hostapd/src/ap/ap_config.c

1253 lines
31 KiB
C
Raw Normal View History

/*
* hostapd / Configuration helper functions
* Copyright (c) 2003-2014, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "utils/includes.h"
#include "utils/common.h"
#include "crypto/sha1.h"
#include "crypto/tls.h"
#include "radius/radius_client.h"
#include "common/ieee802_11_defs.h"
#include "common/eapol_common.h"
#include "common/dhcp.h"
#include "eap_common/eap_wsc_common.h"
#include "eap_server/eap.h"
#include "wpa_auth.h"
#include "sta_info.h"
#include "ap_config.h"
static void hostapd_config_free_vlan(struct hostapd_bss_config *bss)
{
struct hostapd_vlan *vlan, *prev;
vlan = bss->vlan;
prev = NULL;
while (vlan) {
prev = vlan;
vlan = vlan->next;
os_free(prev);
}
bss->vlan = NULL;
}
Optional AP side workaround for key reinstallation attacks This adds a new hostapd configuration parameter wpa_disable_eapol_key_retries=1 that can be used to disable retransmission of EAPOL-Key frames that are used to install keys (EAPOL-Key message 3/4 and group message 1/2). This is similar to setting wpa_group_update_count=1 and wpa_pairwise_update_count=1, but with no impact to message 1/4 retries and with extended timeout for messages 4/4 and group message 2/2 to avoid causing issues with stations that may use aggressive power saving have very long time in replying to the EAPOL-Key messages. This option can be used to work around key reinstallation attacks on the station (supplicant) side in cases those station devices cannot be updated for some reason. By removing the retransmissions the attacker cannot cause key reinstallation with a delayed frame transmission. This is related to the station side vulnerabilities CVE-2017-13077, CVE-2017-13078, CVE-2017-13079, CVE-2017-13080, and CVE-2017-13081. This workaround might cause interoperability issues and reduced robustness of key negotiation especially in environments with heavy traffic load due to the number of attempts to perform the key exchange is reduced significantly. As such, this workaround is disabled by default (unless overridden in build configuration). To enable this, set the parameter to 1. It is also possible to enable this in the build by default by adding the following to the build configuration: CFLAGS += -DDEFAULT_WPA_DISABLE_EAPOL_KEY_RETRIES=1 Signed-off-by: Jouni Malinen <j@w1.fi>
2017-10-16 17:37:43 +02:00
#ifndef DEFAULT_WPA_DISABLE_EAPOL_KEY_RETRIES
#define DEFAULT_WPA_DISABLE_EAPOL_KEY_RETRIES 0
#endif /* DEFAULT_WPA_DISABLE_EAPOL_KEY_RETRIES */
void hostapd_config_defaults_bss(struct hostapd_bss_config *bss)
{
dl_list_init(&bss->anqp_elem);
bss->logger_syslog_level = HOSTAPD_LEVEL_INFO;
bss->logger_stdout_level = HOSTAPD_LEVEL_INFO;
bss->logger_syslog = (unsigned int) -1;
bss->logger_stdout = (unsigned int) -1;
bss->auth_algs = WPA_AUTH_ALG_OPEN | WPA_AUTH_ALG_SHARED;
bss->wep_rekeying_period = 300;
/* use key0 in individual key and key1 in broadcast key */
bss->broadcast_key_idx_min = 1;
bss->broadcast_key_idx_max = 2;
bss->eap_reauth_period = 3600;
bss->wpa_group_rekey = 600;
bss->wpa_gmk_rekey = 86400;
bss->wpa_group_update_count = 4;
bss->wpa_pairwise_update_count = 4;
