hostapd/src/crypto/crypto.h
Jouni Malinen ac9bf1cc2a Decrement hmac_sha*_vector() maximum num_elem value to 11
This replaces the earlier commit 4c079dcc64 ("Increment
hmac_sha*_vector() maximum num_elem value to 25") with a smaller
increment of just one extra element since the updated FTE MIC
calculation design does not use separate elements. This reduces stack
memory need. In addition, this starts using a define value for the
maximum number of vector elements to make this easier to change and to
make the code more readable.

Signed-off-by: Jouni Malinen <quic_jouni@quicinc.com>
2023-08-25 11:34:14 +03:00

1389 lines
45 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Wrapper functions for crypto libraries
* Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*
* This file defines the cryptographic functions that need to be implemented
* for wpa_supplicant and hostapd. When TLS is not used, internal
* implementation of MD5, SHA1, and AES is used and no external libraries are
* required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
* crypto library used by the TLS implementation is expected to be used for
* non-TLS needs, too, in order to save space by not implementing these
* functions twice.
*
* Wrapper code for using each crypto library is in its own file (crypto*.c)
* and one of these files is build and linked in to provide the functions
* defined here.
*/
#ifndef CRYPTO_H
#define CRYPTO_H
#define HMAC_VECTOR_MAX_ELEM 11
/**
* md4_vector - MD4 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
/**
* md5_vector - MD5 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
/**
* sha1_vector - SHA-1 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
* @seed: Seed/key for the PRF
* @seed_len: Seed length in bytes
* @x: Buffer for PRF output
* @xlen: Output length in bytes
* Returns: 0 on success, -1 on failure
*
* This function implements random number generation specified in NIST FIPS
* Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
* SHA-1, but has different message padding.
*/
int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
size_t xlen);
/**
* sha256_vector - SHA256 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* sha384_vector - SHA384 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* sha512_vector - SHA512 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* des_encrypt - Encrypt one block with DES
* @clear: 8 octets (in)
* @key: 7 octets (in) (no parity bits included)
* @cypher: 8 octets (out)
* Returns: 0 on success, -1 on failure
*/
int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
/**
* aes_encrypt_init - Initialize AES for encryption
* @key: Encryption key
* @len: Key length in bytes (usually 16, i.e., 128 bits)
* Returns: Pointer to context data or %NULL on failure
*/
void * aes_encrypt_init(const u8 *key, size_t len);
/**
* aes_encrypt - Encrypt one AES block
* @ctx: Context pointer from aes_encrypt_init()
* @plain: Plaintext data to be encrypted (16 bytes)
* @crypt: Buffer for the encrypted data (16 bytes)
* Returns: 0 on success, -1 on failure
*/
int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
/**
* aes_encrypt_deinit - Deinitialize AES encryption
* @ctx: Context pointer from aes_encrypt_init()
*/
void aes_encrypt_deinit(void *ctx);
/**
* aes_decrypt_init - Initialize AES for decryption
* @key: Decryption key
* @len: Key length in bytes (usually 16, i.e., 128 bits)
* Returns: Pointer to context data or %NULL on failure
*/
void * aes_decrypt_init(const u8 *key, size_t len);
/**
* aes_decrypt - Decrypt one AES block
* @ctx: Context pointer from aes_encrypt_init()
* @crypt: Encrypted data (16 bytes)
* @plain: Buffer for the decrypted data (16 bytes)
* Returns: 0 on success, -1 on failure
*/
int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
/**
* aes_decrypt_deinit - Deinitialize AES decryption
* @ctx: Context pointer from aes_encrypt_init()
*/
void aes_decrypt_deinit(void *ctx);
enum crypto_hash_alg {
CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256,
CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512
};
struct crypto_hash;
/**
* crypto_hash_init - Initialize hash/HMAC function
* @alg: Hash algorithm
* @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
* @key_len: Length of the key in bytes
* Returns: Pointer to hash context to use with other hash functions or %NULL
* on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
size_t key_len);
/**
* crypto_hash_update - Add data to hash calculation
* @ctx: Context pointer from crypto_hash_init()
* @data: Data buffer to add
* @len: Length of the buffer
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
/**
* crypto_hash_finish - Complete hash calculation
* @ctx: Context pointer from crypto_hash_init()
* @hash: Buffer for hash value or %NULL if caller is just freeing the hash
* context
* @len: Pointer to length of the buffer or %NULL if caller is just freeing the
* hash context; on return, this is set to the actual length of the hash value
* Returns: 0 on success, -1 if buffer is too small (len set to needed length),
* or -2 on other failures (including failed crypto_hash_update() operations)
*
* This function calculates the hash value and frees the context buffer that
* was used for hash calculation.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
enum crypto_cipher_alg {
CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
};
struct crypto_cipher;
/**
* crypto_cipher_init - Initialize block/stream cipher function
* @alg: Cipher algorithm
* @iv: Initialization vector for block ciphers or %NULL for stream ciphers
* @key: Cipher key
* @key_len: Length of key in bytes
* Returns: Pointer to cipher context to use with other cipher functions or
* %NULL on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len);
/**
* crypto_cipher_encrypt - Cipher encrypt
