hostapd/src/common/sae.c
Bob Copeland 6c33eed3ee mesh: Fix PMKID to match the standard
IEEE Std 802.11-2012 11.3.5.4 specifies the PMKID for SAE-derived keys
as:

   L((commit-scalar + peer-commit-scalar) mod r, 0, 128)

This is already calculated in the SAE code when the PMK is derived, but
not saved anywhere. Later, when generating the PMKID for plink action
frames, the definition for PMKID from 11.6.1.3 is incorrectly used.
Correct this by saving the PMKID when the key is generated and use it
subsequently.

Signed-off-by: Bob Copeland <me@bobcopeland.com>
2015-12-28 17:21:08 +02:00

1293 lines
34 KiB
C

/*
* Simultaneous authentication of equals
* Copyright (c) 2012-2015, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto/crypto.h"
#include "crypto/sha256.h"
#include "crypto/random.h"
#include "crypto/dh_groups.h"
#include "ieee802_11_defs.h"
#include "sae.h"
int sae_set_group(struct sae_data *sae, int group)
{
struct sae_temporary_data *tmp;
sae_clear_data(sae);
tmp = sae->tmp = os_zalloc(sizeof(*tmp));
if (tmp == NULL)
return -1;
/* First, check if this is an ECC group */
tmp->ec = crypto_ec_init(group);
if (tmp->ec) {
sae->group = group;
tmp->prime_len = crypto_ec_prime_len(tmp->ec);
tmp->prime = crypto_ec_get_prime(tmp->ec);
tmp->order = crypto_ec_get_order(tmp->ec);
return 0;
}
/* Not an ECC group, check FFC */
tmp->dh = dh_groups_get(group);
if (tmp->dh) {
sae->group = group;
tmp->prime_len = tmp->dh->prime_len;
if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
sae_clear_data(sae);
return -1;
}
tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
tmp->prime_len);
if (tmp->prime_buf == NULL) {
sae_clear_data(sae);
return -1;
}
tmp->prime = tmp->prime_buf;
tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
tmp->dh->order_len);
if (tmp->order_buf == NULL) {
sae_clear_data(sae);
return -1;
}
tmp->order = tmp->order_buf;
return 0;
}
/* Unsupported group */
return -1;
}
void sae_clear_temp_data(struct sae_data *sae)
{
struct sae_temporary_data *tmp;
if (sae == NULL || sae->tmp == NULL)
return;
tmp = sae->tmp;
crypto_ec_deinit(tmp->ec);
crypto_bignum_deinit(tmp->prime_buf, 0);
crypto_bignum_deinit(tmp->order_buf, 0);
crypto_bignum_deinit(tmp->sae_rand, 1);
crypto_bignum_deinit(tmp->pwe_ffc, 1);
crypto_bignum_deinit(tmp->own_commit_scalar, 0);
crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
crypto_ec_point_deinit(tmp->pwe_ecc, 1);
crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
wpabuf_free(tmp->anti_clogging_token);
bin_clear_free(tmp, sizeof(*tmp));
sae->tmp = NULL;
}
void sae_clear_data(struct sae_data *sae)
{
if (sae == NULL)
return;
sae_clear_temp_data(sae);
crypto_bignum_deinit(sae->peer_commit_scalar, 0);
os_memset(sae, 0, sizeof(*sae));
}
static void buf_shift_right(u8 *buf, size_t len, size_t bits)
{
size_t i;
for (i = len - 1; i > 0; i--)
buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
buf[0] >>= bits;
}
static struct crypto_bignum * sae_get_rand(struct sae_data *sae)
{
u8 val[SAE_MAX_PRIME_LEN];
int iter = 0;
struct crypto_bignum *bn = NULL;
int order_len_bits = crypto_bignum_bits(sae->tmp->order);
size_t order_len = (order_len_bits + 7) / 8;
if (order_len > sizeof(val))
return NULL;
for (;;) {
if (iter++ > 100 || random_get_bytes(val, order_len) < 0)
return NULL;
if (order_len_bits % 8)
buf_shift_right(val, order_len, 8 - order_len_bits % 8);
bn = crypto_bignum_init_set(val, order_len);
if (bn == NULL)
return NULL;
if (crypto_bignum_is_zero(bn) ||
crypto_bignum_is_one(bn) ||
crypto_bignum_cmp(bn, sae->tmp->order) >= 0) {
crypto_bignum_deinit(bn, 0);
continue;
}
break;
