hostapd/src/common/hw_features_common.c
Jouni Malinen 69dd408fb8 EHT: More accurate no-second-channel-offset checks when puncturing
This is needed to allow some cases where puncturing prevents HT/VHT/HE
from using the full channel bandwidth.

Signed-off-by: Jouni Malinen <quic_jouni@quicinc.com>
2024-03-08 10:20:28 +02:00

1035 lines
25 KiB
C

/*
* Common hostapd/wpa_supplicant HW features
* Copyright (c) 2002-2013, Jouni Malinen <j@w1.fi>
* Copyright (c) 2015, Qualcomm Atheros, Inc.
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "defs.h"
#include "ieee802_11_defs.h"
#include "ieee802_11_common.h"
#include "hw_features_common.h"
struct hostapd_channel_data * hw_get_channel_chan(struct hostapd_hw_modes *mode,
int chan, int *freq)
{
int i;
if (freq)
*freq = 0;
if (!mode)
return NULL;
for (i = 0; i < mode->num_channels; i++) {
struct hostapd_channel_data *ch = &mode->channels[i];
if (ch->chan == chan) {
if (freq)
*freq = ch->freq;
return ch;
}
}
return NULL;
}
struct hostapd_channel_data *
hw_mode_get_channel(struct hostapd_hw_modes *mode, int freq, int *chan)
{
int i;
for (i = 0; i < mode->num_channels; i++) {
struct hostapd_channel_data *ch = &mode->channels[i];
if (ch->freq == freq) {
if (chan)
*chan = ch->chan;
return ch;
}
}
return NULL;
}
struct hostapd_channel_data *
hw_get_channel_freq(enum hostapd_hw_mode mode, int freq, int *chan,
struct hostapd_hw_modes *hw_features, int num_hw_features)
{
struct hostapd_channel_data *chan_data;
int i;
if (chan)
*chan = 0;
if (!hw_features)
return NULL;
for (i = 0; i < num_hw_features; i++) {
struct hostapd_hw_modes *curr_mode = &hw_features[i];
if (curr_mode->mode != mode)
continue;
chan_data = hw_mode_get_channel(curr_mode, freq, chan);
if (chan_data)
return chan_data;
}
return NULL;
}
int hw_get_freq(struct hostapd_hw_modes *mode, int chan)
{
int freq;
hw_get_channel_chan(mode, chan, &freq);
return freq;
}
int hw_get_chan(enum hostapd_hw_mode mode, int freq,
struct hostapd_hw_modes *hw_features, int num_hw_features)
{
int chan;
hw_get_channel_freq(mode, freq, &chan, hw_features, num_hw_features);
return chan;
}
int allowed_ht40_channel_pair(enum hostapd_hw_mode mode,
struct hostapd_channel_data *p_chan,
struct hostapd_channel_data *s_chan)
{
int ok, first;
int allowed[] = { 36, 44, 52, 60, 100, 108, 116, 124, 132, 140,
149, 157, 165, 173, 184, 192 };
size_t k;
int ht40_plus, pri_chan, sec_chan;
if (!p_chan || !s_chan)
return 0;
pri_chan = p_chan->chan;
sec_chan = s_chan->chan;
ht40_plus = pri_chan < sec_chan;
if (pri_chan == sec_chan || !sec_chan) {
if (chan_pri_allowed(p_chan))
return 1; /* HT40 not used */
wpa_printf(MSG_ERROR, "Channel %d is not allowed as primary",
pri_chan);
return 0;
}
wpa_printf(MSG_DEBUG,
"HT40: control channel: %d (%d MHz), secondary channel: %d (%d MHz)",
pri_chan, p_chan->freq, sec_chan, s_chan->freq);
/* Verify that HT40 secondary channel is an allowed 20 MHz
* channel */
if ((s_chan->flag & HOSTAPD_CHAN_DISABLED) ||
(ht40_plus && !(p_chan->allowed_bw & HOSTAPD_CHAN_WIDTH_40P)) ||
(!ht40_plus && !(p_chan->allowed_bw & HOSTAPD_CHAN_WIDTH_40M))) {
wpa_printf(MSG_ERROR, "HT40 secondary channel %d not allowed",
sec_chan);
return 0;
}
/*
* Verify that HT40 primary,secondary channel pair is allowed per
* IEEE 802.11n Annex J. This is only needed for 5 GHz band since
* 2.4 GHz rules allow all cases where the secondary channel fits into
* the list of allowed channels (already checked above).