* @ctx: Context pointer from crypto_cipher_init()
* @plain: Plaintext to cipher
* @crypt: Resulting ciphertext
* @len: Length of the plaintext
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
const u8 *plain, u8 *crypt, size_t len);
/**
* crypto_cipher_decrypt - Cipher decrypt
* @ctx: Context pointer from crypto_cipher_init()
* @crypt: Ciphertext to decrypt
* @plain: Resulting plaintext
* @len: Length of the cipher text
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
const u8 *crypt, u8 *plain, size_t len);
/**
* crypto_cipher_decrypt - Free cipher context
* @ctx: Context pointer from crypto_cipher_init()
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_cipher_deinit(struct crypto_cipher *ctx);
struct crypto_public_key;
struct crypto_private_key;
/**
* crypto_public_key_import - Import an RSA public key
* @key: Key buffer (DER encoded RSA public key)
* @len: Key buffer length in bytes
* Returns: Pointer to the public key or %NULL on failure
*
* This function can just return %NULL if the crypto library supports X.509
* parsing. In that case, crypto_public_key_from_cert() is used to import the
* public key from a certificate.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
struct crypto_public_key *
crypto_public_key_import_parts(const u8 *n, size_t n_len,
const u8 *e, size_t e_len);
/**
* crypto_private_key_import - Import an RSA private key
* @key: Key buffer (DER encoded RSA private key)
* @len: Key buffer length in bytes
* @passwd: Key encryption password or %NULL if key is not encrypted
* Returns: Pointer to the private key or %NULL on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_private_key * crypto_private_key_import(const u8 *key,
size_t len,
const char *passwd);
/**
* crypto_public_key_from_cert - Import an RSA public key from a certificate
* @buf: DER encoded X.509 certificate
* @len: Certificate buffer length in bytes
* Returns: Pointer to public key or %NULL on failure
*
* This function can just return %NULL if the crypto library does not support
* X.509 parsing. In that case, internal code will be used to parse the
* certificate and public key is imported using crypto_public_key_import().
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
size_t len);
/**
* crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
* @key: Public key
* @in: Plaintext buffer
* @inlen: Length of plaintext buffer in bytes
* @out: Output buffer for encrypted data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_public_key_encrypt_pkcs1_v15(
struct crypto_public_key *key, const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
* @key: Private key
* @in: Encrypted buffer
* @inlen: Length of encrypted buffer in bytes
* @out: Output buffer for encrypted data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_private_key_decrypt_pkcs1_v15(
struct crypto_private_key *key, const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
* @key: Private key from crypto_private_key_import()
* @in: Plaintext buffer
* @inlen: Length of plaintext buffer in bytes
* @out: Output buffer for encrypted (signed) data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_public_key_free - Free public key
* @key: Public key
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_public_key_free(struct crypto_public_key *key);
/**
* crypto_private_key_free - Free private key
* @key: Private key from crypto_private_key_import()
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_private_key_free(struct crypto_private_key *key);
/**
* crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
* @key: Public key
* @crypt: Encrypted signature data (using the private key)
* @crypt_len: Encrypted signature data length
* @plain: Buffer for plaintext (at least crypt_len bytes)
* @plain_len: Plaintext length (max buffer size on input, real len on output);
* Returns: 0 on success, -1 on failure
*/
int __must_check crypto_public_key_decrypt_pkcs1(
struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
u8 *plain, size_t *plain_len);
int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
u8 *pubkey);
int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
const u8 *order, size_t order_len,
const u8 *privkey, size_t privkey_len,
const u8 *pubkey, size_t pubkey_len,
u8 *secret, size_t *len);
/**
* crypto_global_init - Initialize crypto wrapper
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_global_init(void);
/**
* crypto_global_deinit - Deinitialize crypto wrapper
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_global_deinit(void);
/**
* crypto_mod_exp - Modular exponentiation of large integers
* @base: Base integer (big endian byte array)
* @base_len: Length of base integer in bytes
* @power: Power integer (big endian byte array)
* @power_len: Length of power integer in bytes
* @modulus: Modulus integer (big endian byte array)
* @modulus_len: Length of modulus integer in bytes
* @result: Buffer for the result
* @result_len: Result length (max buffer size on input, real len on output)
* Returns: 0 on success, -1 on failure
*
* This function calculates result = base ^ power mod modulus. modules_len is
* used as the maximum size of modulus buffer. It is set to the used size on
* success.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
const u8 *power, size_t power_len,
const u8 *modulus, size_t modulus_len,
u8 *result, size_t *result_len);
/**
* rc4_skip - XOR RC4 stream to given data with skip-stream-start
* @key: RC4 key
* @keylen: RC4 key length
* @skip: number of bytes to skip from the beginning of the RC4 stream
* @data: data to be XOR'ed with RC4 stream
* @data_len: buf length
* Returns: 0 on success, -1 on failure
*
* Generate RC4 pseudo random stream for the given key, skip beginning of the
* stream, and XOR the end result with the data buffer to perform RC4
* encryption/decryption.
