hostapd/src/crypto/crypto_wolfssl.c
Jouni Malinen e0e15fc236 Remove unused crypto_bignum_bits()
This wrapper function is not needed anymore.

Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
2019-04-26 17:43:45 +03:00

1780 lines
34 KiB
C

/*
* Wrapper functions for libwolfssl
* Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto.h"
/* wolfSSL headers */
#include <wolfssl/options.h>
#include <wolfssl/wolfcrypt/md4.h>
#include <wolfssl/wolfcrypt/md5.h>
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/sha256.h>
#include <wolfssl/wolfcrypt/sha512.h>
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/pwdbased.h>
#include <wolfssl/wolfcrypt/arc4.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/aes.h>
#include <wolfssl/wolfcrypt/dh.h>
#include <wolfssl/wolfcrypt/cmac.h>
#include <wolfssl/wolfcrypt/ecc.h>
#include <wolfssl/openssl/bn.h>
#ifndef CONFIG_FIPS
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
Md4 md4;
size_t i;
if (TEST_FAIL())
return -1;
wc_InitMd4(&md4);
for (i = 0; i < num_elem; i++)
wc_Md4Update(&md4, addr[i], len[i]);
wc_Md4Final(&md4, mac);
return 0;
}
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
wc_Md5 md5;
size_t i;
if (TEST_FAIL())
return -1;
wc_InitMd5(&md5);
for (i = 0; i < num_elem; i++)
wc_Md5Update(&md5, addr[i], len[i]);
wc_Md5Final(&md5, mac);
return 0;
}
#endif /* CONFIG_FIPS */
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
wc_Sha sha;
size_t i;
if (TEST_FAIL())
return -1;
wc_InitSha(&sha);
for (i = 0; i < num_elem; i++)
wc_ShaUpdate(&sha, addr[i], len[i]);
wc_ShaFinal(&sha, mac);
return 0;
}
#ifndef NO_SHA256_WRAPPER
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac)
{
wc_Sha256 sha256;
size_t i;
if (TEST_FAIL())
return -1;
wc_InitSha256(&sha256);
for (i = 0; i < num_elem; i++)
wc_Sha256Update(&sha256, addr[i], len[i]);
wc_Sha256Final(&sha256, mac);
return 0;
}
#endif /* NO_SHA256_WRAPPER */
#ifdef CONFIG_SHA384
int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac)
{
wc_Sha384 sha384;
size_t i;
if (TEST_FAIL())
return -1;
wc_InitSha384(&sha384);
for (i = 0; i < num_elem; i++)
wc_Sha384Update(&sha384, addr[i], len[i]);
wc_Sha384Final(&sha384, mac);
return 0;
}
#endif /* CONFIG_SHA384 */
#ifdef CONFIG_SHA512
int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac)
{
wc_Sha512 sha512;
size_t i;
if (TEST_FAIL())
return -1;
wc_InitSha512(&sha512);
for (i = 0; i < num_elem; i++)
wc_Sha512Update(&sha512, addr[i], len[i]);
wc_Sha512Final(&sha512, mac);
return 0;
}
#endif /* CONFIG_SHA512 */
static int wolfssl_hmac_vector(int type, const u8 *key,
size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac,
unsigned int mdlen)
{
Hmac hmac;
size_t i;
(void) mdlen;
if (TEST_FAIL())
return -1;
if (wc_HmacSetKey(&hmac, type, key, (word32) key_len) != 0)
return -1;
for (i = 0; i < num_elem; i++)
if (wc_HmacUpdate(&hmac, addr[i], len[i]) != 0)
return -1;
if (wc_HmacFinal(&hmac, mac) != 0)
return -1;
return 0;
}
#ifndef CONFIG_FIPS
int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return wolfssl_hmac_vector(WC_MD5, key, key_len, num_elem, addr, len,
mac, 16);
}
int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_FIPS */
int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return wolfssl_hmac_vector(WC_SHA, key, key_len, num_elem, addr, len,
mac, 20);
}
int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}
#ifdef CONFIG_SHA256
int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return wolfssl_hmac_vector(WC_SHA256, key, key_len, num_elem, addr, len,
mac, 32);
}
int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA256 */
#ifdef CONFIG_SHA384
int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return wolfssl_hmac_vector(WC_SHA384, key, key_len, num_elem, addr, len,
