79e3f08d3c
Add support for missing 6 GHz operating classes as defined in IEEE P802.11ax/D7.0. This is needed to avoid OCV failures on the 6 GHz band when the channel width is larger than 20 MHz. Signed-off-by: Veerendranath Jakkam <vjakkam@codeaurora.org>
175 lines
4.7 KiB
C
175 lines
4.7 KiB
C
/*
|
|
* Operating Channel Validation (OCV)
|
|
* Copyright (c) 2018, Mathy Vanhoef
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*/
|
|
|
|
#include "utils/includes.h"
|
|
#include "utils/common.h"
|
|
#include "drivers/driver.h"
|
|
#include "common/ieee802_11_common.h"
|
|
#include "ocv.h"
|
|
|
|
/**
|
|
* Caller of OCV functionality may use various debug output functions, so store
|
|
* the error here and let the caller use an appropriate debug output function.
|
|
*/
|
|
char ocv_errorstr[256];
|
|
|
|
|
|
int ocv_derive_all_parameters(struct oci_info *oci)
|
|
{
|
|
const struct oper_class_map *op_class_map;
|
|
|
|
oci->freq = ieee80211_chan_to_freq(NULL, oci->op_class, oci->channel);
|
|
if (oci->freq < 0) {
|
|
wpa_printf(MSG_INFO,
|
|
"Error interpreting OCI: unrecognized opclass/channel pair (%d/%d)",
|
|
oci->op_class, oci->channel);
|
|
return -1;
|
|
}
|
|
|
|
op_class_map = get_oper_class(NULL, oci->op_class);
|
|
if (!op_class_map) {
|
|
wpa_printf(MSG_INFO,
|
|
"Error interpreting OCI: Unrecognized opclass (%d)",
|
|
oci->op_class);
|
|
return -1;
|
|
}
|
|
|
|
oci->chanwidth = oper_class_bw_to_int(op_class_map);
|
|
oci->sec_channel = 0;
|
|
if (op_class_map->bw == BW40PLUS)
|
|
oci->sec_channel = 1;
|
|
else if (op_class_map->bw == BW40MINUS)
|
|
oci->sec_channel = -1;
|
|
else if (op_class_map->bw == BW40)
|
|
oci->sec_channel = (((oci->channel - 1) / 4) % 2) ? -1 : 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ocv_insert_oci(struct wpa_channel_info *ci, u8 **argpos)
|
|
{
|
|
u8 op_class, channel;
|
|
u8 *pos = *argpos;
|
|
|
|
if (ieee80211_chaninfo_to_channel(ci->frequency, ci->chanwidth,
|
|
ci->sec_channel,
|
|
&op_class, &channel) < 0) {
|
|
wpa_printf(MSG_WARNING,
|
|
"Cannot determine operating class and channel for OCI element");
|
|
return -1;
|
|
}
|
|
|
|
*pos++ = op_class;
|
|
*pos++ = channel;
|
|
*pos++ = ci->seg1_idx;
|
|
|
|
*argpos = pos;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ocv_insert_oci_kde(struct wpa_channel_info *ci, u8 **argpos)
|
|
{
|
|
u8 *pos = *argpos;
|
|
|
|
*pos++ = WLAN_EID_VENDOR_SPECIFIC;
|
|
*pos++ = RSN_SELECTOR_LEN + 3;
|
|
RSN_SELECTOR_PUT(pos, RSN_KEY_DATA_OCI);
|
|
pos += RSN_SELECTOR_LEN;
|
|
|
|
*argpos = pos;
|
|
return ocv_insert_oci(ci, argpos);
|
|
}
|
|
|
|
|
|
int ocv_insert_extended_oci(struct wpa_channel_info *ci, u8 *pos)
|
|
{
|
|
*pos++ = WLAN_EID_EXTENSION;
|
|
*pos++ = 1 + OCV_OCI_LEN;
|
|
*pos++ = WLAN_EID_EXT_OCV_OCI;
|
|
return ocv_insert_oci(ci, &pos);
|
|
}
|
|
|
|
|
|
enum oci_verify_result
|
|
ocv_verify_tx_params(const u8 *oci_ie, size_t oci_ie_len,
|
|
struct wpa_channel_info *ci, int tx_chanwidth,
|
|
int tx_seg1_idx)
|
|
{
|
|
struct oci_info oci;
|
|
|
|
if (!oci_ie) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"did not receive mandatory OCI");
|
|
return OCI_NOT_FOUND;
|
|
}
|
|
|
|
if (oci_ie_len != 3) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"received OCI of unexpected length (%d)",
|
|
(int) oci_ie_len);
|
|
return OCI_INVALID_LENGTH;
|
|
}
|
|
|
|
os_memset(&oci, 0, sizeof(oci));
|
|
oci.op_class = oci_ie[0];
|
|
oci.channel = oci_ie[1];
|
|
oci.seg1_idx = oci_ie[2];
|
|
if (ocv_derive_all_parameters(&oci) != 0) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"unable to interpret received OCI");
|
|
return OCI_PARSE_ERROR;
|
|
}
|
|
|
|
/* Primary frequency used to send frames to STA must match the STA's */
|
|
if ((int) ci->frequency != oci.freq) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"primary channel mismatch in received OCI (we use %d but receiver is using %d)",
|
|
ci->frequency, oci.freq);
|
|
return OCI_PRIMARY_FREQ_MISMATCH;
|
|
}
|
|
|
|
/* We shouldn't transmit with a higher bandwidth than the STA supports
|
|
*/
|
|
if (tx_chanwidth > oci.chanwidth) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"channel bandwidth mismatch in received OCI (we use %d but receiver only supports %d)",
|
|
tx_chanwidth, oci.chanwidth);
|
|
return OCI_CHANNEL_WIDTH_MISMATCH;
|
|
}
|
|
|
|
/*
|
|
* Secondary channel only needs be checked for 40 MHz in the 2.4 GHz
|
|
* band. In the 5 GHz band it's verified through the primary frequency.
|
|
* Note that the field ci->sec_channel is only filled in when we use
|
|
* 40 MHz.
|
|
*/
|
|
if (tx_chanwidth == 40 && ci->frequency < 2500 &&
|
|
ci->sec_channel != oci.sec_channel) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"secondary channel mismatch in received OCI (we use %d but receiver is using %d)",
|
|
ci->sec_channel, oci.sec_channel);
|
|
return OCI_SECONDARY_FREQ_MISMATCH;
|
|
}
|
|
|
|
/*
|
|
* When using a 160 or 80+80 MHz channel to transmit, verify that we use
|
|
* the same segments as the receiver by comparing frequency segment 1.
|
|
*/
|
|
if ((ci->chanwidth == CHAN_WIDTH_160 ||
|
|
ci->chanwidth == CHAN_WIDTH_80P80) &&
|
|
tx_seg1_idx != oci.seg1_idx) {
|
|
os_snprintf(ocv_errorstr, sizeof(ocv_errorstr),
|
|
"frequency segment 1 mismatch in received OCI (we use %d but receiver is using %d)",
|
|
tx_seg1_idx, oci.seg1_idx);
|
|
return OCI_SEG_1_INDEX_MISMATCH;
|
|
}
|
|
|
|
return OCI_SUCCESS;
|
|
}
|