWS */
void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
{
char *end = txt + maxlen;
size_t i;
for (i = 0; i < len; i++) {
if (txt + 4 >= end)
break;
switch (data[i]) {
case '\"':
*txt++ = '\\';
*txt++ = '\"';
break;
case '\\':
*txt++ = '\\';
*txt++ = '\\';
break;
case '\033':
*txt++ = '\\';
*txt++ = 'e';
break;
case '\n':
*txt++ = '\\';
*txt++ = 'n';
break;
case '\r':
*txt++ = '\\';
*txt++ = 'r';
break;
case '\t':
*txt++ = '\\';
*txt++ = 't';
break;
default:
if (data[i] >= 32 && data[i] <= 126) {
*txt++ = data[i];
} else {
txt += os_snprintf(txt, end - txt, "\\x%02x",
data[i]);
}
break;
}
}
*txt = '\0';
}
size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
{
const char *pos = str;
size_t len = 0;
int val;
while (*pos) {
if (len + 1 >= maxlen)
break;
switch (*pos) {
case '\\':
pos++;
switch (*pos) {
case '\\':
buf[len++] = '\\';
pos++;
break;
case '"':
buf[len++] = '"';
pos++;
break;
case 'n':
buf[len++] = '\n';
pos++;
break;
case 'r':
buf[len++] = '\r';
pos++;
break;
case 't':
buf[len++] = '\t';
pos++;
break;
case 'e':
buf[len++] = '\033';
pos++;
break;
case 'x':
pos++;
val = hex2byte(pos);
if (val < 0) {
val = hex2num(*pos);
if (val < 0)
break;
buf[len++] = val;
pos++;
} else {
buf[len++] = val;
pos += 2;
}
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
val = *pos++ - '0';
if (*pos >= '0' && *pos <= '7')
val = val * 8 + (*pos++ - '0');
if (*pos >= '0' && *pos <= '7')
val = val * 8 + (*pos++ - '0');
buf[len++] = val;
break;
default:
break;
}
break;
default:
buf[len++] = *pos++;
break;
}
}
if (maxlen > len)
buf[len] = '\0';
return len;
}
/**
* wpa_ssid_txt - Convert SSID to a printable string
* @ssid: SSID (32-octet string)
* @ssid_len: Length of ssid in octets
* Returns: Pointer to a printable string
*
* This function can be used to convert SSIDs into printable form. In most
* cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
* does not limit the used character set, so anything could be used in an SSID.
*
* This function uses a static buffer, so only one call can be used at the
* time, i.e., this is not re-entrant and the returned buffer must be used
* before calling this again.
*/
const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
{
static char ssid_txt[SSID_MAX_LEN * 4 + 1];
if (ssid == NULL) {
ssid_txt[0] = '\0';
return ssid_txt;
}
printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
return ssid_txt;
}
void * __hide_aliasing_typecast(void *foo)
{
return foo;
}
char * wpa_config_parse_string(const char *value, size_t *len)
{
if (*value == '"') {
const char *pos;
char *str;
value++;
pos = os_strrchr(value, '"');
if (pos == NULL || pos[1] != '\0')
return NULL;
*len = pos - value;
str = dup_binstr(value, *len);
if (str == NULL)
return NULL;
return str;
} else if (*value == 'P' && value[1] == '"') {
const char *pos;
char *tstr, *str;
size_t tlen;
value += 2;
pos = os_strrchr(value, '"');
if (pos == NULL || pos[1] != '\0')
return NULL;
tlen = pos - value;
tstr = dup_binstr(value, tlen);
if (tstr == NULL)
return NULL;
str = os_malloc(tlen + 1);
if (str == NULL) {
os_free(tstr);
return NULL;
}
*len = printf_decode((u8 *) str, tlen + 1, tstr);
os_free(tstr);
return str;
} else {
u8 *str;
size_t tlen, hlen = os_strlen(value);
if (hlen & 1)
return NULL;
tlen = hlen / 2;
str = os_malloc(tlen + 1);
if (str == NULL)
return NULL;
if (hexstr2bin(value, str, tlen)) {
os_free(str);
return NULL;
}
str[tlen] = '\0';
*len = tlen;
return (char *) str;
}
}
int is_hex(const u8 *data, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
if (data[i] < 32 || data[i] >= 127)
return 1;
}
return 0;
}
int has_ctrl_char(const u8 *data, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
if (data[i] < 32 || data[i] == 127)
return 1;
}
return 0;
}
size_t merge_byte_arrays(u8 *res, size_t res_len,
const u8 *src1, size_t src1_len,
const u8 *src2, size_t src2_len)
{
size_t len = 0;
os_memset(res, 0, res_len);
if (src1) {
if (src1_len >= res_len) {
os_memcpy(res, src1, res_len);
return res_len;
}
os_memcpy(res, src1, src1_len);
len += src1_len;
}
if (src2) {
if (len + src2_len >= res_len) {
os_memcpy(res + len, src2, res_len - len);
return res_len;
}
os_memcpy(res + len, src2, src2_len);
len += src2_len;
}
return len;
}
char * dup_binstr(const void *src, size_t len)
{
char *res;
if (src == NULL)
return NULL;
res = os_malloc(len + 1);
if (res == NULL)
return NULL;
os_memcpy(res, src, len);
res[len] = '\0';
return res;
}
int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
{
struct wpa_freq_range *freq = NULL, *n;
unsigned int count = 0;
const char *pos, *pos2, *pos3;
/*
* Comma separated list of frequency ranges.