}
os_memset(val, 0, order_len);
return bn;
}
static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae)
{
crypto_bignum_deinit(sae->tmp->sae_rand, 1);
sae->tmp->sae_rand = sae_get_rand(sae);
if (sae->tmp->sae_rand == NULL)
return NULL;
return sae_get_rand(sae);
}
static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
{
wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
" addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
os_memcpy(key, addr1, ETH_ALEN);
os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
} else {
os_memcpy(key, addr2, ETH_ALEN);
os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
}
}
static struct crypto_bignum *
get_rand_1_to_p_1(const u8 *prime, size_t prime_len, size_t prime_bits,
int *r_odd)
{
for (;;) {
struct crypto_bignum *r;
u8 tmp[SAE_MAX_ECC_PRIME_LEN];
if (random_get_bytes(tmp, prime_len) < 0)
break;
if (prime_bits % 8)
buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
if (os_memcmp(tmp, prime, prime_len) >= 0)
continue;
r = crypto_bignum_init_set(tmp, prime_len);
if (!r)
break;
if (crypto_bignum_is_zero(r)) {
crypto_bignum_deinit(r, 0);
continue;
}
*r_odd = tmp[prime_len - 1] & 0x01;
return r;
}
return NULL;
}
static int is_quadratic_residue_blind(struct sae_data *sae,
const u8 *prime, size_t bits,
const struct crypto_bignum *qr,
const struct crypto_bignum *qnr,
const struct crypto_bignum *y_sqr)
{
struct crypto_bignum *r, *num;
int r_odd, check, res = -1;
/*
* Use the blinding technique to mask y_sqr while determining
* whether it is a quadratic residue modulo p to avoid leaking
* timing information while determining the Legendre symbol.
*
* v = y_sqr
* r = a random number between 1 and p-1, inclusive
* num = (v * r * r) modulo p
*/
r = get_rand_1_to_p_1(prime, sae->tmp->prime_len, bits, &r_odd);
if (!r)
return -1;
num = crypto_bignum_init();
if (!num ||
crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
goto fail;
if (r_odd) {
/*
* num = (num * qr) module p
* LGR(num, p) = 1 ==> quadratic residue
*/
if (crypto_bignum_mulmod(num, qr, sae->tmp->prime, num) < 0)
goto fail;
check = 1;
} else {
/*
* num = (num * qnr) module p
* LGR(num, p) = -1 ==> quadratic residue
*/
if (crypto_bignum_mulmod(num, qnr, sae->tmp->prime, num) < 0)
goto fail;
check = -1;
}
res = crypto_bignum_legendre(num, sae->tmp->prime);
if (res == -2) {
res = -1;
goto fail;
}
res = res == check;
fail:
crypto_bignum_deinit(num, 1);
crypto_bignum_deinit(r, 1);
return res;
}
static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
const u8 *prime,
const struct crypto_bignum *qr,
const struct crypto_bignum *qnr,
struct crypto_bignum **ret_x_cand)
{
u8 pwd_value[SAE_MAX_ECC_PRIME_LEN];
struct crypto_bignum *y_sqr, *x_cand;
int res;
size_t bits;
*ret_x_cand = NULL;
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
bits = crypto_ec_prime_len_bits(sae->tmp->ec);
sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
prime, sae->tmp->prime_len, pwd_value, bits);
if (bits % 8)
buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
pwd_value, sae->tmp->prime_len);
if (os_memcmp(pwd_value, prime, sae->tmp->prime_len) >= 0)
return 0;
x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
if (!x_cand)
return -1;
y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
if (!y_sqr) {
crypto_bignum_deinit(x_cand, 1);
return -1;
}
res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr);
crypto_bignum_deinit(y_sqr, 1);
if (res <= 0) {
crypto_bignum_deinit(x_cand, 1);
return res;
}
*ret_x_cand = x_cand;
return 1;
}
static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
struct crypto_bignum *pwe)