Optional AP side workaround for key reinstallation attacks This adds a new hostapd configuration parameter wpa_disable_eapol_key_retries=1 that can be used to disable retransmission of EAPOL-Key frames that are used to install keys (EAPOL-Key message 3/4 and group message 1/2). This is similar to setting wpa_group_update_count=1 and wpa_pairwise_update_count=1, but with no impact to message 1/4 retries and with extended timeout for messages 4/4 and group message 2/2 to avoid causing issues with stations that may use aggressive power saving have very long time in replying to the EAPOL-Key messages. This option can be used to work around key reinstallation attacks on the station (supplicant) side in cases those station devices cannot be updated for some reason. By removing the retransmissions the attacker cannot cause key reinstallation with a delayed frame transmission. This is related to the station side vulnerabilities CVE-2017-13077, CVE-2017-13078, CVE-2017-13079, CVE-2017-13080, and CVE-2017-13081. This workaround might cause interoperability issues and reduced robustness of key negotiation especially in environments with heavy traffic load due to the number of attempts to perform the key exchange is reduced significantly. As such, this workaround is disabled by default (unless overridden in build configuration). To enable this, set the parameter to 1. It is also possible to enable this in the build by default by adding the following to the build configuration: CFLAGS += -DDEFAULT_WPA_DISABLE_EAPOL_KEY_RETRIES=1 Signed-off-by: Jouni Malinen <j@w1.fi>
2017-10-16 17:37:43 +02:00
bss->wpa_disable_eapol_key_retries =
DEFAULT_WPA_DISABLE_EAPOL_KEY_RETRIES;
bss->wpa_key_mgmt = WPA_KEY_MGMT_PSK;
bss->wpa_pairwise = WPA_CIPHER_TKIP;
bss->wpa_group = WPA_CIPHER_TKIP;
bss->rsn_pairwise = 0;
bss->max_num_sta = MAX_STA_COUNT;
bss->dtim_period = 2;
bss->radius_server_auth_port = 1812;
bss->eap_sim_db_timeout = 1;
bss->ap_max_inactivity = AP_MAX_INACTIVITY;
bss->eapol_version = EAPOL_VERSION;
bss->max_listen_interval = 65535;
bss->pwd_group = 19; /* ECC: GF(p=256) */
#ifdef CONFIG_IEEE80211W
bss->assoc_sa_query_max_timeout = 1000;
bss->assoc_sa_query_retry_timeout = 201;
bss->group_mgmt_cipher = WPA_CIPHER_AES_128_CMAC;
#endif /* CONFIG_IEEE80211W */
#ifdef EAP_SERVER_FAST
/* both anonymous and authenticated provisioning */
bss->eap_fast_prov = 3;
bss->pac_key_lifetime = 7 * 24 * 60 * 60;
bss->pac_key_refresh_time = 1 * 24 * 60 * 60;
#endif /* EAP_SERVER_FAST */
/* Set to -1 as defaults depends on HT in setup */
bss->wmm_enabled = -1;
#ifdef CONFIG_IEEE80211R_AP
bss->ft_over_ds = 1;
bss->rkh_pos_timeout = 86400;
bss->rkh_neg_timeout = 60;
bss->rkh_pull_timeout = 1000;
bss->rkh_pull_retries = 4;
bss->r0_key_lifetime = 1209600;
#endif /* CONFIG_IEEE80211R_AP */
bss->radius_das_time_window = 300;
bss->sae_anti_clogging_threshold = 5;
bss->sae_sync = 5;
bss->gas_frag_limit = 1400;
#ifdef CONFIG_FILS
dl_list_init(&bss->fils_realms);
bss->fils_hlp_wait_time = 30;
bss->dhcp_server_port = DHCP_SERVER_PORT;
bss->dhcp_relay_port = DHCP_SERVER_PORT;
#endif /* CONFIG_FILS */
bss->broadcast_deauth = 1;
#ifdef CONFIG_MBO
bss->mbo_cell_data_conn_pref = -1;
#endif /* CONFIG_MBO */
/* Disable TLS v1.3 by default for now to avoid interoperability issue.
* This can be enabled by default once the implementation has been fully
* completed and tested with other implementations. */
bss->tls_flags = TLS_CONN_DISABLE_TLSv1_3;
bss->send_probe_response = 1;
#ifdef CONFIG_HS20
bss->hs20_release = (HS20_VERSION >> 4) + 1;
#endif /* CONFIG_HS20 */
/* Default to strict CRL checking. */
bss->check_crl_strict = 1;
}
struct hostapd_config * hostapd_config_defaults(void)
{
#define ecw2cw(ecw) ((1 << (ecw)) - 1)
struct hostapd_config *conf;
struct hostapd_bss_config *bss;
const int aCWmin = 4, aCWmax = 10;
const struct hostapd_wmm_ac_params ac_bk =
{ aCWmin, aCWmax, 7, 0, 0 }; /* background traffic */
const struct hostapd_wmm_ac_params ac_be =
{ aCWmin, aCWmax, 3, 0, 0 }; /* best effort traffic */
const struct hostapd_wmm_ac_params ac_vi = /* video traffic */
{ aCWmin - 1, aCWmin, 2, 3008 / 32, 0 };
const struct hostapd_wmm_ac_params ac_vo = /* voice traffic */
{ aCWmin - 2, aCWmin - 1, 2, 1504 / 32, 0 };