*/
int rc4_skip(const u8 *key, size_t keylen, size_t skip,
u8 *data, size_t data_len);
/**
* crypto_get_random - Generate cryptographically strong pseudo-random bytes
* @buf: Buffer for data
* @len: Number of bytes to generate
* Returns: 0 on success, -1 on failure
*
* If the PRNG does not have enough entropy to ensure unpredictable byte
* sequence, this functions must return -1.
*/
int crypto_get_random(void *buf, size_t len);
/**
* crypto_pkcs7_get_certificates - Extract X.509 certificates from PKCS#7 data
* @pkcs7: DER encoded PKCS#7 data
* Returns: Buffer of the extracted PEM X.509 certificates or %NULL on failure
*/
struct wpabuf * crypto_pkcs7_get_certificates(const struct wpabuf *pkcs7);
/**
* struct crypto_bignum - bignum
*
* Internal data structure for bignum implementation. The contents is specific
* to the used crypto library.
*/
struct crypto_bignum;
/**
* crypto_bignum_init - Allocate memory for bignum
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init(void);
/**
* crypto_bignum_init_set - Allocate memory for bignum and set the value
* @buf: Buffer with unsigned binary value
* @len: Length of buf in octets
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
/**
* crypto_bignum_init_set - Allocate memory for bignum and set the value (uint)
* @val: Value to set
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init_uint(unsigned int val);
/**
* crypto_bignum_deinit - Free bignum
* @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
* @clear: Whether to clear the value from memory
*/
void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
/**
* crypto_bignum_to_bin - Set binary buffer to unsigned bignum
* @a: Bignum
* @buf: Buffer for the binary number
* @len: Length of @buf in octets
* @padlen: Length in octets to pad the result to or 0 to indicate no padding
* Returns: Number of octets written on success, -1 on failure
*/
int crypto_bignum_to_bin(const struct crypto_bignum *a,
u8 *buf, size_t buflen, size_t padlen);
/**
* crypto_bignum_rand - Create a random number in range of modulus
* @r: Bignum; set to a random value
* @m: Bignum; modulus
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m);
/**
* crypto_bignum_add - c = a + b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a + b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_add(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_mod - c = a % b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a % b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_mod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
* @a: Bignum; base
* @b: Bignum; exponent
* @c: Bignum; modulus
* @d: Bignum; used to store the result of a^b (mod c)
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_exptmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_inverse(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_sub - c = a - b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a - b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_sub(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_div - c = a / b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a / b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_div(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_addmod - d = a + b (mod c)
* @a: Bignum
* @b: Bignum
* @c: Bignum
* @d: Bignum; used to store the result of (a + b) % c
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_addmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_mulmod - d = a * b (mod c)
* @a: Bignum
* @b: Bignum
* @c: Bignum
* @d: Bignum; used to store the result of (a * b) % c
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_mulmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_sqrmod - c = a^2 (mod b)
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a^2 % b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_sqrmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_rshift - r = a >> n
* @a: Bignum
* @n: Number of bits
* @r: Bignum; used to store the result of a >> n
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
struct crypto_bignum *r);
/**
* crypto_bignum_cmp - Compare two bignums
* @a: Bignum
* @b: Bignum
* Returns: -1 if a < b, 0 if a == b, or 1 if a > b
*/
int crypto_bignum_cmp(const struct crypto_bignum *a,
const struct crypto_bignum *b);
/**
* crypto_bignum_is_zero - Is the given bignum zero
* @a: Bignum
* Returns: 1 if @a is zero or 0 if not
*/
int crypto_bignum_is_zero(const struct crypto_bignum *a);
/**
* crypto_bignum_is_one - Is the given bignum one
* @a: Bignum
* Returns: 1 if @a is one or 0 if not
*/
int crypto_bignum_is_one(const struct crypto_bignum *a);
/**
* crypto_bignum_is_odd - Is the given bignum odd
* @a: Bignum
* Returns: 1 if @a is odd or 0 if not
*/
int crypto_bignum_is_odd(const struct crypto_bignum *a);
/**
* crypto_bignum_legendre - Compute the Legendre symbol (a/p)
* @a: Bignum
* @p: Bignum
* Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
*/
int crypto_bignum_legendre(const struct crypto_bignum *a,
const struct crypto_bignum *p);
/**
* struct crypto_ec - Elliptic curve context
*
* Internal data structure for EC implementation. The contents is specific
* to the used crypto library.