mac, 48);
}
int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA384 */
#ifdef CONFIG_SHA512
int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return wolfssl_hmac_vector(WC_SHA512, key, key_len, num_elem, addr, len,
mac, 64);
}
int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA512 */
int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
int iterations, u8 *buf, size_t buflen)
{
if (wc_PBKDF2(buf, (const byte*)passphrase, os_strlen(passphrase), ssid,
ssid_len, iterations, buflen, WC_SHA) != 0)
return -1;
return 0;
}
#ifdef CONFIG_DES
int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
{
Des des;
u8 pkey[8], next, tmp;
int i;
/* Add parity bits to the key */
next = 0;
for (i = 0; i < 7; i++) {
tmp = key[i];
pkey[i] = (tmp >> i) | next | 1;
next = tmp << (7 - i);
}
pkey[i] = next | 1;
wc_Des_SetKey(&des, pkey, NULL, DES_ENCRYPTION);
wc_Des_EcbEncrypt(&des, cypher, clear, DES_BLOCK_SIZE);
return 0;
}
#endif /* CONFIG_DES */
void * aes_encrypt_init(const u8 *key, size_t len)
{
Aes *aes;
if (TEST_FAIL())
return NULL;
aes = os_malloc(sizeof(Aes));
if (!aes)
return NULL;
if (wc_AesSetKey(aes, key, len, NULL, AES_ENCRYPTION) < 0) {
os_free(aes);
return NULL;
}
return aes;
}
int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
{
wc_AesEncryptDirect(ctx, crypt, plain);
return 0;
}
void aes_encrypt_deinit(void *ctx)
{
os_free(ctx);
}
void * aes_decrypt_init(const u8 *key, size_t len)
{
Aes *aes;
if (TEST_FAIL())
return NULL;
aes = os_malloc(sizeof(Aes));
if (!aes)
return NULL;
if (wc_AesSetKey(aes, key, len, NULL, AES_DECRYPTION) < 0) {
os_free(aes);
return NULL;
}
return aes;
}
int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
{
wc_AesDecryptDirect(ctx, plain, crypt);
return 0;
}
void aes_decrypt_deinit(void *ctx)
{
os_free(ctx);
}
int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
{
Aes aes;
int ret;
if (TEST_FAIL())
return -1;
ret = wc_AesSetKey(&aes, key, 16, iv, AES_ENCRYPTION);
if (ret != 0)
return -1;
ret = wc_AesCbcEncrypt(&aes, data, data, data_len);
if (ret != 0)
return -1;
return 0;
}
int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
{
Aes aes;
int ret;
if (TEST_FAIL())
return -1;
ret = wc_AesSetKey(&aes, key, 16, iv, AES_DECRYPTION);
if (ret != 0)
return -1;
ret = wc_AesCbcDecrypt(&aes, data, data, data_len);
if (ret != 0)
return -1;
return 0;
}
int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
{
int ret;
if (TEST_FAIL())
return -1;
ret = wc_AesKeyWrap(kek, kek_len, plain, n * 8, cipher, (n + 1) * 8,
NULL);
return ret != (n + 1) * 8 ? -1 : 0;
}
int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
u8 *plain)
{
int ret;
if (TEST_FAIL())
return -1;
ret = wc_AesKeyUnWrap(kek, kek_len, cipher, (n + 1) * 8, plain, n * 8,
NULL);
return ret != n * 8 ? -1 : 0;
}
#ifndef CONFIG_NO_RC4
int rc4_skip(const u8 *key, size_t keylen, size_t skip, u8 *data,
size_t data_len)
{
#ifndef NO_RC4
Arc4 arc4;
unsigned char skip_buf[16];
wc_Arc4SetKey(&arc4, key, keylen);
while (skip >= sizeof(skip_buf)) {
size_t len = skip;
if (len > sizeof(skip_buf))
len = sizeof(skip_buf);
wc_Arc4Process(&arc4, skip_buf, skip_buf, len);
skip -= len;
}
wc_Arc4Process(&arc4, data, data, data_len);
return 0;
#else /* NO_RC4 */
return -1;
#endif /* NO_RC4 */
}
#endif /* CONFIG_NO_RC4 */
#if defined(EAP_IKEV2) || defined(EAP_IKEV2_DYNAMIC) \
|| defined(EAP_SERVER_IKEV2)
union wolfssl_cipher {
Aes aes;
Des3 des3;
Arc4 arc4;
};
struct crypto_cipher {
enum crypto_cipher_alg alg;
union wolfssl_cipher enc;
union wolfssl_cipher dec;
};
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len)
{
struct crypto_cipher *ctx;
ctx = os_zalloc(sizeof(*ctx));
if (!ctx)
return NULL;
switch (alg) {
#ifndef CONFIG_NO_RC4
#ifndef NO_RC4