const struct hostapd_tx_queue_params txq_bk =
{ 7, ecw2cw(aCWmin), ecw2cw(aCWmax), 0 };
const struct hostapd_tx_queue_params txq_be =
{ 3, ecw2cw(aCWmin), 4 * (ecw2cw(aCWmin) + 1) - 1, 0};
const struct hostapd_tx_queue_params txq_vi =
{ 1, (ecw2cw(aCWmin) + 1) / 2 - 1, ecw2cw(aCWmin), 30};
const struct hostapd_tx_queue_params txq_vo =
{ 1, (ecw2cw(aCWmin) + 1) / 4 - 1,
(ecw2cw(aCWmin) + 1) / 2 - 1, 15};
#undef ecw2cw
conf = os_zalloc(sizeof(*conf));
bss = os_zalloc(sizeof(*bss));
if (conf == NULL || bss == NULL) {
wpa_printf(MSG_ERROR, "Failed to allocate memory for "
"configuration data.");
os_free(conf);
os_free(bss);
return NULL;
}
conf->bss = os_calloc(1, sizeof(struct hostapd_bss_config *));
if (conf->bss == NULL) {
os_free(conf);
os_free(bss);
return NULL;
}
conf->bss[0] = bss;
bss->radius = os_zalloc(sizeof(*bss->radius));
if (bss->radius == NULL) {
os_free(conf->bss);
os_free(conf);
os_free(bss);
return NULL;
}
hostapd_config_defaults_bss(bss);
conf->num_bss = 1;
conf->beacon_int = 100;
conf->rts_threshold = -2; /* use driver default: 2347 */
conf->fragm_threshold = -2; /* user driver default: 2346 */
/* Set to invalid value means do not add Power Constraint IE */
conf->local_pwr_constraint = -1;
conf->wmm_ac_params[0] = ac_be;
conf->wmm_ac_params[1] = ac_bk;
conf->wmm_ac_params[2] = ac_vi;
conf->wmm_ac_params[3] = ac_vo;
conf->tx_queue[0] = txq_vo;
conf->tx_queue[1] = txq_vi;
conf->tx_queue[2] = txq_be;
conf->tx_queue[3] = txq_bk;
conf->ht_capab = HT_CAP_INFO_SMPS_DISABLED;
conf->ap_table_max_size = 255;
conf->ap_table_expiration_time = 60;
conf->track_sta_max_age = 180;
#ifdef CONFIG_TESTING_OPTIONS
conf->ignore_probe_probability = 0.0;
conf->ignore_auth_probability = 0.0;
conf->ignore_assoc_probability = 0.0;
conf->ignore_reassoc_probability = 0.0;
conf->corrupt_gtk_rekey_mic_probability = 0.0;
conf->ecsa_ie_only = 0;
#endif /* CONFIG_TESTING_OPTIONS */
conf->acs = 0;
conf->acs_ch_list.num = 0;
#ifdef CONFIG_ACS
conf->acs_num_scans = 5;
#endif /* CONFIG_ACS */
/* The third octet of the country string uses an ASCII space character
* by default to indicate that the regulations encompass all
* environments for the current frequency band in the country. */
conf->country[2] = ' ';
conf->rssi_reject_assoc_rssi = 0;
conf->rssi_reject_assoc_timeout = 30;
return conf;
}
int hostapd_mac_comp(const void *a, const void *b)
{
return os_memcmp(a, b, sizeof(macaddr));
}
static int hostapd_config_read_wpa_psk(const char *fname,
struct hostapd_ssid *ssid)
{
FILE *f;
char buf[128], *pos;
const char *keyid;
char *context;
char *context2;
char *token;
char *name;
char *value;
int line = 0, ret = 0, len, ok;
u8 addr[ETH_ALEN];
struct hostapd_wpa_psk *psk;
if (!fname)
return 0;
f = fopen(fname, "r");
if (!f) {
wpa_printf(MSG_ERROR, "WPA PSK file '%s' not found.", fname);
return -1;
}
while (fgets(buf, sizeof(buf), f)) {
int vlan_id = 0;
line++;
if (buf[0] == '#')
continue;
pos = buf;
while (*pos != '\0') {
if (*pos == '\n') {
*pos = '\0';
break;
}
pos++;
}
if (buf[0] == '\0')
continue;
context = NULL;
keyid = NULL;
while ((token = str_token(buf, " ", &context))) {
if (!os_strchr(token, '='))
break;
context2 = NULL;
name = str_token(token, "=", &context2);
if (!name)
break;
value = str_token(token, "", &context2);
if (!value)
value = "";
if (!os_strcmp(name, "keyid")) {
keyid = value;
} else if (!os_strcmp(name, "vlanid")) {
vlan_id = atoi(value);
} else {
wpa_printf(MSG_ERROR,
"Unrecognized '%s=%s' on line %d in '%s'",
name, value, line, fname);
ret = -1;
break;
}
}
if (ret == -1)
break;
if (!token)
token = "";
if (hwaddr_aton(token, addr)) {
wpa_printf(MSG_ERROR, "Invalid MAC address '%s' on "
"line %d in '%s'", token, line, fname);