*/
struct crypto_ec;
/**
* struct crypto_ec_point - Elliptic curve point
*
* Internal data structure for EC implementation to represent a point. The
* contents is specific to the used crypto library.
*/
struct crypto_ec_point;
/**
* crypto_ec_init - Initialize elliptic curve context
* @group: Identifying number for the ECC group (IANA "Group Description"
* attribute registrty for RFC 2409)
* Returns: Pointer to EC context or %NULL on failure
*/
struct crypto_ec * crypto_ec_init(int group);
/**
* crypto_ec_deinit - Deinitialize elliptic curve context
* @e: EC context from crypto_ec_init()
*/
void crypto_ec_deinit(struct crypto_ec *e);
/**
* crypto_ec_prime_len - Get length of the prime in octets
* @e: EC context from crypto_ec_init()
* Returns: Length of the prime defining the group
*/
size_t crypto_ec_prime_len(struct crypto_ec *e);
/**
* crypto_ec_prime_len_bits - Get length of the prime in bits
* @e: EC context from crypto_ec_init()
* Returns: Length of the prime defining the group in bits
*/
size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
/**
* crypto_ec_order_len - Get length of the order in octets
* @e: EC context from crypto_ec_init()
* Returns: Length of the order defining the group
*/
size_t crypto_ec_order_len(struct crypto_ec *e);
/**
* crypto_ec_get_prime - Get prime defining an EC group
* @e: EC context from crypto_ec_init()
* Returns: Prime (bignum) defining the group
*/
const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
/**
* crypto_ec_get_order - Get order of an EC group
* @e: EC context from crypto_ec_init()
* Returns: Order (bignum) of the group
*/
const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
/**
* crypto_ec_get_a - Get 'a' coefficient of an EC group's curve
* @e: EC context from crypto_ec_init()
* Returns: 'a' coefficient (bignum) of the group
*/
const struct crypto_bignum * crypto_ec_get_a(struct crypto_ec *e);
/**
* crypto_ec_get_b - Get 'b' coeffiecient of an EC group's curve
* @e: EC context from crypto_ec_init()
* Returns: 'b' coefficient (bignum) of the group
*/
const struct crypto_bignum * crypto_ec_get_b(struct crypto_ec *e);
/**
* crypto_ec_get_generator - Get generator point of the EC group's curve
* @e: EC context from crypto_ec_init()
* Returns: Pointer to generator point
*/
const struct crypto_ec_point * crypto_ec_get_generator(struct crypto_ec *e);
/**
* crypto_ec_point_init - Initialize data for an EC point
* @e: EC context from crypto_ec_init()
* Returns: Pointer to EC point data or %NULL on failure
*/
struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
/**
* crypto_ec_point_deinit - Deinitialize EC point data
* @p: EC point data from crypto_ec_point_init()
* @clear: Whether to clear the EC point value from memory
*/
void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
/**
* crypto_ec_point_x - Copies the x-ordinate point into big number
* @e: EC context from crypto_ec_init()
* @p: EC point data
* @x: Big number to set to the copy of x-ordinate
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
struct crypto_bignum *x);
/**
* crypto_ec_point_to_bin - Write EC point value as binary data
* @e: EC context from crypto_ec_init()
* @p: EC point data from crypto_ec_point_init()
* @x: Buffer for writing the binary data for x coordinate or %NULL if not used
* @y: Buffer for writing the binary data for y coordinate or %NULL if not used
* Returns: 0 on success, -1 on failure
*
* This function can be used to write an EC point as binary data in a format
* that has the x and y coordinates in big endian byte order fields padded to
* the length of the prime defining the group.
*/
int crypto_ec_point_to_bin(struct crypto_ec *e,
const struct crypto_ec_point *point, u8 *x, u8 *y);
/**
* crypto_ec_point_from_bin - Create EC point from binary data
* @e: EC context from crypto_ec_init()
* @val: Binary data to read the EC point from
* Returns: Pointer to EC point data or %NULL on failure
*
* This function readers x and y coordinates of the EC point from the provided
* buffer assuming the values are in big endian byte order with fields padded to
* the length of the prime defining the group.