{
u8 pwd_value[SAE_MAX_PRIME_LEN];
size_t bits = sae->tmp->prime_len * 8;
u8 exp[1];
struct crypto_bignum *a, *b;
int res;
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
bits);
if (bits % 8)
buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
sae->tmp->prime_len);
if (os_memcmp(pwd_value, sae->tmp->dh->prime, sae->tmp->prime_len) >= 0)
{
wpa_printf(MSG_DEBUG, "SAE: pwd-value >= p");
return 0;
}
/* PWE = pwd-value^((p-1)/r) modulo p */
a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
if (sae->tmp->dh->safe_prime) {
/*
* r = (p-1)/2 for the group used here, so this becomes:
* PWE = pwd-value^2 modulo p
*/
exp[0] = 2;
b = crypto_bignum_init_set(exp, sizeof(exp));
} else {
/* Calculate exponent: (p-1)/r */
exp[0] = 1;
b = crypto_bignum_init_set(exp, sizeof(exp));
if (b == NULL ||
crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
crypto_bignum_div(b, sae->tmp->order, b) < 0) {
crypto_bignum_deinit(b, 0);
b = NULL;
}
}
if (a == NULL || b == NULL)
res = -1;
else
res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
crypto_bignum_deinit(a, 0);
crypto_bignum_deinit(b, 0);
if (res < 0) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate PWE");
return -1;
}
/* if (PWE > 1) --> found */
if (crypto_bignum_is_zero(pwe) || crypto_bignum_is_one(pwe)) {
wpa_printf(MSG_DEBUG, "SAE: PWE <= 1");
return 0;
}
wpa_printf(MSG_DEBUG, "SAE: PWE found");
return 1;
}
static int get_random_qr_qnr(const u8 *prime, size_t prime_len,
const struct crypto_bignum *prime_bn,
size_t prime_bits, struct crypto_bignum **qr,
struct crypto_bignum **qnr)
{
*qr = NULL;
*qnr = NULL;
while (!(*qr) || !(*qnr)) {
u8 tmp[SAE_MAX_ECC_PRIME_LEN];
struct crypto_bignum *q;
int res;
if (random_get_bytes(tmp, prime_len) < 0)
break;
if (prime_bits % 8)
buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
if (os_memcmp(tmp, prime, prime_len) >= 0)
continue;
q = crypto_bignum_init_set(tmp, prime_len);
if (!q)
break;
res = crypto_bignum_legendre(q, prime_bn);
if (res == 1 && !(*qr))
*qr = q;
else if (res == -1 && !(*qnr))
*qnr = q;
else
crypto_bignum_deinit(q, 0);
}
return (*qr && *qnr) ? 0 : -1;
}
static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
const u8 *addr2, const u8 *password,
size_t password_len)
{
u8 counter, k = 40;
u8 addrs[2 * ETH_ALEN];
const u8 *addr[2];
size_t len[2];
u8 dummy_password[32];
size_t dummy_password_len;
int pwd_seed_odd = 0;
u8 prime[SAE_MAX_ECC_PRIME_LEN];
size_t prime_len;
struct crypto_bignum *x = NULL, *qr, *qnr;
size_t bits;
int res;
dummy_password_len = password_len;
if (dummy_password_len > sizeof(dummy_password))
dummy_password_len = sizeof(dummy_password);
if (random_get_bytes(dummy_password, dummy_password_len) < 0)
return -1;
prime_len = sae->tmp->prime_len;
if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
prime_len) < 0)
return -1;
bits = crypto_ec_prime_len_bits(sae->tmp->ec);
/*
* Create a random quadratic residue (qr) and quadratic non-residue
* (qnr) modulo p for blinding purposes during the loop.
*/
if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
&qr, &qnr) < 0)
return -1;
wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
password, password_len);
/*
* H(salt, ikm) = HMAC-SHA256(salt, ikm)
* base = password
* pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
* base || counter)
*/
sae_pwd_seed_key(addr1, addr2, addrs);
addr[0] = password;
len[0] = password_len;
addr[1] = &counter;
len[1] = sizeof(counter);
/*
* Continue for at least k iterations to protect against side-channel
* attacks that attempt to determine the number of iterations required
* in the loop.