case CRYPTO_CIPHER_ALG_RC4:
wc_Arc4SetKey(&ctx->enc.arc4, key, key_len);
wc_Arc4SetKey(&ctx->dec.arc4, key, key_len);
break;
#endif /* NO_RC4 */
#endif /* CONFIG_NO_RC4 */
#ifndef NO_AES
case CRYPTO_CIPHER_ALG_AES:
switch (key_len) {
case 16:
case 24:
case 32:
break;
default:
os_free(ctx);
return NULL;
}
if (wc_AesSetKey(&ctx->enc.aes, key, key_len, iv,
AES_ENCRYPTION) ||
wc_AesSetKey(&ctx->dec.aes, key, key_len, iv,
AES_DECRYPTION)) {
os_free(ctx);
return NULL;
}
break;
#endif /* NO_AES */
#ifndef NO_DES3
case CRYPTO_CIPHER_ALG_3DES:
if (key_len != DES3_KEYLEN ||
wc_Des3_SetKey(&ctx->enc.des3, key, iv, DES_ENCRYPTION) ||
wc_Des3_SetKey(&ctx->dec.des3, key, iv, DES_DECRYPTION)) {
os_free(ctx);
return NULL;
}
break;
#endif /* NO_DES3 */
case CRYPTO_CIPHER_ALG_RC2:
case CRYPTO_CIPHER_ALG_DES:
default:
os_free(ctx);
return NULL;
}
ctx->alg = alg;
return ctx;
}
int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
u8 *crypt, size_t len)
{
switch (ctx->alg) {
#ifndef CONFIG_NO_RC4
#ifndef NO_RC4
case CRYPTO_CIPHER_ALG_RC4:
wc_Arc4Process(&ctx->enc.arc4, crypt, plain, len);
return 0;
#endif /* NO_RC4 */
#endif /* CONFIG_NO_RC4 */
#ifndef NO_AES
case CRYPTO_CIPHER_ALG_AES:
if (wc_AesCbcEncrypt(&ctx->enc.aes, crypt, plain, len) != 0)
return -1;
return 0;
#endif /* NO_AES */
#ifndef NO_DES3
case CRYPTO_CIPHER_ALG_3DES:
if (wc_Des3_CbcEncrypt(&ctx->enc.des3, crypt, plain, len) != 0)
return -1;
return 0;
#endif /* NO_DES3 */
default:
return -1;
}
return -1;
}
int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
u8 *plain, size_t len)
{
switch (ctx->alg) {
#ifndef CONFIG_NO_RC4
#ifndef NO_RC4
case CRYPTO_CIPHER_ALG_RC4:
wc_Arc4Process(&ctx->dec.arc4, plain, crypt, len);
return 0;
#endif /* NO_RC4 */
#endif /* CONFIG_NO_RC4 */
#ifndef NO_AES
case CRYPTO_CIPHER_ALG_AES:
if (wc_AesCbcDecrypt(&ctx->dec.aes, plain, crypt, len) != 0)
return -1;
return 0;
#endif /* NO_AES */
#ifndef NO_DES3
case CRYPTO_CIPHER_ALG_3DES:
if (wc_Des3_CbcDecrypt(&ctx->dec.des3, plain, crypt, len) != 0)
return -1;
return 0;
#endif /* NO_DES3 */
default:
return -1;
}
return -1;
}
void crypto_cipher_deinit(struct crypto_cipher *ctx)
{
os_free(ctx);
}
#endif
#ifdef CONFIG_WPS_NFC
static const unsigned char RFC3526_PRIME_1536[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D,
0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36,
0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56,
0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D,
0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08,
0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
static const unsigned char RFC3526_GENERATOR_1536[] = {
0x02
};
#define RFC3526_LEN sizeof(RFC3526_PRIME_1536)
void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
{
WC_RNG rng;
DhKey *ret = NULL;
DhKey *dh = NULL;
struct wpabuf *privkey = NULL;
struct wpabuf *pubkey = NULL;
word32 priv_sz, pub_sz;
*priv = NULL;
wpabuf_free(*publ);
*publ = NULL;
dh = XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!dh)
return NULL;
wc_InitDhKey(dh);
if (wc_InitRng(&rng) != 0) {
XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
privkey = wpabuf_alloc(RFC3526_LEN);
pubkey = wpabuf_alloc(RFC3526_LEN);
if (!privkey || !pubkey)
goto done;
if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536),
RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536))
!= 0)
goto done;
if (wc_DhGenerateKeyPair(dh, &rng, wpabuf_mhead(privkey), &priv_sz,
wpabuf_mhead(pubkey), &pub_sz) != 0)
goto done;
wpabuf_put(privkey, priv_sz);
wpabuf_put(pubkey, pub_sz);
ret = dh;
*priv = privkey;
*publ = pubkey;
dh = NULL;
privkey = NULL;
pubkey = NULL;
done:
wpabuf_clear_free(pubkey);
wpabuf_clear_free(privkey);
if (dh) {
wc_FreeDhKey(dh);
XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
wc_FreeRng(&rng);
return ret;
}
void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
{
DhKey *ret = NULL;
DhKey *dh;
byte *secret;
word32 secret_sz;
dh = XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!dh)
return NULL;
wc_InitDhKey(dh);
secret = XMALLOC(RFC3526_LEN, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!secret)
goto done;
if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536),
RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536))
!= 0)
goto done;
if (wc_DhAgree(dh, secret, &secret_sz, wpabuf_head(priv),
wpabuf_len(priv), RFC3526_GENERATOR_1536,
sizeof(RFC3526_GENERATOR_1536)) != 0)
goto done;
if (secret_sz != wpabuf_len(publ) ||
os_memcmp(secret, wpabuf_head(publ), secret_sz) != 0)
goto done;
ret = dh;
dh = NULL;
done:
if (dh) {
wc_FreeDhKey(dh);
XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
XFREE(secret, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
const struct wpabuf *own_private)
{
struct wpabuf *ret = NULL;
struct wpabuf *secret;
word32 secret_sz;
secret = wpabuf_alloc(RFC3526_LEN);
if (!secret)
goto done;
if (wc_DhAgree(ctx, wpabuf_mhead(secret), &secret_sz,
wpabuf_head(own_private), wpabuf_len(own_private),
wpabuf_head(peer_public), wpabuf_len(peer_public)) != 0)
goto done;
wpabuf_put(secret, secret_sz);
ret = secret;
secret = NULL;
done:
wpabuf_clear_free(secret);
return ret;
}
void dh5_free(void *ctx)
{
if (!ctx)
return;
wc_FreeDhKey(ctx);
XFREE(ctx, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif /* CONFIG_WPS_NFC */
int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
u8 *pubkey)
{
int ret = -1;
WC_RNG rng;
DhKey *dh = NULL;
word32 priv_sz, pub_sz;
if (TEST_FAIL())
return -1;
dh = os_malloc(sizeof(DhKey));
if (!dh)
return -1;
wc_InitDhKey(dh);
if (wc_InitRng(&rng) != 0) {
os_free(dh);
return -1;
}
if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0)
goto done;
if (wc_DhGenerateKeyPair(dh, &rng, privkey, &priv_sz, pubkey, &pub_sz)
!= 0)
goto done;
if (priv_sz < prime_len) {
size_t pad_sz = prime_len - priv_sz;
os_memmove(privkey + pad_sz, privkey, priv_sz);
os_memset(privkey, 0, pad_sz);
}
if (pub_sz < prime_len) {
size_t pad_sz = prime_len - pub_sz;
os_memmove(pubkey + pad_sz, pubkey, pub_sz);
os_memset(pubkey, 0, pad_sz);
}
ret = 0;
done:
wc_FreeDhKey(dh);
os_free(dh);
wc_FreeRng(&rng);
return ret;
}
int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
const u8 *order, size_t order_len,
const u8 *privkey, size_t privkey_len,
const u8 *pubkey, size_t pubkey_len,
u8 *secret, size_t *len)
{
int ret = -1;
DhKey *dh;
word32 secret_sz;
dh = os_malloc(sizeof(DhKey));
if (!dh)
return -1;
wc_InitDhKey(dh);
if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0)
goto done;
if (wc_DhAgree(dh, secret, &secret_sz, privkey, privkey_len, pubkey,
pubkey_len) != 0)
goto done;
*len = secret_sz;
ret = 0;
done:
wc_FreeDhKey(dh);
os_free(dh);
return ret;
}
#ifdef CONFIG_FIPS
int crypto_get_random(void *buf, size_t len)
{
int ret = 0;
WC_RNG rng;
if (wc_InitRng(&rng) != 0)
return -1;
if (wc_RNG_GenerateBlock(&rng, buf, len) != 0)
ret = -1;
wc_FreeRng(&rng);
return ret;
}
#endif /* CONFIG_FIPS */
#if defined(EAP_PWD) || defined(EAP_SERVER_PWD)
struct crypto_hash {
Hmac hmac;
int size;
};
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
size_t key_len)
{
struct crypto_hash *ret = NULL;
struct crypto_hash *hash;
int type;
hash = os_zalloc(sizeof(*hash));
if (!hash)
goto done;
switch (alg) {
#ifndef NO_MD5
case CRYPTO_HASH_ALG_HMAC_MD5:
hash->size = 16;
type = WC_MD5;
break;
#endif /* NO_MD5 */
#ifndef NO_SHA
case CRYPTO_HASH_ALG_HMAC_SHA1:
type = WC_SHA;
hash->size = 20;
break;
#endif /* NO_SHA */
#ifdef CONFIG_SHA256
#ifndef NO_SHA256