*/
struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
const u8 *val);
/**
* crypto_ec_point_add - c = a + b
* @e: EC context from crypto_ec_init()
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a + b
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
const struct crypto_ec_point *b,
struct crypto_ec_point *c);
/**
* crypto_ec_point_mul - res = b * p
* @e: EC context from crypto_ec_init()
* @p: EC point
* @b: Bignum
* @res: EC point; used to store the result of b * p
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
const struct crypto_bignum *b,
struct crypto_ec_point *res);
/**
* crypto_ec_point_invert - Compute inverse of an EC point
* @e: EC context from crypto_ec_init()
* @p: EC point to invert (and result of the operation)
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
/**
* crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
* @e: EC context from crypto_ec_init()
* @x: x coordinate
* Returns: y^2 on success, %NULL failure
*/
struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
const struct crypto_bignum *x);
/**
* crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
* @e: EC context from crypto_ec_init()
* @p: EC point
* Returns: 1 if the specified EC point is the neutral element of the group or
* 0 if not
*/
int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
const struct crypto_ec_point *p);
/**
* crypto_ec_point_is_on_curve - Check whether EC point is on curve
* @e: EC context from crypto_ec_init()
* @p: EC point
* Returns: 1 if the specified EC point is on the curve or 0 if not
*/
int crypto_ec_point_is_on_curve(struct crypto_ec *e,
const struct crypto_ec_point *p);
/**
* crypto_ec_point_cmp - Compare two EC points
* @e: EC context from crypto_ec_init()
* @a: EC point
* @b: EC point
* Returns: 0 on equal, non-zero otherwise
*/
int crypto_ec_point_cmp(const struct crypto_ec *e,
const struct crypto_ec_point *a,
const struct crypto_ec_point *b);
/**
* crypto_ec_point_debug_print - Dump EC point to debug log
* @e: EC context from crypto_ec_init()
* @p: EC point
* @title: Name of the EC point in the trace
*/
void crypto_ec_point_debug_print(const struct crypto_ec *e,
const struct crypto_ec_point *p,
const char *title);
/**
* struct crypto_ec_key - Elliptic curve key pair
*
* Internal data structure for EC key pair. The contents is specific to the used
* crypto library.
*/
struct crypto_ec_key;
/**
* struct crypto_ecdh - Elliptic Curve DiffieHellman context
*
* Internal data structure for ECDH. The contents is specific to the used
* crypto library.
*/
struct crypto_ecdh;
/**
* crypto_ecdh_init - Initialize elliptic curve DiffieHellman context
* @group: Identifying number for the ECC group (IANA "Group Description"
* attribute registry for RFC 2409)
* This function generates an ephemeral key pair.
* Returns: Pointer to ECDH context or %NULL on failure
*/
struct crypto_ecdh * crypto_ecdh_init(int group);
/**
* crypto_ecdh_init2 - Initialize elliptic curve DiffieHellman context with a
* given EC key
* @group: Identifying number for the ECC group (IANA "Group Description"
* attribute registry for RFC 2409)
* @own_key: Our own EC Key
* Returns: Pointer to ECDH context or %NULL on failure
*/
struct crypto_ecdh * crypto_ecdh_init2(int group,
struct crypto_ec_key *own_key);
/**
* crypto_ecdh_get_pubkey - Retrieve public key from ECDH context
* @ecdh: ECDH context from crypto_ecdh_init() or crypto_ecdh_init2()
* @inc_y: Whether public key should include y coordinate (explicit form)
* or not (compressed form)
* Returns: Binary data f the public key or %NULL on failure
*/
struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y);
/**
* crypto_ecdh_set_peerkey - Compute ECDH secret
* @ecdh: ECDH context from crypto_ecdh_init() or crypto_ecdh_init2()
* @inc_y: Whether peer's public key includes y coordinate (explicit form)
* or not (compressed form)
* @key: Binary data of the peer's public key
* @len: Length of the @key buffer
* Returns: Binary data with the EDCH secret or %NULL on failure
*/
struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
const u8 *key, size_t len);
/**
* crypto_ecdh_deinit - Free ECDH context
* @ecdh: ECDH context from crypto_ecdh_init() or crypto_ecdh_init2()
*/
void crypto_ecdh_deinit(struct crypto_ecdh *ecdh);
/**
* crypto_ecdh_prime_len - Get length of the prime in octets
* @e: ECDH context from crypto_ecdh_init()
* Returns: Length of the prime defining the group
*/
size_t crypto_ecdh_prime_len(struct crypto_ecdh *ecdh);
/**
* crypto_ec_key_parse_priv - Initialize EC key pair from ECPrivateKey ASN.1
* @der: DER encoding of ASN.1 ECPrivateKey
* @der_len: Length of @der buffer
* Returns: EC key or %NULL on failure
*/
struct crypto_ec_key * crypto_ec_key_parse_priv(const u8 *der, size_t der_len);
/**
* crypto_ec_key_set_priv - Initialize EC key pair from raw key data
* @group: Identifying number for the ECC group
* @raw: Raw key data
* @raw_len: Length of @raw buffer
* Returns: EC key or %NULL on failure
*/
struct crypto_ec_key * crypto_ec_key_set_priv(int group,
const u8 *raw, size_t raw_len);
/**
* crypto_ec_key_parse_pub - Initialize EC key pair from SubjectPublicKeyInfo ASN.1
* @der: DER encoding of ASN.1 SubjectPublicKeyInfo
* @der_len: Length of @der buffer
* Returns: EC key or %NULL on failure
*/
struct crypto_ec_key * crypto_ec_key_parse_pub(const u8 *der, size_t der_len);
/**
* crypto_ec_key_set_pub - Initialize an EC public key from EC point coordinates
* @group: Identifying number for the ECC group
* @x: X coordinate of the public key
* @y: Y coordinate of the public key
* @len: Length of @x and @y buffer
* Returns: EC key or %NULL on failure
*
* This function initialize an EC key from public key coordinates, in big endian
* byte order padded to the length of the prime defining the group.