*/
if (mode != HOSTAPD_MODE_IEEE80211A)
return 1;
first = pri_chan < sec_chan ? pri_chan : sec_chan;
ok = 0;
for (k = 0; k < ARRAY_SIZE(allowed); k++) {
if (first == allowed[k]) {
ok = 1;
break;
}
}
if (!ok) {
wpa_printf(MSG_ERROR, "HT40 channel pair (%d, %d) not allowed",
pri_chan, sec_chan);
return 0;
}
return 1;
}
void get_pri_sec_chan(struct wpa_scan_res *bss, int *pri_chan, int *sec_chan)
{
struct ieee80211_ht_operation *oper;
struct ieee802_11_elems elems;
*pri_chan = *sec_chan = 0;
if (ieee802_11_parse_elems((u8 *) (bss + 1), bss->ie_len, &elems, 0) !=
ParseFailed && elems.ht_operation) {
oper = (struct ieee80211_ht_operation *) elems.ht_operation;
*pri_chan = oper->primary_chan;
if (oper->ht_param & HT_INFO_HT_PARAM_STA_CHNL_WIDTH) {
int sec = oper->ht_param &
HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK;
if (sec == HT_INFO_HT_PARAM_SECONDARY_CHNL_ABOVE)
*sec_chan = *pri_chan + 4;
else if (sec == HT_INFO_HT_PARAM_SECONDARY_CHNL_BELOW)
*sec_chan = *pri_chan - 4;
}
}
}
int check_40mhz_5g(struct wpa_scan_results *scan_res,
struct hostapd_channel_data *pri_chan,
struct hostapd_channel_data *sec_chan)
{
int pri_bss, sec_bss;
int bss_pri_chan, bss_sec_chan;
size_t i;
int match;
if (!scan_res || !pri_chan || !sec_chan ||
pri_chan->freq == sec_chan->freq)
return 0;
/*
* Switch PRI/SEC channels if Beacons were detected on selected SEC
* channel, but not on selected PRI channel.
*/
pri_bss = sec_bss = 0;
for (i = 0; i < scan_res->num; i++) {
struct wpa_scan_res *bss = scan_res->res[i];
if (bss->freq == pri_chan->freq)
pri_bss++;
else if (bss->freq == sec_chan->freq)
sec_bss++;
}
if (sec_bss && !pri_bss) {
wpa_printf(MSG_INFO,
"Switch own primary and secondary channel to get secondary channel with no Beacons from other BSSes");
return 2;
}
/*
* Match PRI/SEC channel with any existing HT40 BSS on the same
* channels that we are about to use (if already mixed order in
* existing BSSes, use own preference).