*/
for (counter = 1; counter <= k || !x; counter++) {
u8 pwd_seed[SHA256_MAC_LEN];
struct crypto_bignum *x_cand;
if (counter > 200) {
/* This should not happen in practice */
wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
break;
}
wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
pwd_seed) < 0)
break;
res = sae_test_pwd_seed_ecc(sae, pwd_seed,
prime, qr, qnr, &x_cand);
if (res < 0)
goto fail;
if (res > 0 && !x) {
wpa_printf(MSG_DEBUG,
"SAE: Selected pwd-seed with counter %u",
counter);
x = x_cand;
pwd_seed_odd = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
os_memset(pwd_seed, 0, sizeof(pwd_seed));
/*
* Use a dummy password for the following rounds, if
* any.
*/
addr[0] = dummy_password;
len[0] = dummy_password_len;
} else if (res > 0) {
crypto_bignum_deinit(x_cand, 1);
}
}
if (!x) {
wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
res = -1;
goto fail;
}
if (!sae->tmp->pwe_ecc)
sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
if (!sae->tmp->pwe_ecc)
res = -1;
else
res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
sae->tmp->pwe_ecc, x,
pwd_seed_odd);
crypto_bignum_deinit(x, 1);
if (res < 0) {
/*
* This should not happen since we already checked that there
* is a result.
*/
wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
}
fail:
crypto_bignum_deinit(qr, 0);
crypto_bignum_deinit(qnr, 0);
return res;
}
static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
const u8 *addr2, const u8 *password,
size_t password_len)
{
u8 counter;
u8 addrs[2 * ETH_ALEN];
const u8 *addr[2];
size_t len[2];
int found = 0;
if (sae->tmp->pwe_ffc == NULL) {
sae->tmp->pwe_ffc = crypto_bignum_init();
if (sae->tmp->pwe_ffc == NULL)
return -1;
}
wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
password, password_len);
/*
* H(salt, ikm) = HMAC-SHA256(salt, ikm)
* pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
* password || counter)
*/
sae_pwd_seed_key(addr1, addr2, addrs);
addr[0] = password;
len[0] = password_len;
addr[1] = &counter;
len[1] = sizeof(counter);
for (counter = 1; !found; counter++) {
u8 pwd_seed[SHA256_MAC_LEN];
int res;
if (counter > 200) {
/* This should not happen in practice */
wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
break;
}
wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
pwd_seed) < 0)
break;
res = sae_test_pwd_seed_ffc(sae, pwd_seed, sae->tmp->pwe_ffc);
if (res < 0)
break;
if (res > 0) {
wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
found = 1;
}
}
return found ? 0 : -1;
}
static int sae_derive_commit_element_ecc(struct sae_data *sae,
struct crypto_bignum *mask)
{
/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
if (!sae->tmp->own_commit_element_ecc) {
sae->tmp->own_commit_element_ecc =
crypto_ec_point_init(sae->tmp->ec);
if (!sae->tmp->own_commit_element_ecc)
return -1;
}
if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
sae->tmp->own_commit_element_ecc) < 0 ||
crypto_ec_point_invert(sae->tmp->ec,
sae->tmp->own_commit_element_ecc) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
return -1;
}
return 0;
}
static int sae_derive_commit_element_ffc(struct sae_data *sae,
struct crypto_bignum *mask)
{
/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
if (!sae->tmp->own_commit_element_ffc) {
sae->tmp->own_commit_element_ffc = crypto_bignum_init();
if (!sae->tmp->own_commit_element_ffc)
return -1;
}
if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
sae->tmp->own_commit_element_ffc) < 0 ||
crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
sae->tmp->prime,
sae->tmp->own_commit_element_ffc) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
return -1;
}
return 0;
}
static int sae_derive_commit(struct sae_data *sae)
{
struct crypto_bignum *mask;
int ret = -1;
unsigned int counter = 0;
do {
counter++;
if (counter > 100) {
/*
* This cannot really happen in practice if the random
* number generator is working. Anyway, to avoid even a
* theoretical infinite loop, break out after 100
* attemps.