*/
struct crypto_ec_key * crypto_ec_key_set_pub(int group, const u8 *x,
const u8 *y, size_t len);
/**
* crypto_ec_key_set_pub_point - Initialize an EC public key from EC point
* @e: EC context from crypto_ec_init()
* @pub: Public key point
* Returns: EC key or %NULL on failure
*/
struct crypto_ec_key *
crypto_ec_key_set_pub_point(struct crypto_ec *e,
const struct crypto_ec_point *pub);
/**
* crypto_ec_key_gen - Generate EC key pair
* @group: Identifying number for the ECC group
* Returns: EC key or %NULL on failure
*/
struct crypto_ec_key * crypto_ec_key_gen(int group);
/**
* crypto_ec_key_deinit - Free EC key
* @key: EC key from crypto_ec_key_parse_pub/priv() or crypto_ec_key_gen()
*/
void crypto_ec_key_deinit(struct crypto_ec_key *key);
/**
* crypto_ec_key_get_subject_public_key - Get SubjectPublicKeyInfo ASN.1 for an EC key
* @key: EC key from crypto_ec_key_parse/set_pub/priv() or crypto_ec_key_gen()
* Returns: Buffer with DER encoding of ASN.1 SubjectPublicKeyInfo using
* compressed point format, or %NULL on failure
*/
struct wpabuf * crypto_ec_key_get_subject_public_key(struct crypto_ec_key *key);
/**
* crypto_ec_key_get_ecprivate_key - Get ECPrivateKey ASN.1 for a EC key
* @key: EC key from crypto_ec_key_parse_priv() or crypto_ec_key_gen()
* @include_pub: Whether to include public key in the ASN.1 sequence
* Returns: Buffer with DER encoding of ASN.1 ECPrivateKey or %NULL on failure
*/
struct wpabuf * crypto_ec_key_get_ecprivate_key(struct crypto_ec_key *key,
bool include_pub);
/**
* crypto_ec_key_get_pubkey_point - Get public key point coordinates
* @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_parse_priv()
* @prefix: Whether output buffer should include the octet to indicate
* coordinate form (as defined for SubjectPublicKeyInfo)
* Returns: Buffer with coordinates of public key in uncompressed form or %NULL
* on failure
*/
struct wpabuf * crypto_ec_key_get_pubkey_point(struct crypto_ec_key *key,
int prefix);
/**
* crypto_ec_key_get_public_key - Get EC public key as an EC point
* @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_parse_priv()
* Returns: Public key as an EC point or %NULL on failure
*
* The caller needs to free the returned value with crypto_ec_point_deinit().
*/
struct crypto_ec_point *
crypto_ec_key_get_public_key(struct crypto_ec_key *key);
/**
* crypto_ec_key_get_private_key - Get EC private key as a bignum
* @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_parse_priv()
* Returns: Private key as a bignum or %NULL on failure
*
* The caller needs to free the returned value with crypto_bignum_deinit().
*/
struct crypto_bignum *
crypto_ec_key_get_private_key(struct crypto_ec_key *key);
/**
* crypto_ec_key_sign - Sign a buffer with an EC key
* @key: EC key from crypto_ec_key_parse_priv() or crypto_ec_key_gen()
* @data: Data to sign
* @len: Length of @data buffer
* Returns: Buffer with DER encoding of ASN.1 Ecdsa-Sig-Value or %NULL on failure
*/
struct wpabuf * crypto_ec_key_sign(struct crypto_ec_key *key, const u8 *data,
size_t len);
/**
* crypto_ec_key_sign_r_s - Sign a buffer with an EC key
* @key: EC key from crypto_ec_key_parse_priv() or crypto_ec_key_gen()
* @data: Data to sign
* @len: Length of @data buffer
* Returns: Buffer with the concatenated r and s values. Each value is in big
* endian byte order padded to the length of the prime defining the group of
* the key.