*/
match = 0;
for (i = 0; i < scan_res->num; i++) {
struct wpa_scan_res *bss = scan_res->res[i];
get_pri_sec_chan(bss, &bss_pri_chan, &bss_sec_chan);
if (pri_chan->chan == bss_pri_chan &&
sec_chan->chan == bss_sec_chan) {
match = 1;
break;
}
}
if (!match) {
for (i = 0; i < scan_res->num; i++) {
struct wpa_scan_res *bss = scan_res->res[i];
get_pri_sec_chan(bss, &bss_pri_chan, &bss_sec_chan);
if (pri_chan->chan == bss_sec_chan &&
sec_chan->chan == bss_pri_chan) {
wpa_printf(MSG_INFO, "Switch own primary and "
"secondary channel due to BSS "
"overlap with " MACSTR,
MAC2STR(bss->bssid));
return 2;
}
}
}
return 1;
}
static int check_20mhz_bss(struct wpa_scan_res *bss, int pri_freq, int start,
int end)
{
struct ieee802_11_elems elems;
struct ieee80211_ht_operation *oper;
if (bss->freq < start || bss->freq > end || bss->freq == pri_freq)
return 0;
if (ieee802_11_parse_elems((u8 *) (bss + 1), bss->ie_len, &elems, 0) ==
ParseFailed)
return 0;
if (!elems.ht_capabilities) {
wpa_printf(MSG_DEBUG, "Found overlapping legacy BSS: "
MACSTR " freq=%d", MAC2STR(bss->bssid), bss->freq);
return 1;
}
if (elems.ht_operation) {
oper = (struct ieee80211_ht_operation *) elems.ht_operation;
if (oper->ht_param & HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK)
return 0;
wpa_printf(MSG_DEBUG, "Found overlapping 20 MHz HT BSS: "
MACSTR " freq=%d", MAC2STR(bss->bssid), bss->freq);
return 1;
}
return 0;
}
int check_40mhz_2g4(struct hostapd_hw_modes *mode,
struct wpa_scan_results *scan_res, int pri_chan,
int sec_chan)
{
int pri_freq, sec_freq;
int affected_start, affected_end;
size_t i;
if (!mode || !scan_res || !pri_chan || !sec_chan ||
pri_chan == sec_chan)
return 0;
pri_freq = hw_get_freq(mode, pri_chan);
sec_freq = hw_get_freq(mode, sec_chan);
affected_start = (pri_freq + sec_freq) / 2 - 25;
affected_end = (pri_freq + sec_freq) / 2 + 25;
wpa_printf(MSG_DEBUG, "40 MHz affected channel range: [%d,%d] MHz",
affected_start, affected_end);
for (i = 0; i < scan_res->num; i++) {
struct wpa_scan_res *bss = scan_res->res[i];
int pri = bss->freq;
int sec = pri;
struct ieee802_11_elems elems;
/* Check for overlapping 20 MHz BSS */
if (check_20mhz_bss(bss, pri_freq, affected_start,
affected_end)) {
wpa_printf(MSG_DEBUG,
"Overlapping 20 MHz BSS is found");
return 0;
}
get_pri_sec_chan(bss, &pri_chan, &sec_chan);
if (sec_chan) {
if (sec_chan < pri_chan)
sec = pri - 20;
else
sec = pri + 20;
}
if ((pri < affected_start || pri > affected_end) &&
(sec < affected_start || sec > affected_end))
continue; /* not within affected channel range */
wpa_printf(MSG_DEBUG, "Neighboring BSS: " MACSTR
" freq=%d pri=%d sec=%d",
MAC2STR(bss->bssid), bss->freq, pri_chan, sec_chan);
if (sec_chan) {
if (pri_freq != pri || sec_freq != sec) {
wpa_printf(MSG_DEBUG,
"40 MHz pri/sec mismatch with BSS "
MACSTR
" <%d,%d> (chan=%d%c) vs. <%d,%d>",
MAC2STR(bss->bssid),
pri, sec, pri_chan,
sec > pri ? '+' : '-',
pri_freq, sec_freq);
return 0;
}
}
if (ieee802_11_parse_elems((u8 *) (bss + 1), bss->ie_len,
&elems, 0) != ParseFailed &&
elems.ht_capabilities) {