ret = -1;
break;
}
psk = os_zalloc(sizeof(*psk));
if (psk == NULL) {
wpa_printf(MSG_ERROR, "WPA PSK allocation failed");
ret = -1;
break;
}
psk->vlan_id = vlan_id;
if (is_zero_ether_addr(addr))
psk->group = 1;
else
os_memcpy(psk->addr, addr, ETH_ALEN);
pos = str_token(buf, "", &context);
if (!pos) {
wpa_printf(MSG_ERROR, "No PSK on line %d in '%s'",
line, fname);
os_free(psk);
ret = -1;
break;
}
ok = 0;
len = os_strlen(pos);
if (len == 64 && hexstr2bin(pos, psk->psk, PMK_LEN) == 0)
ok = 1;
else if (len >= 8 && len < 64) {
pbkdf2_sha1(pos, ssid->ssid, ssid->ssid_len,
4096, psk->psk, PMK_LEN);
ok = 1;
}
if (!ok) {
wpa_printf(MSG_ERROR, "Invalid PSK '%s' on line %d in "
"'%s'", pos, line, fname);
os_free(psk);
ret = -1;
break;
}
if (keyid) {
len = os_strlcpy(psk->keyid, keyid, sizeof(psk->keyid));
if ((size_t) len >= sizeof(psk->keyid)) {
wpa_printf(MSG_ERROR,
"PSK keyid too long on line %d in '%s'",
line, fname);
os_free(psk);
ret = -1;
break;
}
}
psk->next = ssid->wpa_psk;
ssid->wpa_psk = psk;
}
fclose(f);
return ret;
}
static int hostapd_derive_psk(struct hostapd_ssid *ssid)
{
ssid->wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
if (ssid->wpa_psk == NULL) {
wpa_printf(MSG_ERROR, "Unable to alloc space for PSK");
return -1;
}
wpa_hexdump_ascii(MSG_DEBUG, "SSID",
(u8 *) ssid->ssid, ssid->ssid_len);
wpa_hexdump_ascii_key(MSG_DEBUG, "PSK (ASCII passphrase)",
(u8 *) ssid->wpa_passphrase,
os_strlen(ssid->wpa_passphrase));
pbkdf2_sha1(ssid->wpa_passphrase,
ssid->ssid, ssid->ssid_len,
4096, ssid->wpa_psk->psk, PMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "PSK (from passphrase)",
ssid->wpa_psk->psk, PMK_LEN);
return 0;
}
int hostapd_setup_wpa_psk(struct hostapd_bss_config *conf)
{
struct hostapd_ssid *ssid = &conf->ssid;
if (ssid->wpa_passphrase != NULL) {
if (ssid->wpa_psk != NULL) {
wpa_printf(MSG_DEBUG, "Using pre-configured WPA PSK "
"instead of passphrase");
} else {
wpa_printf(MSG_DEBUG, "Deriving WPA PSK based on "
"passphrase");
if (hostapd_derive_psk(ssid) < 0)
return -1;
}
ssid->wpa_psk->group = 1;
}
return hostapd_config_read_wpa_psk(ssid->wpa_psk_file, &conf->ssid);
}
static void hostapd_config_free_radius(struct hostapd_radius_server *servers,
int num_servers)
{
int i;
for (i = 0; i < num_servers; i++) {
os_free(servers[i].shared_secret);
}
os_free(servers);
}
struct hostapd_radius_attr *
hostapd_config_get_radius_attr(struct hostapd_radius_attr *attr, u8 type)
{
for (; attr; attr = attr->next) {
if (attr->type == type)
return attr;
}
return NULL;
}
static void hostapd_config_free_radius_attr(struct hostapd_radius_attr *attr)
{
struct hostapd_radius_attr *prev;
while (attr) {
prev = attr;
attr = attr->next;
wpabuf_free(prev->val);
os_free(prev);
}
}
void hostapd_config_free_eap_user(struct hostapd_eap_user *user)
{
hostapd_config_free_radius_attr(user->accept_attr);
os_free(user->identity);
bin_clear_free(user->password, user->password_len);
bin_clear_free(user->salt, user->salt_len);
os_free(user);
}
void hostapd_config_free_eap_users(struct hostapd_eap_user *user)
{
struct hostapd_eap_user *prev_user;
while (user) {
prev_user = user;
user = user->next;
hostapd_config_free_eap_user(prev_user);
}
}
static void hostapd_config_free_wep(struct hostapd_wep_keys *keys)
{
int i;
for (i = 0; i < NUM_WEP_KEYS; i++) {
bin_clear_free(keys->key[i], keys->len[i]);
keys->key[i] = NULL;
}
}
void hostapd_config_clear_wpa_psk(struct hostapd_wpa_psk **l)
{
struct hostapd_wpa_psk *psk, *tmp;
for (psk = *l; psk;) {
tmp = psk;
psk = psk->next;
bin_clear_free(tmp, sizeof(*tmp));
}
*l = NULL;
}
static void hostapd_config_free_anqp_elem(struct hostapd_bss_config *conf)
{
struct anqp_element *elem;