*/
struct wpabuf * crypto_ec_key_sign_r_s(struct crypto_ec_key *key,
const u8 *data, size_t len);
/**
* crypto_ec_key_verify_signature - Verify ECDSA signature
* @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_gen()
* @data: Data to be signed
* @len: Length of @data buffer
* @sig: DER encoding of ASN.1 Ecdsa-Sig-Value
* @sig_len: Length of @sig buffer
* Returns: 1 if signature is valid, 0 if signature is invalid and -1 on failure
*/
int crypto_ec_key_verify_signature(struct crypto_ec_key *key, const u8 *data,
size_t len, const u8 *sig, size_t sig_len);
/**
* crypto_ec_key_verify_signature_r_s - Verify signature
* @key: EC key from crypto_ec_key_parse/set_pub() or crypto_ec_key_gen()
* @data: Data to signed
* @len: Length of @data buffer
* @r: Binary data, in big endian byte order, of the 'r' field of the ECDSA
* signature.
* @s: Binary data, in big endian byte order, of the 's' field of the ECDSA
* signature.
* @r_len: Length of @r buffer
* @s_len: Length of @s buffer
* Returns: 1 if signature is valid, 0 if signature is invalid, or -1 on failure
*/
int crypto_ec_key_verify_signature_r_s(struct crypto_ec_key *key,
const u8 *data, size_t len,
const u8 *r, size_t r_len,
const u8 *s, size_t s_len);
/**
* crypto_ec_key_group - Get IANA group identifier for an EC key
* @key: EC key from crypto_ec_key_parse/set_pub/priv() or crypto_ec_key_gen()
* Returns: IANA group identifier and -1 on failure
*/
int crypto_ec_key_group(struct crypto_ec_key *key);
/**
* crypto_ec_key_cmp - Compare two EC public keys
* @key1: Key 1
* @key2: Key 2
* Returns: 0 if public keys are identical, -1 otherwise
*/
int crypto_ec_key_cmp(struct crypto_ec_key *key1, struct crypto_ec_key *key2);
/**
* crypto_ec_key_debug_print - Dump EC key to debug log
* @key: EC key from crypto_ec_key_parse/set_pub/priv() or crypto_ec_key_gen()
* @title: Name of the EC point in the trace
*/
void crypto_ec_key_debug_print(const struct crypto_ec_key *key,
const char *title);
/**
* struct crypto_csr - Certification Signing Request
*
* Internal data structure for CSR. The contents is specific to the used
* crypto library.
* For now it is assumed that only an EC public key can be used
*/
struct crypto_csr;
/**
* enum crypto_csr_name - CSR name type
*/
enum crypto_csr_name {
CSR_NAME_CN,
CSR_NAME_SN,
CSR_NAME_C,
CSR_NAME_O,
CSR_NAME_OU,
};
/**
* enum crypto_csr_attr - CSR attribute
*/
enum crypto_csr_attr {
CSR_ATTR_CHALLENGE_PASSWORD,
};
/**
* crypto_csr_init - Initialize empty CSR
* Returns: Pointer to CSR data or %NULL on failure
*/
struct crypto_csr * crypto_csr_init(void);
/**
* crypto_csr_verify - Initialize CSR from CertificationRequest
* @req: DER encoding of ASN.1 CertificationRequest
*
* Returns: Pointer to CSR data or %NULL on failure or if signature is invalid
*/
struct crypto_csr * crypto_csr_verify(const struct wpabuf *req);
/**
* crypto_csr_deinit - Free CSR structure
* @csr: CSR structure from @crypto_csr_init() or crypto_csr_verify()
*/
void crypto_csr_deinit(struct crypto_csr *csr);
/**
* crypto_csr_set_ec_public_key - Set public key in CSR
* @csr: CSR structure from @crypto_csr_init()
* @key: EC public key to set as public key in the CSR
* Returns: 0 on success, -1 on failure
*/
int crypto_csr_set_ec_public_key(struct crypto_csr *csr,
struct crypto_ec_key *key);
/**
* crypto_csr_set_name - Set name entry in CSR SubjectName
* @csr: CSR structure from @crypto_csr_init()
* @type: Name type to add into the CSR SubjectName
* @name: UTF-8 string to write in the CSR SubjectName
* Returns: 0 on success, -1 on failure
*/
int crypto_csr_set_name(struct crypto_csr *csr, enum crypto_csr_name type,
const char *name);
/**
* crypto_csr_set_attribute - Set attribute in CSR
* @csr: CSR structure from @crypto_csr_init()