struct ieee80211_ht_capabilities *ht_cap =
(struct ieee80211_ht_capabilities *)
elems.ht_capabilities;
if (le_to_host16(ht_cap->ht_capabilities_info) &
HT_CAP_INFO_40MHZ_INTOLERANT) {
wpa_printf(MSG_DEBUG,
"40 MHz Intolerant is set on channel %d in BSS "
MACSTR, pri, MAC2STR(bss->bssid));
return 0;
}
}
}
return 1;
}
static void punct_update_legacy_bw_80(u8 bitmap, u8 pri_chan, u8 *seg0)
{
u8 first_chan = *seg0 - 6, sec_chan;
switch (bitmap) {
case 0x6:
*seg0 = 0;
return;
case 0x8:
case 0x4:
case 0x2:
case 0x1:
case 0xC:
case 0x3:
if (pri_chan < *seg0)
*seg0 -= 4;
else
*seg0 += 4;
break;
}
if (pri_chan < *seg0)
sec_chan = pri_chan + 4;
else
sec_chan = pri_chan - 4;
if (bitmap & BIT((sec_chan - first_chan) / 4))
*seg0 = 0;
}
static void punct_update_legacy_bw_160(u8 bitmap, u8 pri,
enum oper_chan_width *width, u8 *seg0)
{
if (pri < *seg0) {
*seg0 -= 8;
if (bitmap & 0x0F) {
*width = 0;
punct_update_legacy_bw_80(bitmap & 0xF, pri, seg0);
}
} else {
*seg0 += 8;
if (bitmap & 0xF0) {
*width = 0;
punct_update_legacy_bw_80((bitmap & 0xF0) >> 4, pri,
seg0);
}
}
}
void punct_update_legacy_bw(u16 bitmap, u8 pri, enum oper_chan_width *width,
u8 *seg0, u8 *seg1)
{
if (*width == CONF_OPER_CHWIDTH_80MHZ && (bitmap & 0xF)) {
*width = CONF_OPER_CHWIDTH_USE_HT;
punct_update_legacy_bw_80(bitmap & 0xF, pri, seg0);
}
if (*width == CONF_OPER_CHWIDTH_160MHZ && (bitmap & 0xFF)) {
*width = CONF_OPER_CHWIDTH_80MHZ;
*seg1 = 0;
punct_update_legacy_bw_160(bitmap & 0xFF, pri, width, seg0);
}
/* TODO: 320 MHz */
}
int hostapd_set_freq_params(struct hostapd_freq_params *data,
enum hostapd_hw_mode mode,
int freq, int channel, int enable_edmg,
u8 edmg_channel, int ht_enabled,
int vht_enabled, int he_enabled,
bool eht_enabled, int sec_channel_offset,
enum oper_chan_width oper_chwidth,
int center_segment0,
int center_segment1, u32 vht_caps,
struct he_capabilities *he_cap,
struct eht_capabilities *eht_cap,
u16 punct_bitmap)
{
enum oper_chan_width oper_chwidth_legacy;
u8 seg0_legacy, seg1_legacy;
if (!he_cap || !he_cap->he_supported)
he_enabled = 0;
if (!eht_cap || !eht_cap->eht_supported)
eht_enabled = 0;
os_memset(data, 0, sizeof(*data));
data->mode = mode;
data->freq = freq;
data->channel = channel;
data->ht_enabled = ht_enabled;
data->vht_enabled = vht_enabled;
data->he_enabled = he_enabled;
data->eht_enabled = eht_enabled;
data->sec_channel_offset = sec_channel_offset;
data->center_freq1 = freq + sec_channel_offset * 10;
data->center_freq2 = 0;
if (oper_chwidth == CONF_OPER_CHWIDTH_80MHZ)
data->bandwidth = 80;
else if (oper_chwidth == CONF_OPER_CHWIDTH_160MHZ ||
oper_chwidth == CONF_OPER_CHWIDTH_80P80MHZ)
data->bandwidth = 160;
else if (oper_chwidth == CONF_OPER_CHWIDTH_320MHZ)
data->bandwidth = 320;
else if (sec_channel_offset)
data->bandwidth = 40;
else
data->bandwidth = 20;
hostapd_encode_edmg_chan(enable_edmg, edmg_channel, channel,
&data->edmg);
if (is_6ghz_freq(freq)) {
if (!data->he_enabled && !data->eht_enabled) {
wpa_printf(MSG_ERROR,
"Can't set 6 GHz mode - HE or EHT aren't enabled");
return -1;
}