while ((elem = dl_list_first(&conf->anqp_elem, struct anqp_element,
list))) {
dl_list_del(&elem->list);
wpabuf_free(elem->payload);
os_free(elem);
}
}
static void hostapd_config_free_fils_realms(struct hostapd_bss_config *conf)
{
#ifdef CONFIG_FILS
struct fils_realm *realm;
while ((realm = dl_list_first(&conf->fils_realms, struct fils_realm,
list))) {
dl_list_del(&realm->list);
os_free(realm);
}
#endif /* CONFIG_FILS */
}
static void hostapd_config_free_sae_passwords(struct hostapd_bss_config *conf)
{
struct sae_password_entry *pw, *tmp;
pw = conf->sae_passwords;
conf->sae_passwords = NULL;
while (pw) {
tmp = pw;
pw = pw->next;
str_clear_free(tmp->password);
os_free(tmp->identifier);
os_free(tmp);
}
}
void hostapd_config_free_bss(struct hostapd_bss_config *conf)
{
if (conf == NULL)
return;
hostapd_config_clear_wpa_psk(&conf->ssid.wpa_psk);
str_clear_free(conf->ssid.wpa_passphrase);
os_free(conf->ssid.wpa_psk_file);
hostapd_config_free_wep(&conf->ssid.wep);
#ifdef CONFIG_FULL_DYNAMIC_VLAN
os_free(conf->ssid.vlan_tagged_interface);
#endif /* CONFIG_FULL_DYNAMIC_VLAN */
hostapd_config_free_eap_users(conf->eap_user);
os_free(conf->eap_user_sqlite);
os_free(conf->eap_req_id_text);
os_free(conf->erp_domain);
os_free(conf->accept_mac);
os_free(conf->deny_mac);
os_free(conf->nas_identifier);
if (conf->radius) {
hostapd_config_free_radius(conf->radius->auth_servers,
conf->radius->num_auth_servers);
hostapd_config_free_radius(conf->radius->acct_servers,
conf->radius->num_acct_servers);
}
hostapd_config_free_radius_attr(conf->radius_auth_req_attr);
hostapd_config_free_radius_attr(conf->radius_acct_req_attr);
os_free(conf->rsn_preauth_interfaces);
os_free(conf->ctrl_interface);
os_free(conf->ca_cert);
os_free(conf->server_cert);
os_free(conf->private_key);
os_free(conf->private_key_passwd);
os_free(conf->check_cert_subject);
os_free(conf->ocsp_stapling_response);
os_free(conf->ocsp_stapling_response_multi);
os_free(conf->dh_file);
os_free(conf->openssl_ciphers);
os_free(conf->openssl_ecdh_curves);
os_free(conf->pac_opaque_encr_key);
os_free(conf->eap_fast_a_id);
os_free(conf->eap_fast_a_id_info);
os_free(conf->eap_sim_db);
os_free(conf->radius_server_clients);
os_free(conf->radius);
os_free(conf->radius_das_shared_secret);
hostapd_config_free_vlan(conf);
os_free(conf->time_zone);
#ifdef CONFIG_IEEE80211R_AP
{
struct ft_remote_r0kh *r0kh, *r0kh_prev;
struct ft_remote_r1kh *r1kh, *r1kh_prev;
r0kh = conf->r0kh_list;
conf->r0kh_list = NULL;
while (r0kh) {
r0kh_prev = r0kh;
r0kh = r0kh->next;
os_free(r0kh_prev);
}
r1kh = conf->r1kh_list;
conf->r1kh_list = NULL;
while (r1kh) {
r1kh_prev = r1kh;
r1kh = r1kh->next;
os_free(r1kh_prev);
}
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_WPS
os_free(conf->wps_pin_requests);
os_free(conf->device_name);
os_free(conf->manufacturer);
os_free(conf->model_name);
os_free(conf->model_number);
os_free(conf->serial_number);
os_free(conf->config_methods);
os_free(conf->ap_pin);
os_free(conf->extra_cred);
os_free(conf->ap_settings);
hostapd: Support Multi-AP backhaul STA onboarding with WPS The Wi-Fi Alliance Multi-AP Specification v1.0 allows onboarding of a backhaul STA through WPS. To enable this, the WPS Registrar offers a different set of credentials (backhaul credentials instead of fronthaul credentials) when the Multi-AP subelement is present in the WFA vendor extension element of the WSC M1 message. Add new configuration options to specify the backhaul credentials for the hostapd internal registrar: multi_ap_backhaul_ssid, multi_ap_backhaul_wpa_psk, multi_ap_backhaul_wpa_passphrase. These are only relevant for a fronthaul SSID, i.e., where multi_ap is set to 2 or 3. When these options are set, pass the backhaul credentials