*/
return -1;
}
mask = sae_get_rand_and_mask(sae);
if (mask == NULL) {
wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
return -1;
}
/* commit-scalar = (rand + mask) modulo r */
if (!sae->tmp->own_commit_scalar) {
sae->tmp->own_commit_scalar = crypto_bignum_init();
if (!sae->tmp->own_commit_scalar)
goto fail;
}
crypto_bignum_add(sae->tmp->sae_rand, mask,
sae->tmp->own_commit_scalar);
crypto_bignum_mod(sae->tmp->own_commit_scalar, sae->tmp->order,
sae->tmp->own_commit_scalar);
} while (crypto_bignum_is_zero(sae->tmp->own_commit_scalar) ||
crypto_bignum_is_one(sae->tmp->own_commit_scalar));
if ((sae->tmp->ec && sae_derive_commit_element_ecc(sae, mask) < 0) ||
(sae->tmp->dh && sae_derive_commit_element_ffc(sae, mask) < 0))
goto fail;
ret = 0;
fail:
crypto_bignum_deinit(mask, 1);
return ret;
}
int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
const u8 *password, size_t password_len,
struct sae_data *sae)
{
if (sae->tmp == NULL ||
(sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
password_len) < 0) ||
(sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
password_len) < 0) ||
sae_derive_commit(sae) < 0)
return -1;
return 0;
}
static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
{
struct crypto_ec_point *K;
int ret = -1;
K = crypto_ec_point_init(sae->tmp->ec);
if (K == NULL)
goto fail;
/*
* K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
* PEER-COMMIT-ELEMENT)))
* If K is identity element (point-at-infinity), reject
* k = F(K) (= x coordinate)
*/
if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
sae->peer_commit_scalar, K) < 0 ||
crypto_ec_point_add(sae->tmp->ec, K,
sae->tmp->peer_commit_element_ecc, K) < 0 ||
crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
goto fail;
}
wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
ret = 0;
fail:
crypto_ec_point_deinit(K, 1);
return ret;
}
static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
{
struct crypto_bignum *K;
int ret = -1;
K = crypto_bignum_init();
if (K == NULL)
goto fail;
/*
* K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
* PEER-COMMIT-ELEMENT)))
* If K is identity element (one), reject.
* k = F(K) (= x coordinate)
*/
if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
sae->tmp->prime, K) < 0 ||
crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
sae->tmp->prime, K) < 0 ||
crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
||
crypto_bignum_is_one(K) ||
crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
0) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
goto fail;
}
wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
ret = 0;
fail:
crypto_bignum_deinit(K, 1);
return ret;
}
static int sae_derive_keys(struct sae_data *sae, const u8 *k)
{
u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
u8 keyseed[SHA256_MAC_LEN];
u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
struct crypto_bignum *tmp;
int ret = -1;
tmp = crypto_bignum_init();
if (tmp == NULL)
goto fail;
/* keyseed = H(<0>32, k)
* KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
* (commit-scalar + peer-commit-scalar) modulo r)
* PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
*/
os_memset(null_key, 0, sizeof(null_key));
hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
keyseed);
wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
tmp);
crypto_bignum_mod(tmp, sae->tmp->order, tmp);
crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
val, sae->tmp->prime_len, keys, sizeof(keys));
os_memset(keyseed, 0, sizeof(keyseed));
os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
os_memset(keys, 0, sizeof(keys));
wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
ret = 0;
fail:
crypto_bignum_deinit(tmp, 0);
return ret;
}
int sae_process_commit(struct sae_data *sae)
{
u8 k[SAE_MAX_PRIME_LEN];
if (sae->tmp == NULL ||
(sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
(sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
sae_derive_keys(sae, k) < 0)
return -1;
return 0;
}
void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
const struct wpabuf *token)
{
u8 *pos;
if (sae->tmp == NULL)
return;
wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
if (token) {
wpabuf_put_buf(buf, token);
wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
wpabuf_head(token), wpabuf_len(token));
}
pos = wpabuf_put(buf, sae->tmp->prime_len);
crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
sae->tmp->prime_len, sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
pos, sae->tmp->prime_len);
if (sae->tmp->ec) {
pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
crypto_ec_point_to_bin(sae->tmp->ec,
sae->tmp->own_commit_element_ecc,
pos, pos + sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
pos, sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
pos + sae->tmp->prime_len, sae->tmp->prime_len);
} else {
pos = wpabuf_put(buf, sae->tmp->prime_len);
crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
sae->tmp->prime_len, sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
pos, sae->tmp->prime_len);
}
}
u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
{
if (allowed_groups) {
int i;
for (i = 0; allowed_groups[i] > 0; i++) {
if (allowed_groups[i] == group)
break;
}
if (allowed_groups[i] != group) {
wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
"enabled in the current configuration",
group);
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
}
if (sae->state == SAE_COMMITTED && group != sae->group) {
wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
if (group != sae->group && sae_set_group(sae, group) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
group);
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
if (sae->tmp == NULL) {
wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
if (sae->tmp->dh && !allowed_groups) {
wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
"explicit configuration enabling it", group);
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
return WLAN_STATUS_SUCCESS;
}
static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
const u8 *end, const u8 **token,
size_t *token_len)
{
if ((sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len < end - *pos) {
size_t tlen = end - (*pos + (sae->tmp->ec ? 3 : 2) *
sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
if (token)
*token = *pos;
if (token_len)
*token_len = tlen;
*pos += tlen;
} else {
if (token)
*token = NULL;
if (token_len)
*token_len = 0;
}
}
static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
const u8 *end)
{
struct crypto_bignum *peer_scalar;
if (sae->tmp->prime_len > end - *pos) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
if (peer_scalar == NULL)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
/*
* IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
* the peer and it is in Authenticated state, the new Commit Message
* shall be dropped if the peer-scalar is identical to the one used in
* the existing protocol instance.