if (center_idx_to_bw_6ghz(channel) < 0) {
wpa_printf(MSG_ERROR,
"Invalid control channel for 6 GHz band");
return -1;
}
if (!center_segment0) {
if (center_segment1) {
wpa_printf(MSG_ERROR,
"Segment 0 center frequency isn't set");
return -1;
}
if (!sec_channel_offset)
data->center_freq1 = data->freq;
} else {
int freq1, freq2 = 0;
int bw = center_idx_to_bw_6ghz(center_segment0);
int opclass;
if (bw < 0) {
wpa_printf(MSG_ERROR,
"Invalid center frequency index for 6 GHz");
return -1;
}
/* The 6 GHz channel 2 uses a different operating class
*/
opclass = center_segment0 == 2 ? 136 : 131;
freq1 = ieee80211_chan_to_freq(NULL, opclass,
center_segment0);
if (freq1 < 0) {
wpa_printf(MSG_ERROR,
"Invalid segment 0 center frequency for 6 GHz");
return -1;
}
if (center_segment1) {
if (center_idx_to_bw_6ghz(center_segment1) != 2 ||
bw != 2) {
wpa_printf(MSG_ERROR,
"6 GHz 80+80 MHz configuration doesn't use valid 80 MHz channels");
return -1;
}
freq2 = ieee80211_chan_to_freq(NULL, 131,
center_segment1);
if (freq2 < 0) {
wpa_printf(MSG_ERROR,
"Invalid segment 1 center frequency for UHB");
return -1;
}
}
data->bandwidth = (1 << (u8) bw) * 20;
data->center_freq1 = freq1;
data->center_freq2 = freq2;
}
data->ht_enabled = 0;
data->vht_enabled = 0;
return 0;
}
if (data->eht_enabled) switch (oper_chwidth) {
case CONF_OPER_CHWIDTH_320MHZ:
if (!(eht_cap->phy_cap[EHT_PHYCAP_320MHZ_IN_6GHZ_SUPPORT_IDX] &
EHT_PHYCAP_320MHZ_IN_6GHZ_SUPPORT_MASK)) {
wpa_printf(MSG_ERROR,
"320 MHz channel width is not supported in 5 or 6 GHz");
return -1;
}
break;
default:
break;
}
if (data->he_enabled || data->eht_enabled) switch (oper_chwidth) {
case CONF_OPER_CHWIDTH_USE_HT:
if (sec_channel_offset == 0)
break;
if (mode == HOSTAPD_MODE_IEEE80211G) {
if (he_cap &&
!(he_cap->phy_cap[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX] &
HE_PHYCAP_CHANNEL_WIDTH_SET_40MHZ_IN_2G)) {
wpa_printf(MSG_ERROR,
"40 MHz channel width is not supported in 2.4 GHz");
return -1;
}
break;
}
/* fall through */
case CONF_OPER_CHWIDTH_80MHZ:
if (mode == HOSTAPD_MODE_IEEE80211A) {
if (he_cap &&
!(he_cap->phy_cap[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX] &
HE_PHYCAP_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)) {
wpa_printf(MSG_ERROR,
"40/80 MHz channel width is not supported in 5/6 GHz");
return -1;
}
}
break;
case CONF_OPER_CHWIDTH_80P80MHZ:
if (he_cap &&
!(he_cap->phy_cap[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX] &
HE_PHYCAP_CHANNEL_WIDTH_SET_80PLUS80MHZ_IN_5G)) {
wpa_printf(MSG_ERROR,
"80+80 MHz channel width is not supported in 5/6 GHz");
return -1;
}
break;
case CONF_OPER_CHWIDTH_160MHZ:
if (he_cap &&
!(he_cap->phy_cap[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX] &
HE_PHYCAP_CHANNEL_WIDTH_SET_160MHZ_IN_5G)) {
wpa_printf(MSG_ERROR,
"160 MHz channel width is not supported in 5 / 6GHz");
return -1;
}
break;
default:
break;
} else if (data->vht_enabled) switch (oper_chwidth) {
case CONF_OPER_CHWIDTH_USE_HT:
break;
case CONF_OPER_CHWIDTH_80P80MHZ:
if (!(vht_caps & VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ)) {