instead of the normal credentials when the Multi-AP subelement is present. Ignore the Multi-AP subelement if the backhaul config options are not set. Note that for an SSID which is fronthaul and backhaul at the same time (i.e., multi_ap == 3), this results in the correct credentials being sent anyway. The security to be used for the backaul BSS is fixed to WPA2PSK. The Multi-AP Specification only allows Open and WPA2PSK networks to be configured. Although not stated explicitly, the backhaul link is intended to be always encrypted, hence WPA2PSK. To build the credentials, the credential-building code is essentially copied and simplified. Indeed, the backhaul credentials are always WPA2PSK and never use per-device PSK. All the options set for the fronthaul BSS WPS are simply ignored. Signed-off-by: Davina Lu <ylu@quantenna.com> Signed-off-by: Igor Mitsyanko <igor.mitsyanko.os@quantenna.com> Signed-off-by: Arnout Vandecappelle (Essensium/Mind) <arnout@mind.be> Cc: Marianna Carrera <marianna.carrera.so@quantenna.com>
2019-02-12 15:35:26 +01:00
hostapd_config_clear_wpa_psk(&conf->multi_ap_backhaul_ssid.wpa_psk);
str_clear_free(conf->multi_ap_backhaul_ssid.wpa_passphrase);
os_free(conf->upnp_iface);
os_free(conf->friendly_name);
os_free(conf->manufacturer_url);
os_free(conf->model_description);
os_free(conf->model_url);
os_free(conf->upc);
{
unsigned int i;
for (i = 0; i < MAX_WPS_VENDOR_EXTENSIONS; i++)
wpabuf_free(conf->wps_vendor_ext[i]);
}
wpabuf_free(conf->wps_nfc_dh_pubkey);
wpabuf_free(conf->wps_nfc_dh_privkey);
wpabuf_free(conf->wps_nfc_dev_pw);
#endif /* CONFIG_WPS */
os_free(conf->roaming_consortium);
os_free(conf->venue_name);
os_free(conf->venue_url);
os_free(conf->nai_realm_data);
os_free(conf->network_auth_type);
os_free(conf->anqp_3gpp_cell_net);
os_free(conf->domain_name);
hostapd_config_free_anqp_elem(conf);
#ifdef CONFIG_RADIUS_TEST
os_free(conf->dump_msk_file);
#endif /* CONFIG_RADIUS_TEST */
#ifdef CONFIG_HS20
os_free(conf->hs20_oper_friendly_name);
os_free(conf->hs20_wan_metrics);
os_free(conf->hs20_connection_capability);
os_free(conf->hs20_operating_class);
os_free(conf->hs20_icons);
if (conf->hs20_osu_providers) {
size_t i;
for (i = 0; i < conf->hs20_osu_providers_count; i++) {
struct hs20_osu_provider *p;
size_t j;
p = &conf->hs20_osu_providers[i];
os_free(p->friendly_name);
os_free(p->server_uri);
os_free(p->method_list);
for (j = 0; j < p->icons_count; j++)
os_free(p->icons[j]);
os_free(p->icons);
os_free(p->osu_nai);
os_free(p->osu_nai2);
os_free(p->service_desc);
}
os_free(conf->hs20_osu_providers);
}
if (conf->hs20_operator_icon) {
size_t i;
for (i = 0; i < conf->hs20_operator_icon_count; i++)
os_free(conf->hs20_operator_icon[i]);
os_free(conf->hs20_operator_icon);
}
os_free(conf->subscr_remediation_url);
os_free(conf->hs20_sim_provisioning_url);
os_free(conf->t_c_filename);
os_free(conf->t_c_server_url);
#endif /* CONFIG_HS20 */
wpabuf_free(conf->vendor_elements);
wpabuf_free(conf->assocresp_elements);
os_free(conf->sae_groups);
#ifdef CONFIG_OWE
os_free(conf->owe_groups);
#endif /* CONFIG_OWE */
os_free(conf->wowlan_triggers);
os_free(conf->server_id);
#ifdef CONFIG_TESTING_OPTIONS
wpabuf_free(conf->own_ie_override);
wpabuf_free(conf->sae_commit_override);
#endif /* CONFIG_TESTING_OPTIONS */
os_free(conf->no_probe_resp_if_seen_on);
os_free(conf->no_auth_if_seen_on);
hostapd_config_free_fils_realms(conf);
#ifdef CONFIG_DPP
os_free(conf->dpp_connector);
wpabuf_free(conf->dpp_netaccesskey);
wpabuf_free(conf->dpp_csign);
#endif /* CONFIG_DPP */
hostapd_config_free_sae_passwords(conf);
os_free(conf);
}
/**
* hostapd_config_free - Free hostapd configuration
* @conf: Configuration data from hostapd_config_read().