case CRYPTO_HASH_ALG_HMAC_SHA256:
type = WC_SHA256;
hash->size = 32;
break;
#endif /* NO_SHA256 */
#endif /* CONFIG_SHA256 */
default:
goto done;
}
if (wc_HmacSetKey(&hash->hmac, type, key, key_len) != 0)
goto done;
ret = hash;
hash = NULL;
done:
os_free(hash);
return ret;
}
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
{
if (!ctx)
return;
wc_HmacUpdate(&ctx->hmac, data, len);
}
int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
{
int ret = 0;
if (!ctx)
return -2;
if (!mac || !len)
goto done;
if (wc_HmacFinal(&ctx->hmac, mac) != 0) {
ret = -1;
goto done;
}
*len = ctx->size;
ret = 0;
done:
bin_clear_free(ctx, sizeof(*ctx));
if (TEST_FAIL())
return -1;
return ret;
}
#endif
int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
Cmac cmac;
size_t i;
word32 sz;
if (TEST_FAIL())
return -1;
if (wc_InitCmac(&cmac, key, key_len, WC_CMAC_AES, NULL) != 0)
return -1;
for (i = 0; i < num_elem; i++)
if (wc_CmacUpdate(&cmac, addr[i], len[i]) != 0)
return -1;
sz = AES_BLOCK_SIZE;
if (wc_CmacFinal(&cmac, mac, &sz) != 0 || sz != AES_BLOCK_SIZE)
return -1;
return 0;
}
int omac1_aes_128_vector(const u8 *key, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
}
int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
{
return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
}
int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
{
return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
}
struct crypto_bignum * crypto_bignum_init(void)
{
mp_int *a;
if (TEST_FAIL())
return NULL;
a = os_malloc(sizeof(*a));
if (!a || mp_init(a) != MP_OKAY) {
os_free(a);
a = NULL;
}
return (struct crypto_bignum *) a;
}
struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
{
mp_int *a;
if (TEST_FAIL())
return NULL;
a = (mp_int *) crypto_bignum_init();
if (!a)
return NULL;
if (mp_read_unsigned_bin(a, buf, len) != MP_OKAY) {
os_free(a);
a = NULL;
}
return (struct crypto_bignum *) a;
}
void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
{
if (!n)
return;
if (clear)
mp_forcezero((mp_int *) n);
mp_clear((mp_int *) n);
os_free((mp_int *) n);
}
int crypto_bignum_to_bin(const struct crypto_bignum *a,
u8 *buf, size_t buflen, size_t padlen)
{
int num_bytes, offset;
if (TEST_FAIL())
return -1;
if (padlen > buflen)
return -1;
num_bytes = (mp_count_bits((mp_int *) a) + 7) / 8;
if ((size_t) num_bytes > buflen)
return -1;
if (padlen > (size_t) num_bytes)
offset = padlen - num_bytes;
else
offset = 0;
os_memset(buf, 0, offset);
mp_to_unsigned_bin((mp_int *) a, buf + offset);
return num_bytes + offset;
}
int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m)
{
int ret = 0;
WC_RNG rng;
if (TEST_FAIL())
return -1;
if (wc_InitRng(&rng) != 0)
return -1;
if (mp_rand_prime((mp_int *) r,
(mp_count_bits((mp_int *) m) + 7) / 8 * 2,
&rng, NULL) != 0)
ret = -1;
if (ret == 0 &&
mp_mod((mp_int *) r, (mp_int *) m, (mp_int *) r) != 0)
ret = -1;
wc_FreeRng(&rng);
return ret;
}
int crypto_bignum_add(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *r)
{
return mp_add((mp_int *) a, (mp_int *) b,
(mp_int *) r) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_mod(const struct crypto_bignum *a,
const struct crypto_bignum *m,
struct crypto_bignum *r)
{
return mp_mod((mp_int *) a, (mp_int *) m,
(mp_int *) r) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_exptmod(const struct crypto_bignum *b,
const struct crypto_bignum *e,
const struct crypto_bignum *m,
struct crypto_bignum *r)
{
if (TEST_FAIL())
return -1;
return mp_exptmod((mp_int *) b, (mp_int *) e, (mp_int *) m,
(mp_int *) r) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_inverse(const struct crypto_bignum *a,
const struct crypto_bignum *m,
struct crypto_bignum *r)
{
if (TEST_FAIL())
return -1;