wpa_printf(MSG_ERROR,
"80+80 channel width is not supported!");
return -1;
}
/* fall through */
case CONF_OPER_CHWIDTH_80MHZ:
break;
case CONF_OPER_CHWIDTH_160MHZ:
if (!(vht_caps & (VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))) {
wpa_printf(MSG_ERROR,
"160 MHz channel width is not supported!");
return -1;
}
break;
default:
break;
}
oper_chwidth_legacy = oper_chwidth;
seg0_legacy = center_segment0;
seg1_legacy = center_segment1;
if (punct_bitmap)
punct_update_legacy_bw(punct_bitmap, channel,
&oper_chwidth_legacy,
&seg0_legacy, &seg1_legacy);
if (data->eht_enabled || data->he_enabled ||
data->vht_enabled) switch (oper_chwidth) {
case CONF_OPER_CHWIDTH_USE_HT:
if (center_segment1 ||
(center_segment0 != 0 &&
5000 + center_segment0 * 5 != data->center_freq1 &&
2407 + center_segment0 * 5 != data->center_freq1)) {
wpa_printf(MSG_ERROR,
"20/40 MHz: center segment 0 (=%d) and center freq 1 (=%d) not in sync",
center_segment0, data->center_freq1);
return -1;
}
break;
case CONF_OPER_CHWIDTH_80P80MHZ:
if (center_segment1 == center_segment0 + 4 ||
center_segment1 == center_segment0 - 4) {
wpa_printf(MSG_ERROR,
"80+80 MHz: center segment 1 only 20 MHz apart");
return -1;
}
data->center_freq2 = 5000 + center_segment1 * 5;
/* fall through */
case CONF_OPER_CHWIDTH_80MHZ:
data->bandwidth = 80;
if (!sec_channel_offset &&
oper_chwidth_legacy != CONF_OPER_CHWIDTH_USE_HT) {
wpa_printf(MSG_ERROR,
"80/80+80 MHz: no second channel offset");
return -1;
}
if (oper_chwidth == CONF_OPER_CHWIDTH_80MHZ &&
center_segment1) {
wpa_printf(MSG_ERROR,
"80 MHz: center segment 1 configured");
return -1;
}
if (oper_chwidth == CONF_OPER_CHWIDTH_80P80MHZ &&
!center_segment1) {
wpa_printf(MSG_ERROR,
"80+80 MHz: center segment 1 not configured");
return -1;
}
if (!center_segment0) {
if (channel <= 48)
center_segment0 = 42;
else if (channel <= 64)
center_segment0 = 58;
else if (channel <= 112)
center_segment0 = 106;
else if (channel <= 128)
center_segment0 = 122;
else if (channel <= 144)
center_segment0 = 138;
else if (channel <= 161)
center_segment0 = 155;
else if (channel <= 177)
center_segment0 = 171;
data->center_freq1 = 5000 + center_segment0 * 5;
} else {
/*
* Note: HT/VHT config and params are coupled. Check if
* HT40 channel band is in VHT80 Pri channel band
* configuration.
*/
if (center_segment0 == channel + 6 ||
center_segment0 == channel + 2 ||
center_segment0 == channel - 2 ||
center_segment0 == channel - 6)
data->center_freq1 = 5000 + center_segment0 * 5;
else {
wpa_printf(MSG_ERROR,
"Wrong coupling between HT and VHT/HE channel setting");
return -1;
}
}
break;
case CONF_OPER_CHWIDTH_160MHZ:
data->bandwidth = 160;
if (center_segment1) {
wpa_printf(MSG_ERROR,
"160 MHz: center segment 1 should not be set");
return -1;
}
if (!sec_channel_offset &&
oper_chwidth_legacy != CONF_OPER_CHWIDTH_USE_HT) {
wpa_printf(MSG_ERROR,
"160 MHz: second channel offset not set");
return -1;
}
/*
* Note: HT/VHT config and params are coupled. Check if
* HT40 channel band is in VHT160 channel band configuration.