*/
void hostapd_config_free(struct hostapd_config *conf)
{
size_t i;
if (conf == NULL)
return;
for (i = 0; i < conf->num_bss; i++)
hostapd_config_free_bss(conf->bss[i]);
os_free(conf->bss);
os_free(conf->supported_rates);
os_free(conf->basic_rates);
os_free(conf->acs_ch_list.range);
os_free(conf->driver_params);
#ifdef CONFIG_ACS
os_free(conf->acs_chan_bias);
#endif /* CONFIG_ACS */
wpabuf_free(conf->lci);
wpabuf_free(conf->civic);
os_free(conf);
}
/**
* hostapd_maclist_found - Find a MAC address from a list
* @list: MAC address list
* @num_entries: Number of addresses in the list
* @addr: Address to search for
* @vlan_id: Buffer for returning VLAN ID or %NULL if not needed
* Returns: 1 if address is in the list or 0 if not.
*
* Perform a binary search for given MAC address from a pre-sorted list.
*/
int hostapd_maclist_found(struct mac_acl_entry *list, int num_entries,
VLAN: Separate station grouping and uplink configuration Separate uplink configuration (IEEE 802.1q VID) and grouping of stations into AP_VLAN interfaces. The int vlan_id will continue to identify the AP_VLAN interface the station should be assigned to. Each AP_VLAN interface corresponds to an instance of struct hostapd_vlan that is uniquely identified by int vlan_id within an BSS. New: Each station and struct hostapd_vlan holds a struct vlan_description vlan_desc member that describes the uplink configuration requested. Currently this is just an int untagged IEEE 802.1q VID, but can be extended to tagged VLANs and other settings easily. When the station was about to be assigned its vlan_id, vlan_desc and vlan_id will now be set simultaneously by ap_sta_set_vlan(). So sta->vlan_id can still be tested for whether the station needs to be moved to an AP_VLAN interface. To ease addition of tagged VLAN support, a member notempty is added to struct vlan_description. Is is set to 1 if an untagged or tagged VLAN assignment is requested and needs to be validated. The inverted form allows os_zalloc() to initialize an empty description. Though not depended on by the code, vlan_id assignment ensures: * vlan_id = 0 will continue to mean no AP_VLAN interface * vlan_id < 4096 will continue to mean vlan_id = untagged vlan id with no per_sta_vif and no extra tagged vlan. * vlan_id > 4096 will be used for per_sta_vif and/or tagged vlans. This way struct wpa_group and drivers API do not need to be changed in order to implement tagged VLANs or per_sta_vif support. DYNAMIC_VLAN_* will refer to (struct vlan_description).notempty only, thus grouping of the stations for per_sta_vif can be used with DYNAMIC_VLAN_DISABLED, but not with CONFIG_NO_VLAN, as struct hostapd_vlan is still used to manage AP_VLAN interfaces. MAX_VLAN_ID will be checked in hostapd_vlan_valid and during setup of VLAN interfaces and refer to IEEE 802.1q VID. VLAN_ID_WILDCARD will continue to refer to int vlan_id. Renaming vlan_id to vlan_desc when type changed from int to struct vlan_description was avoided when vlan_id was also used in a way that did not depend on its type (for example, when passed to another function). Output of "VLAN ID %d" continues to refer to int vlan_id, while "VLAN %d" will refer to untagged IEEE 802.1q VID. Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
2016-01-21 14:51:56 +01:00
const u8 *addr, struct vlan_description *vlan_id)
{
int start, end, middle, res;
start = 0;
end = num_entries - 1;
while (start <= end) {
middle = (start + end) / 2;
res = os_memcmp(list[middle].addr, addr, ETH_ALEN);
if (res == 0) {
if (vlan_id)
*vlan_id = list[middle].vlan_id;
return 1;
}
if (res < 0)
start = middle + 1;
else
end = middle - 1;
}
return 0;
}
int hostapd_rate_found(int *list, int rate)
{
int i;
if (list == NULL)
return 0;
for (i = 0; list[i] >= 0; i++)
if (list[i] == rate)
return 1;
return 0;
}