* For example: 2412-2432,2462,5000-6000
*/
pos = value;
while (pos && pos[0]) {
n = os_realloc_array(freq, count + 1,
sizeof(struct wpa_freq_range));
if (n == NULL) {
os_free(freq);
return -1;
}
freq = n;
freq[count].min = atoi(pos);
pos2 = os_strchr(pos, '-');
pos3 = os_strchr(pos, ',');
if (pos2 && (!pos3 || pos2 < pos3)) {
pos2++;
freq[count].max = atoi(pos2);
} else
freq[count].max = freq[count].min;
pos = pos3;
if (pos)
pos++;
count++;
}
os_free(res->range);
res->range = freq;
res->num = count;
return 0;
}
int freq_range_list_includes(const struct wpa_freq_range_list *list,
unsigned int freq)
{
unsigned int i;
if (list == NULL)
return 0;
for (i = 0; i < list->num; i++) {
if (freq >= list->range[i].min && freq <= list->range[i].max)
return 1;
}
return 0;
}
char * freq_range_list_str(const struct wpa_freq_range_list *list)
{
char *buf, *pos, *end;
size_t maxlen;
unsigned int i;
int res;
if (list->num == 0)
return NULL;
maxlen = list->num * 30;
buf = os_malloc(maxlen);
if (buf == NULL)
return NULL;
pos = buf;
end = buf + maxlen;
for (i = 0; i < list->num; i++) {
struct wpa_freq_range *range = &list->range[i];
if (range->min == range->max)
res = os_snprintf(pos, end - pos, "%s%u",
i == 0 ? "" : ",", range->min);
else
res = os_snprintf(pos, end - pos, "%s%u-%u",
i == 0 ? "" : ",",
range->min, range->max);
if (os_snprintf_error(end - pos, res)) {
os_free(buf);
return NULL;
}
pos += res;
}
return buf;
}
int int_array_len(const int *a)
{
int i;
for (i = 0; a && a[i]; i++)
;
return i;
}
void int_array_concat(int **res, const int *a)
{
int reslen, alen, i;
int *n;
reslen = int_array_len(*res);
alen = int_array_len(a);
n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
if (n == NULL) {
os_free(*res);
*res = NULL;
return;
}
for (i = 0; i <= alen; i++)
n[reslen + i] = a[i];
*res = n;
}
static int freq_cmp(const void *a, const void *b)
{
int _a = *(int *) a;
int _b = *(int *) b;
if (_a == 0)
return 1;
if (_b == 0)
return -1;
return _a - _b;
}
void int_array_sort_unique(int *a)
{
int alen;
int i, j;
if (a == NULL)
return;
alen = int_array_len(a);
qsort(a, alen, sizeof(int), freq_cmp);
i = 0;
j = 1;
while (a[i] && a[j]) {
if (a[i] == a[j]) {
j++;
continue;
}
a[++i] = a[j++];
}
if (a[i])
i++;
a[i] = 0;
}
void int_array_add_unique(int **res, int a)
{
int reslen;
int *n;
for (reslen = 0; *res && (*res)[reslen]; reslen++) {
if ((*res)[reslen] == a)
return; /* already in the list */
}
n = os_realloc_array(*res, reslen + 2, sizeof(int));
if (n == NULL) {
os_free(*res);
*res = NULL;
return;
}
n[reslen] = a;
n[reslen + 1] = 0;
*res = n;
}
void str_clear_free(char *str)
{
if (str) {
size_t len = os_strlen(str);
os_memset(str, 0, len);
os_free(str);
}
}
void bin_clear_free(void *bin, size_t len)
{
if (bin) {
os_memset(bin, 0, len);
os_free(bin);
}
}
int random_mac_addr(u8 *addr)
{
if (os_get_random(addr, ETH_ALEN) < 0)
return -1;
addr[0] &= 0xfe; /* unicast */
addr[0] |= 0x02; /* locally administered */
return 0;
}
int random_mac_addr_keep_oui(u8 *addr)
{
if (os_get_random(addr + 3, 3) < 0)
return -1;
addr[0] &= 0xfe; /* unicast */
addr[0] |= 0x02; /* locally administered */
return 0;
}
/**
* cstr_token - Get next token from const char string
* @str: a constant string to tokenize
* @delim: a string of delimiters
* @last: a pointer to a character following the returned token
* It has to be set to NULL for the first call and passed for any
* futher call.