*/
if (center_segment0 == channel + 14 ||
center_segment0 == channel + 10 ||
center_segment0 == channel + 6 ||
center_segment0 == channel + 2 ||
center_segment0 == channel - 2 ||
center_segment0 == channel - 6 ||
center_segment0 == channel - 10 ||
center_segment0 == channel - 14)
data->center_freq1 = 5000 + center_segment0 * 5;
else {
wpa_printf(MSG_ERROR,
"160 MHz: HT40 channel band is not in 160 MHz band");
return -1;
}
break;
case CONF_OPER_CHWIDTH_320MHZ:
data->bandwidth = 320;
if (!data->eht_enabled || !is_6ghz_freq(freq)) {
wpa_printf(MSG_ERROR,
"320 MHz: EHT not enabled or not a 6 GHz channel");
return -1;
}
if (center_segment1) {
wpa_printf(MSG_ERROR,
"320 MHz: center segment 1 should not be set");
return -1;
}
if (center_segment0 == channel + 30 ||
center_segment0 == channel + 26 ||
center_segment0 == channel + 22 ||
center_segment0 == channel + 18 ||
center_segment0 == channel + 14 ||
center_segment0 == channel + 10 ||
center_segment0 == channel + 6 ||
center_segment0 == channel + 2 ||
center_segment0 == channel - 2 ||
center_segment0 == channel - 6 ||
center_segment0 == channel - 10 ||
center_segment0 == channel - 14 ||
center_segment0 == channel - 18 ||
center_segment0 == channel - 22 ||
center_segment0 == channel - 26 ||
center_segment0 == channel - 30)
data->center_freq1 = 5000 + center_segment0 * 5;
else {
wpa_printf(MSG_ERROR,
"320 MHz: wrong center segment 0");
return -1;
}
break;
default:
break;
}
return 0;
}
void set_disable_ht40(struct ieee80211_ht_capabilities *htcaps,
int disabled)
{
/* Masking these out disables HT40 */
le16 msk = host_to_le16(HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET |
HT_CAP_INFO_SHORT_GI40MHZ);
if (disabled)
htcaps->ht_capabilities_info &= ~msk;
else
htcaps->ht_capabilities_info |= msk;
}
#ifdef CONFIG_IEEE80211AC
static int _ieee80211ac_cap_check(u32 hw, u32 conf, u32 cap,
const char *name)
{
u32 req_cap = conf & cap;
/*
* Make sure we support all requested capabilities.
* NOTE: We assume that 'cap' represents a capability mask,
* not a discrete value.
*/
if ((hw & req_cap) != req_cap) {
wpa_printf(MSG_ERROR,
"Driver does not support configured VHT capability [%s]",
name);
return 0;
}
return 1;
}
static int ieee80211ac_cap_check_max(u32 hw, u32 conf, u32 mask,
unsigned int shift,
const char *name)
{
u32 hw_max = hw & mask;
u32 conf_val = conf & mask;
if (conf_val > hw_max) {
wpa_printf(MSG_ERROR,
"Configured VHT capability [%s] exceeds max value supported by the driver (%d > %d)",
name, conf_val >> shift, hw_max >> shift);
return 0;
}
return 1;
}
int ieee80211ac_cap_check(u32 hw, u32 conf)
{
#define VHT_CAP_CHECK(cap) \
do { \
if (!_ieee80211ac_cap_check(hw, conf, cap, #cap)) \
return 0; \
} while (0)
#define VHT_CAP_CHECK_MAX(cap) \
do { \
if (!ieee80211ac_cap_check_max(hw, conf, cap, cap ## _SHIFT, \
#cap)) \
return 0; \
} while (0)
VHT_CAP_CHECK_MAX(VHT_CAP_MAX_MPDU_LENGTH_MASK);
VHT_CAP_CHECK_MAX(VHT_CAP_SUPP_CHAN_WIDTH_MASK);
VHT_CAP_CHECK(VHT_CAP_RXLDPC);
VHT_CAP_CHECK(VHT_CAP_SHORT_GI_80);
VHT_CAP_CHECK(VHT_CAP_SHORT_GI_160);
VHT_CAP_CHECK(VHT_CAP_TXSTBC);
VHT_CAP_CHECK_MAX(VHT_CAP_RXSTBC_MASK);
VHT_CAP_CHECK(VHT_CAP_SU_BEAMFORMER_CAPABLE);