*/
if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
"peer-commit-scalar");
crypto_bignum_deinit(peer_scalar, 0);
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
/* 1 < scalar < r */
if (crypto_bignum_is_zero(peer_scalar) ||
crypto_bignum_is_one(peer_scalar) ||
crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
crypto_bignum_deinit(peer_scalar, 0);
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
crypto_bignum_deinit(sae->peer_commit_scalar, 0);
sae->peer_commit_scalar = peer_scalar;
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
*pos, sae->tmp->prime_len);
*pos += sae->tmp->prime_len;
return WLAN_STATUS_SUCCESS;
}
static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 *pos,
const u8 *end)
{
u8 prime[SAE_MAX_ECC_PRIME_LEN];
if (2 * sae->tmp->prime_len > end - pos) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
"commit-element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
sae->tmp->prime_len) < 0)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
/* element x and y coordinates < p */
if (os_memcmp(pos, prime, sae->tmp->prime_len) >= 0 ||
os_memcmp(pos + sae->tmp->prime_len, prime,
sae->tmp->prime_len) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
"element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
pos, sae->tmp->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
pos + sae->tmp->prime_len, sae->tmp->prime_len);
crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
sae->tmp->peer_commit_element_ecc =
crypto_ec_point_from_bin(sae->tmp->ec, pos);
if (sae->tmp->peer_commit_element_ecc == NULL)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
sae->tmp->peer_commit_element_ecc)) {
wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
return WLAN_STATUS_SUCCESS;
}
static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 *pos,
const u8 *end)
{
struct crypto_bignum *res, *one;
const u8 one_bin[1] = { 0x01 };
if (sae->tmp->prime_len > end - pos) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
"commit-element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", pos,
sae->tmp->prime_len);
crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
sae->tmp->peer_commit_element_ffc =
crypto_bignum_init_set(pos, sae->tmp->prime_len);
if (sae->tmp->peer_commit_element_ffc == NULL)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
/* 1 < element < p - 1 */
res = crypto_bignum_init();
one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
if (!res || !one ||
crypto_bignum_sub(sae->tmp->prime, one, res) ||
crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
crypto_bignum_deinit(res, 0);
crypto_bignum_deinit(one, 0);
wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
crypto_bignum_deinit(one, 0);
/* scalar-op(r, ELEMENT) = 1 modulo p */
if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
sae->tmp->order, sae->tmp->prime, res) < 0 ||
!crypto_bignum_is_one(res)) {
wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
crypto_bignum_deinit(res, 0);
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
crypto_bignum_deinit(res, 0);
return WLAN_STATUS_SUCCESS;
}
static u16 sae_parse_commit_element(struct sae_data *sae, const u8 *pos,
const u8 *end)
{
if (sae->tmp->dh)
return sae_parse_commit_element_ffc(sae, pos, end);
return sae_parse_commit_element_ecc(sae, pos, end);
}
u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
const u8 **token, size_t *token_len, int *allowed_groups)
{
const u8 *pos = data, *end = data + len;
u16 res;
/* Check Finite Cyclic Group */
if (end - pos < 2)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
if (res != WLAN_STATUS_SUCCESS)
return res;
pos += 2;
/* Optional Anti-Clogging Token */
sae_parse_commit_token(sae, &pos, end, token, token_len);
/* commit-scalar */
res = sae_parse_commit_scalar(sae, &pos, end);
if (res != WLAN_STATUS_SUCCESS)
return res;
/* commit-element */
res = sae_parse_commit_element(sae, pos, end);
if (res != WLAN_STATUS_SUCCESS)
return res;
/*
* Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
* the values we sent which would be evidence of a reflection attack.