* @attr: Attribute identifier
* @attr_type: ASN.1 type of @value buffer
* @value: Attribute value
* @len: length of @value buffer
* Returns: 0 on success, -1 on failure
*/
int crypto_csr_set_attribute(struct crypto_csr *csr, enum crypto_csr_attr attr,
int attr_type, const u8 *value, size_t len);
/**
* crypto_csr_get_attribute - Get attribute from CSR
* @csr: CSR structure from @crypto_csr_verify()
* @attr: Updated with atribute identifier
* @len: Updated with length of returned buffer
* @type: ASN.1 type of the attribute buffer
* Returns: Type, length, and pointer on attribute value or %NULL on failure
*/
const u8 * crypto_csr_get_attribute(struct crypto_csr *csr,
enum crypto_csr_attr attr,
size_t *len, int *type);
/**
* crypto_csr_sign - Sign CSR and return ASN.1 CertificationRequest
* @csr: CSR structure from @crypto_csr_init()
* @key: Private key to sign the CSR (for now ony EC key are supported)
* @algo: Hash algorithm to use for the signature
* Returns: DER encoding of ASN.1 CertificationRequest for the CSR or %NULL on
* failure
*/
struct wpabuf * crypto_csr_sign(struct crypto_csr *csr,
struct crypto_ec_key *key,
enum crypto_hash_alg algo);
struct crypto_rsa_key;
/**
* crypto_rsa_key_read - Read an RSA key
* @file: File from which to read (PEM encoded, can be X.509v3 certificate)
* @private_key: Whether to read the private key instead of public key
* Returns: RSA key or %NULL on failure
*/
struct crypto_rsa_key * crypto_rsa_key_read(const char *file, bool private_key);
/**
* crypto_rsa_oaep_sha256_encrypt - RSA-OAEP-SHA-256 encryption
* @key: RSA key from crypto_rsa_key_read()
* @in: Plaintext input data
* Returns: Encrypted output data or %NULL on failure
*/
struct wpabuf * crypto_rsa_oaep_sha256_encrypt(struct crypto_rsa_key *key,
const struct wpabuf *in);
/**
* crypto_rsa_oaep_sha256_decrypt - RSA-OAEP-SHA-256 decryption
* @key: RSA key from crypto_rsa_key_read()
* @in: Encrypted input data
* Returns: Decrypted output data or %NULL on failure
*/
struct wpabuf * crypto_rsa_oaep_sha256_decrypt(struct crypto_rsa_key *key,
const struct wpabuf *in);
/**
* crypto_rsa_key_free - Free an RSA key
* @key: RSA key from crypto_rsa_key_read()
*/
void crypto_rsa_key_free(struct crypto_rsa_key *key);
enum hpke_mode {
HPKE_MODE_BASE = 0x00,
HPKE_MODE_PSK = 0x01,
HPKE_MODE_AUTH = 0x02,
HPKE_MODE_AUTH_PSK = 0x03,
};
enum hpke_kem_id {
HPKE_DHKEM_P256_HKDF_SHA256 = 0x0010,
HPKE_DHKEM_P384_HKDF_SHA384 = 0x0011,
HPKE_DHKEM_P521_HKDF_SHA512 = 0x0012,
HPKE_DHKEM_X5519_HKDF_SHA256 = 0x0020,
HPKE_DHKEM_X448_HKDF_SHA512 = 0x0021,
};
enum hpke_kdf_id {
HPKE_KDF_HKDF_SHA256 = 0x0001,
HPKE_KDF_HKDF_SHA384 = 0x0002,
HPKE_KDF_HKDF_SHA512 = 0x0003,
};
enum hpke_aead_id {
HPKE_AEAD_AES_128_GCM = 0x0001,
HPKE_AEAD_AES_256_GCM = 0x0002,
HPKE_AEAD_CHACHA20POLY1305 = 0x0003,
};
/**
* hpke_base_seal - HPKE base mode single-shot encrypt
* Returns: enc | ct; or %NULL on failure
*/
struct wpabuf * hpke_base_seal(enum hpke_kem_id kem_id,
enum hpke_kdf_id kdf_id,
enum hpke_aead_id aead_id,
struct crypto_ec_key *peer_pub,
const u8 *info, size_t info_len,
const u8 *aad, size_t aad_len,
const u8 *pt, size_t pt_len);
/**
* hpke_base_open - HPKE base mode single-shot decrypt
* @enc_ct: enc | ct
* Returns: pt; or %NULL on failure
*/
struct wpabuf * hpke_base_open(enum hpke_kem_id kem_id,
enum hpke_kdf_id kdf_id,
enum hpke_aead_id aead_id,
struct crypto_ec_key *own_priv,
const u8 *info, size_t info_len,
const u8 *aad, size_t aad_len,
const u8 *enc_ct, size_t enc_ct_len);
/**
* crypto_unload - Unload crypto resources
*
* This function is called just before the process exits to allow dynamic
* resource allocations to be freed.
*/
void crypto_unload(void);
#endif /* CRYPTO_H */