VHT_CAP_CHECK(VHT_CAP_SU_BEAMFORMEE_CAPABLE);
VHT_CAP_CHECK_MAX(VHT_CAP_BEAMFORMEE_STS_MAX);
VHT_CAP_CHECK_MAX(VHT_CAP_SOUNDING_DIMENSION_MAX);
VHT_CAP_CHECK(VHT_CAP_MU_BEAMFORMER_CAPABLE);
VHT_CAP_CHECK(VHT_CAP_MU_BEAMFORMEE_CAPABLE);
VHT_CAP_CHECK(VHT_CAP_VHT_TXOP_PS);
VHT_CAP_CHECK(VHT_CAP_HTC_VHT);
VHT_CAP_CHECK_MAX(VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MAX);
VHT_CAP_CHECK(VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB);
VHT_CAP_CHECK(VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB);
VHT_CAP_CHECK(VHT_CAP_RX_ANTENNA_PATTERN);
VHT_CAP_CHECK(VHT_CAP_TX_ANTENNA_PATTERN);
#undef VHT_CAP_CHECK
#undef VHT_CAP_CHECK_MAX
return 1;
}
#endif /* CONFIG_IEEE80211AC */
u32 num_chan_to_bw(int num_chans)
{
switch (num_chans) {
case 2:
case 4:
case 8:
case 16:
return num_chans * 20;
default:
return 20;
}
}
/* check if BW is applicable for channel */
int chan_bw_allowed(const struct hostapd_channel_data *chan, u32 bw,
int ht40_plus, int pri)
{
u32 bw_mask;
switch (bw) {
case 20:
bw_mask = HOSTAPD_CHAN_WIDTH_20;
break;
case 40:
/* HT 40 MHz support declared only for primary channel,
* just skip 40 MHz secondary checking */
if (pri && ht40_plus)
bw_mask = HOSTAPD_CHAN_WIDTH_40P;
else if (pri && !ht40_plus)
bw_mask = HOSTAPD_CHAN_WIDTH_40M;
else
bw_mask = 0;
break;
case 80:
bw_mask = HOSTAPD_CHAN_WIDTH_80;
break;
case 160:
bw_mask = HOSTAPD_CHAN_WIDTH_160;
break;
case 320:
bw_mask = HOSTAPD_CHAN_WIDTH_320;
break;
default:
bw_mask = 0;
break;
}
return (chan->allowed_bw & bw_mask) == bw_mask;
}
/* check if channel is allowed to be used as primary */
int chan_pri_allowed(const struct hostapd_channel_data *chan)
{
return !(chan->flag & HOSTAPD_CHAN_DISABLED) &&
(chan->allowed_bw & HOSTAPD_CHAN_WIDTH_20);
}
/* IEEE P802.11be/D3.0, Table 36-30 - Definition of the Punctured Channel
* Information field in the U-SIG for an EHT MU PPDU using non-OFDMA
* transmissions */
static const u16 punct_bitmap_80[] = { 0xF, 0xE, 0xD, 0xB, 0x7 };
static const u16 punct_bitmap_160[] = {
0xFF, 0xFE, 0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF,
0x7F, 0xFC, 0xF3, 0xCF, 0x3F
};
static const u16 punct_bitmap_320[] = {
0xFFFF, 0xFFFC, 0xFFF3, 0xFFCF, 0xFF3F, 0xFCFF, 0xF3FF, 0xCFFF,
0x3FFF, 0xFFF0, 0xFF0F, 0xF0FF, 0x0FFF, 0xFFC0, 0xFF30, 0xFCF0,
0xF3F0, 0xCFF0, 0x3FF0, 0x0FFC, 0x0FF3, 0x0FCF, 0x0F3F, 0x0CFF,
0x03FF
};
bool is_punct_bitmap_valid(u16 bw, u16 pri_ch_bit_pos, u16 punct_bitmap)
{
u8 i, count;
u16 bitmap;
const u16 *valid_bitmaps;
if (!punct_bitmap) /* All channels active */
return true;
bitmap = ~punct_bitmap;
switch (bw) {
case 80:
bitmap &= 0xF;
valid_bitmaps = punct_bitmap_80;
count = ARRAY_SIZE(punct_bitmap_80);
break;
case 160:
bitmap &= 0xFF;
valid_bitmaps = punct_bitmap_160;
count = ARRAY_SIZE(punct_bitmap_160);
break;
case 320:
bitmap &= 0xFFFF;
valid_bitmaps = punct_bitmap_320;
count = ARRAY_SIZE(punct_bitmap_320);
break;
default:
return false;
}
if (!bitmap) /* No channel active */
return false;
if (!(bitmap & BIT(pri_ch_bit_pos))) {
wpa_printf(MSG_DEBUG, "Primary channel cannot be punctured");
return false;
}
for (i = 0; i < count; i++) {
if (valid_bitmaps[i] == bitmap)
return true;
}
return false;
}