return mp_invmod((mp_int *) a, (mp_int *) m,
(mp_int *) r) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_sub(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *r)
{
if (TEST_FAIL())
return -1;
return mp_add((mp_int *) a, (mp_int *) b,
(mp_int *) r) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_div(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *d)
{
if (TEST_FAIL())
return -1;
return mp_div((mp_int *) a, (mp_int *) b, (mp_int *) d,
NULL) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_mulmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *m,
struct crypto_bignum *d)
{
if (TEST_FAIL())
return -1;
return mp_mulmod((mp_int *) a, (mp_int *) b, (mp_int *) m,
(mp_int *) d) == MP_OKAY ? 0 : -1;
}
int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
struct crypto_bignum *r)
{
if (mp_copy((mp_int *) a, (mp_int *) r) != MP_OKAY)
return -1;
mp_rshb((mp_int *) r, n);
return 0;
}
int crypto_bignum_cmp(const struct crypto_bignum *a,
const struct crypto_bignum *b)
{
return mp_cmp((mp_int *) a, (mp_int *) b);
}
int crypto_bignum_is_zero(const struct crypto_bignum *a)
{
return mp_iszero((mp_int *) a);
}
int crypto_bignum_is_one(const struct crypto_bignum *a)
{
return mp_isone((const mp_int *) a);
}
int crypto_bignum_is_odd(const struct crypto_bignum *a)
{
return mp_isodd((mp_int *) a);
}
int crypto_bignum_legendre(const struct crypto_bignum *a,
const struct crypto_bignum *p)
{
mp_int t;
int ret;
int res = -2;
if (TEST_FAIL())
return -2;
if (mp_init(&t) != MP_OKAY)
return -2;
/* t = (p-1) / 2 */
ret = mp_sub_d((mp_int *) p, 1, &t);
if (ret == MP_OKAY)
mp_rshb(&t, 1);
if (ret == MP_OKAY)
ret = mp_exptmod((mp_int *) a, &t, (mp_int *) p, &t);
if (ret == MP_OKAY) {
if (mp_isone(&t))
res = 1;
else if (mp_iszero(&t))
res = 0;
else
res = -1;
}
mp_clear(&t);
return res;
}
#ifdef CONFIG_ECC
int ecc_map(ecc_point *, mp_int *, mp_digit);
int ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R,
mp_int *a, mp_int *modulus, mp_digit mp);
struct crypto_ec {
ecc_key key;
mp_int a;
mp_int prime;
mp_int order;
mp_digit mont_b;
mp_int b;
};
struct crypto_ec * crypto_ec_init(int group)
{
int built = 0;
struct crypto_ec *e;
int curve_id;
/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
switch (group) {
case 19:
curve_id = ECC_SECP256R1;
break;
case 20:
curve_id = ECC_SECP384R1;
break;
case 21:
curve_id = ECC_SECP521R1;
break;
case 25:
curve_id = ECC_SECP192R1;
break;
case 26:
curve_id = ECC_SECP224R1;
break;
#ifdef HAVE_ECC_BRAINPOOL
case 27:
curve_id = ECC_BRAINPOOLP224R1;
break;
case 28:
curve_id = ECC_BRAINPOOLP256R1;
break;
case 29:
curve_id = ECC_BRAINPOOLP384R1;
break;
case 30:
curve_id = ECC_BRAINPOOLP512R1;
break;
#endif /* HAVE_ECC_BRAINPOOL */
default:
return NULL;
}
e = os_zalloc(sizeof(*e));
if (!e)
return NULL;
if (wc_ecc_init(&e->key) != 0 ||
wc_ecc_set_curve(&e->key, 0, curve_id) != 0 ||
mp_init(&e->a) != MP_OKAY ||
mp_init(&e->prime) != MP_OKAY ||
mp_init(&e->order) != MP_OKAY ||
mp_init(&e->b) != MP_OKAY ||
mp_read_radix(&e->a, e->key.dp->Af, 16) != MP_OKAY ||
mp_read_radix(&e->b, e->key.dp->Bf, 16) != MP_OKAY ||
mp_read_radix(&e->prime, e->key.dp->prime, 16) != MP_OKAY ||
mp_read_radix(&e->order, e->key.dp->order, 16) != MP_OKAY ||
mp_montgomery_setup(&e->prime, &e->mont_b) != MP_OKAY)
goto done;
built = 1;
done:
if (!built) {
crypto_ec_deinit(e);
e = NULL;
}
return e;
}
void crypto_ec_deinit(struct crypto_ec* e)
{
if (!e)
return;
mp_clear(&e->b);
mp_clear(&e->order);
mp_clear(&e->prime);
mp_clear(&e->a);
wc_ecc_free(&e->key);
os_free(e);
}
struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
{
if (TEST_FAIL())
return NULL;
if (!e)
return NULL;
return (struct crypto_ec_point *) wc_ecc_new_point();
}
size_t crypto_ec_prime_len(struct crypto_ec *e)