*/
if (!sae->tmp->own_commit_scalar ||
crypto_bignum_cmp(sae->tmp->own_commit_scalar,
sae->peer_commit_scalar) != 0 ||
(sae->tmp->dh &&
(!sae->tmp->own_commit_element_ffc ||
crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
sae->tmp->peer_commit_element_ffc) != 0)) ||
(sae->tmp->ec &&
(!sae->tmp->own_commit_element_ecc ||
crypto_ec_point_cmp(sae->tmp->ec,
sae->tmp->own_commit_element_ecc,
sae->tmp->peer_commit_element_ecc) != 0)))
return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
/*
* This is a reflection attack - return special value to trigger caller
* to silently discard the frame instead of replying with a specific
* status code.
*/
return SAE_SILENTLY_DISCARD;
}
static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
const struct crypto_bignum *scalar1,
const u8 *element1, size_t element1_len,
const struct crypto_bignum *scalar2,
const u8 *element2, size_t element2_len,
u8 *confirm)
{
const u8 *addr[5];
size_t len[5];
u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
/* Confirm
* CN(key, X, Y, Z, ...) =
* HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
* confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
* peer-commit-scalar, PEER-COMMIT-ELEMENT)
* verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
* PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
*/
addr[0] = sc;
len[0] = 2;
crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
sae->tmp->prime_len);
addr[1] = scalar_b1;
len[1] = sae->tmp->prime_len;
addr[2] = element1;
len[2] = element1_len;
crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
sae->tmp->prime_len);
addr[3] = scalar_b2;
len[3] = sae->tmp->prime_len;
addr[4] = element2;
len[4] = element2_len;
hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
confirm);
}
static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
const struct crypto_bignum *scalar1,
const struct crypto_ec_point *element1,
const struct crypto_bignum *scalar2,
const struct crypto_ec_point *element2,
u8 *confirm)
{
u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
element_b1 + sae->tmp->prime_len);
crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
element_b2 + sae->tmp->prime_len);
sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
}
static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
const struct crypto_bignum *scalar1,
const struct crypto_bignum *element1,
const struct crypto_bignum *scalar2,
const struct crypto_bignum *element2,
u8 *confirm)
{
u8 element_b1[SAE_MAX_PRIME_LEN];
u8 element_b2[SAE_MAX_PRIME_LEN];
crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
sae->tmp->prime_len);
crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
sae->tmp->prime_len);
sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
scalar2, element_b2, sae->tmp->prime_len, confirm);
}
void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
{
const u8 *sc;
if (sae->tmp == NULL)
return;
/* Send-Confirm */
sc = wpabuf_put(buf, 0);
wpabuf_put_le16(buf, sae->send_confirm);
sae->send_confirm++;
if (sae->tmp->ec)
sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
sae->tmp->own_commit_element_ecc,
sae->peer_commit_scalar,
sae->tmp->peer_commit_element_ecc,
wpabuf_put(buf, SHA256_MAC_LEN));
else
sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
sae->tmp->own_commit_element_ffc,
sae->peer_commit_scalar,
sae->tmp->peer_commit_element_ffc,
wpabuf_put(buf, SHA256_MAC_LEN));
}
int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
{
u8 verifier[SHA256_MAC_LEN];
if (len < 2 + SHA256_MAC_LEN) {
wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
return -1;
}
wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
if (sae->tmp == NULL) {
wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
return -1;
}
if (sae->tmp->ec)
sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
sae->tmp->peer_commit_element_ecc,
sae->tmp->own_commit_scalar,
sae->tmp->own_commit_element_ecc,
verifier);
else
sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
sae->tmp->peer_commit_element_ffc,
sae->tmp->own_commit_scalar,
sae->tmp->own_commit_element_ffc,
verifier);
if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) {
wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
data + 2, SHA256_MAC_LEN);
wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
verifier, SHA256_MAC_LEN);
return -1;
}
return 0;
}