* Returns: a pointer to token position in str or NULL
*
* This function is similar to str_token, but it can be used with both
* char and const char strings. Differences:
* - The str buffer remains unmodified
* - The returned token is not a NULL terminated string, but a token
* position in str buffer. If a return value is not NULL a size
* of the returned token could be calculated as (last - token).
*/
const char * cstr_token(const char *str, const char *delim, const char **last)
{
const char *end, *token = str;
if (!str || !delim || !last)
return NULL;
if (*last)
token = *last;
while (*token && os_strchr(delim, *token))
token++;
if (!*token)
return NULL;
end = token + 1;
while (*end && !os_strchr(delim, *end))
end++;
*last = end;
return token;
}
/**
* str_token - Get next token from a string
* @buf: String to tokenize. Note that the string might be modified.
* @delim: String of delimiters
* @context: Pointer to save our context. Should be initialized with
* NULL on the first call, and passed for any further call.
* Returns: The next token, NULL if there are no more valid tokens.
*/
char * str_token(char *str, const char *delim, char **context)
{
char *token = (char *) cstr_token(str, delim, (const char **) context);
if (token && **context)
*(*context)++ = '\0';
return token;
}
size_t utf8_unescape(const char *inp, size_t in_size,
char *outp, size_t out_size)
{
size_t res_size = 0;
if (!inp || !outp)
return 0;
if (!in_size)
in_size = os_strlen(inp);
/* Advance past leading single quote */
if (*inp == '\'' && in_size) {
inp++;
in_size--;
}
while (in_size--) {
if (res_size >= out_size)
return 0;
switch (*inp) {
case '\'':
/* Terminate on bare single quote */
*outp = '\0';
return res_size;
case '\\':
if (!in_size--)
return 0;
inp++;
/* fall through */
default:
*outp++ = *inp++;
res_size++;
}
}
/* NUL terminate if space allows */
if (res_size < out_size)
*outp = '\0';
return res_size;
}
size_t utf8_escape(const char *inp, size_t in_size,
char *outp, size_t out_size)
{
size_t res_size = 0;
if (!inp || !outp)
return 0;
/* inp may or may not be NUL terminated, but must be if 0 size
* is specified */
if (!in_size)
in_size = os_strlen(inp);
while (in_size--) {
if (res_size++ >= out_size)
return 0;
switch (*inp) {
case '\\':
case '\'':
if (res_size++ >= out_size)
return 0;
*outp++ = '\\';
/* fall through */
default:
*outp++ = *inp++;
break;
}
}
/* NUL terminate if space allows */
if (res_size < out_size)
*outp = '\0';
return res_size;
}
int is_ctrl_char(char c)
{
return c > 0 && c < 32;
}
/**
* ssid_parse - Parse a string that contains SSID in hex or text format
* @buf: Input NULL terminated string that contains the SSID
* @ssid: Output SSID
* Returns: 0 on success, -1 otherwise
*
* The SSID has to be enclosed in double quotes for the text format or space
* or NULL terminated string of hex digits for the hex format. buf can include
* additional arguments after the SSID.
*/
int ssid_parse(const char *buf, struct wpa_ssid_value *ssid)
{
char *tmp, *res, *end;
size_t len;
ssid->ssid_len = 0;
tmp = os_strdup(buf);
if (!tmp)
return -1;
if (*tmp != '"') {
end = os_strchr(tmp, ' ');
if (end)
*end = '\0';
} else {
end = os_strchr(tmp + 1, '"');
if (!end) {
os_free(tmp);
return -1;
}
end[1] = '\0';
}
res = wpa_config_parse_string(tmp, &len);
if (res && len <= SSID_MAX_LEN) {
ssid->ssid_len = len;
os_memcpy(ssid->ssid, res, len);
}
os_free(tmp);
os_free(res);
return ssid->ssid_len ? 0 : -1;
}