{
return (mp_count_bits(&e->prime) + 7) / 8;
}
size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
{
return mp_count_bits(&e->prime);
}
size_t crypto_ec_order_len(struct crypto_ec *e)
{
return (mp_count_bits(&e->order) + 7) / 8;
}
const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
{
return (const struct crypto_bignum *) &e->prime;
}
const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
{
return (const struct crypto_bignum *) &e->order;
}
void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
{
ecc_point *point = (ecc_point *) p;
if (!p)
return;
if (clear) {
mp_forcezero(point->x);
mp_forcezero(point->y);
mp_forcezero(point->z);
}
wc_ecc_del_point(point);
}
int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
struct crypto_bignum *x)
{
return mp_copy(((ecc_point *) p)->x, (mp_int *) x) == MP_OKAY ? 0 : -1;
}
int crypto_ec_point_to_bin(struct crypto_ec *e,
const struct crypto_ec_point *point, u8 *x, u8 *y)
{
ecc_point *p = (ecc_point *) point;
if (TEST_FAIL())
return -1;
if (!mp_isone(p->z)) {
if (ecc_map(p, &e->prime, e->mont_b) != MP_OKAY)
return -1;
}
if (x) {
if (crypto_bignum_to_bin((struct crypto_bignum *)p->x, x,
e->key.dp->size,
e->key.dp->size) <= 0)
return -1;
}
if (y) {
if (crypto_bignum_to_bin((struct crypto_bignum *) p->y, y,
e->key.dp->size,
e->key.dp->size) <= 0)
return -1;
}
return 0;
}
struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
const u8 *val)
{
ecc_point *point = NULL;
int loaded = 0;
if (TEST_FAIL())
return NULL;
point = wc_ecc_new_point();
if (!point)
goto done;
if (mp_read_unsigned_bin(point->x, val, e->key.dp->size) != MP_OKAY)
goto done;
val += e->key.dp->size;
if (mp_read_unsigned_bin(point->y, val, e->key.dp->size) != MP_OKAY)
goto done;
mp_set(point->z, 1);
loaded = 1;
done:
if (!loaded) {
wc_ecc_del_point(point);
point = NULL;
}
return (struct crypto_ec_point *) point;
}
int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
const struct crypto_ec_point *b,
struct crypto_ec_point *c)
{
mp_int mu;
ecc_point *ta = NULL, *tb = NULL;
ecc_point *pa = (ecc_point *) a, *pb = (ecc_point *) b;
mp_int *modulus = &e->prime;
int ret;
if (TEST_FAIL())
return -1;
ret = mp_init(&mu);
if (ret != MP_OKAY)
return -1;
ret = mp_montgomery_calc_normalization(&mu, modulus);
if (ret != MP_OKAY) {
mp_clear(&mu);
return -1;
}
if (!mp_isone(&mu)) {
ta = wc_ecc_new_point();
if (!ta) {
mp_clear(&mu);
return -1;
}
tb = wc_ecc_new_point();
if (!tb) {
wc_ecc_del_point(ta);
mp_clear(&mu);
return -1;
}
if (mp_mulmod(pa->x, &mu, modulus, ta->x) != MP_OKAY ||
mp_mulmod(pa->y, &mu, modulus, ta->y) != MP_OKAY ||
mp_mulmod(pa->z, &mu, modulus, ta->z) != MP_OKAY ||
mp_mulmod(pb->x, &mu, modulus, tb->x) != MP_OKAY ||
mp_mulmod(pb->y, &mu, modulus, tb->y) != MP_OKAY ||
mp_mulmod(pb->z, &mu, modulus, tb->z) != MP_OKAY) {
ret = -1;
goto end;
}
pa = ta;
pb = tb;
}
ret = ecc_projective_add_point(pa, pb, (ecc_point *) c, &e->a,
&e->prime, e->mont_b);
if (ret != 0) {
ret = -1;
goto end;
}
if (ecc_map((ecc_point *) c, &e->prime, e->mont_b) != MP_OKAY)
ret = -1;
else
ret = 0;
end:
wc_ecc_del_point(tb);
wc_ecc_del_point(ta);
mp_clear(&mu);
return ret;
}
int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
const struct crypto_bignum *b,
struct crypto_ec_point *res)
{
int ret;
if (TEST_FAIL())
return -1;
ret = wc_ecc_mulmod((mp_int *) b, (ecc_point *) p, (ecc_point *) res,
&e->a, &e->prime, 1);
return ret == 0 ? 0 : -1;
}
int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
{
ecc_point *point = (ecc_point *) p;
if (TEST_FAIL())
return -1;
if (mp_sub(&e->prime, point->y, point->y) != MP_OKAY)
return -1;
return 0;
}
int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
struct crypto_ec_point *p,
const struct crypto_bignum *x, int y_bit)
{
byte buf[1 + 2 * MAX_ECC_BYTES];
int ret;
int prime_len = crypto_ec_prime_len(e);
if (TEST_FAIL())
return -1;
buf[0] = y_bit ? ECC_POINT_COMP_ODD : ECC_POINT_COMP_EVEN;
ret = crypto_bignum_to_bin(x, buf + 1, prime_len, prime_len);
if (ret <= 0)
return -1;
ret = wc_ecc_import_point_der(buf, 1 + 2 * ret, e->key.idx,
(ecc_point *) p);
if (ret != 0)
return -1;
return 0;
}
struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
const struct crypto_bignum *x)
{
mp_int *y2 = NULL;
mp_int t;
int calced = 0;
if (TEST_FAIL())
return NULL;
if (mp_init(&t) != MP_OKAY)
return NULL;
y2 = (mp_int *) crypto_bignum_init();
if (!y2)
goto done;
if (mp_sqrmod((mp_int *) x, &e->prime, y2) != 0 ||
mp_mulmod((mp_int *) x, y2, &e->prime, y2) != 0 ||
mp_mulmod((mp_int *) x, &e->a, &e->prime, &t) != 0 ||
mp_addmod(y2, &t, &e->prime, y2) != 0 ||
mp_addmod(y2, &e->b, &e->prime, y2) != 0)
goto done;
calced = 1;
done:
if (!calced) {
if (y2) {
mp_clear(y2);
os_free(y2);
}
mp_clear(&t);
}
return (struct crypto_bignum *) y2;
}
int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
const struct crypto_ec_point *p)
{
return wc_ecc_point_is_at_infinity((ecc_point *) p);
}
int crypto_ec_point_is_on_curve(struct crypto_ec *e,
const struct crypto_ec_point *p)
{
return wc_ecc_is_point((ecc_point *) p, &e->a, &e->b, &e->prime) ==
MP_OKAY;
}
int crypto_ec_point_cmp(const struct crypto_ec *e,
const struct crypto_ec_point *a,
const struct crypto_ec_point *b)
{
return wc_ecc_cmp_point((ecc_point *) a, (ecc_point *) b);
}
struct crypto_ecdh {
struct crypto_ec *ec;
};
struct crypto_ecdh * crypto_ecdh_init(int group)
{
struct crypto_ecdh *ecdh = NULL;
WC_RNG rng;
int ret;
if (wc_InitRng(&rng) != 0)
goto fail;
ecdh = os_zalloc(sizeof(*ecdh));
if (!ecdh)
goto fail;
ecdh->ec = crypto_ec_init(group);
if (!ecdh->ec)
goto fail;
ret = wc_ecc_make_key_ex(&rng, ecdh->ec->key.dp->size, &ecdh->ec->key,
ecdh->ec->key.dp->id);
if (ret < 0)
goto fail;
done:
wc_FreeRng(&rng);
return ecdh;
fail:
crypto_ecdh_deinit(ecdh);
ecdh = NULL;
goto done;
}
void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
{
if (ecdh) {
crypto_ec_deinit(ecdh->ec);
os_free(ecdh);
}
}
struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
{
struct wpabuf *buf = NULL;
int ret;
int len = ecdh->ec->key.dp->size;
buf = wpabuf_alloc(inc_y ? 2 * len : len);
if (!buf)
goto fail;
ret = crypto_bignum_to_bin((struct crypto_bignum *)
ecdh->ec->key.pubkey.x, wpabuf_put(buf, len),
len, len);
if (ret < 0)
goto fail;
if (inc_y) {
ret = crypto_bignum_to_bin((struct crypto_bignum *)
ecdh->ec->key.pubkey.y,
wpabuf_put(buf, len), len, len);
if (ret < 0)
goto fail;
}
done:
return buf;
fail:
wpabuf_free(buf);
buf = NULL;
goto done;
}
struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
const u8 *key, size_t len)
{
int ret;
struct wpabuf *pubkey = NULL;
struct wpabuf *secret = NULL;
word32 key_len = ecdh->ec->key.dp->size;
ecc_point *point = NULL;
size_t need_key_len = inc_y ? 2 * key_len : key_len;
if (len < need_key_len)
goto fail;
pubkey = wpabuf_alloc(1 + 2 * key_len);
if (!pubkey)
goto fail;
wpabuf_put_u8(pubkey, inc_y ? ECC_POINT_UNCOMP : ECC_POINT_COMP_EVEN);
wpabuf_put_data(pubkey, key, need_key_len);
point = wc_ecc_new_point();
if (!point)
goto fail;
ret = wc_ecc_import_point_der(wpabuf_mhead(pubkey), 1 + 2 * key_len,
ecdh->ec->key.idx, point);
if (ret != MP_OKAY)
goto fail;
secret = wpabuf_alloc(key_len);
if (!secret)
goto fail;
ret = wc_ecc_shared_secret_ex(&ecdh->ec->key, point,
wpabuf_put(secret, key_len), &key_len);
if (ret != MP_OKAY)
goto fail;
done:
wc_ecc_del_point(point);
wpabuf_free(pubkey);
return secret;
fail:
wpabuf_free(secret);
secret = NULL;
goto done;
}
#endif /* CONFIG_ECC */