VLAN: Separate station grouping and uplink configuration Separate uplink configuration (IEEE 802.1q VID) and grouping of stations into AP_VLAN interfaces. The int vlan_id will continue to identify the AP_VLAN interface the station should be assigned to. Each AP_VLAN interface corresponds to an instance of struct hostapd_vlan that is uniquely identified by int vlan_id within an BSS. New: Each station and struct hostapd_vlan holds a struct vlan_description vlan_desc member that describes the uplink configuration requested. Currently this is just an int untagged IEEE 802.1q VID, but can be extended to tagged VLANs and other settings easily. When the station was about to be assigned its vlan_id, vlan_desc and vlan_id will now be set simultaneously by ap_sta_set_vlan(). So sta->vlan_id can still be tested for whether the station needs to be moved to an AP_VLAN interface. To ease addition of tagged VLAN support, a member notempty is added to struct vlan_description. Is is set to 1 if an untagged or tagged VLAN assignment is requested and needs to be validated. The inverted form allows os_zalloc() to initialize an empty description. Though not depended on by the code, vlan_id assignment ensures: * vlan_id = 0 will continue to mean no AP_VLAN interface * vlan_id < 4096 will continue to mean vlan_id = untagged vlan id with no per_sta_vif and no extra tagged vlan. * vlan_id > 4096 will be used for per_sta_vif and/or tagged vlans. This way struct wpa_group and drivers API do not need to be changed in order to implement tagged VLANs or per_sta_vif support. DYNAMIC_VLAN_* will refer to (struct vlan_description).notempty only, thus grouping of the stations for per_sta_vif can be used with DYNAMIC_VLAN_DISABLED, but not with CONFIG_NO_VLAN, as struct hostapd_vlan is still used to manage AP_VLAN interfaces. MAX_VLAN_ID will be checked in hostapd_vlan_valid and during setup of VLAN interfaces and refer to IEEE 802.1q VID. VLAN_ID_WILDCARD will continue to refer to int vlan_id. Renaming vlan_id to vlan_desc when type changed from int to struct vlan_description was avoided when vlan_id was also used in a way that did not depend on its type (for example, when passed to another function). Output of "VLAN ID %d" continues to refer to int vlan_id, while "VLAN %d" will refer to untagged IEEE 802.1q VID. Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
2016-01-21 14:51:56 +01:00
int hostapd_vlan_valid(struct hostapd_vlan *vlan,
struct vlan_description *vlan_desc)
{
struct hostapd_vlan *v = vlan;
int i;
VLAN: Separate station grouping and uplink configuration Separate uplink configuration (IEEE 802.1q VID) and grouping of stations into AP_VLAN interfaces. The int vlan_id will continue to identify the AP_VLAN interface the station should be assigned to. Each AP_VLAN interface corresponds to an instance of struct hostapd_vlan that is uniquely identified by int vlan_id within an BSS. New: Each station and struct hostapd_vlan holds a struct vlan_description vlan_desc member that describes the uplink configuration requested. Currently this is just an int untagged IEEE 802.1q VID, but can be extended to tagged VLANs and other settings easily. When the station was about to be assigned its vlan_id, vlan_desc and vlan_id will now be set simultaneously by ap_sta_set_vlan(). So sta->vlan_id can still be tested for whether the station needs to be moved to an AP_VLAN interface. To ease addition of tagged VLAN support, a member notempty is added to struct vlan_description. Is is set to 1 if an untagged or tagged VLAN assignment is requested and needs to be validated. The inverted form allows os_zalloc() to initialize an empty description. Though not depended on by the code, vlan_id assignment ensures: * vlan_id = 0 will continue to mean no AP_VLAN interface * vlan_id < 4096 will continue to mean vlan_id = untagged vlan id with no per_sta_vif and no extra tagged vlan. * vlan_id > 4096 will be used for per_sta_vif and/or tagged vlans. This way struct wpa_group and drivers API do not need to be changed in order to implement tagged VLANs or per_sta_vif support. DYNAMIC_VLAN_* will refer to (struct vlan_description).notempty only, thus grouping of the stations for per_sta_vif can be used with DYNAMIC_VLAN_DISABLED, but not with CONFIG_NO_VLAN, as struct hostapd_vlan is still used to manage AP_VLAN interfaces. MAX_VLAN_ID will be checked in hostapd_vlan_valid and during setup of VLAN interfaces and refer to IEEE 802.1q VID. VLAN_ID_WILDCARD will continue to refer to int vlan_id. Renaming vlan_id to vlan_desc when type changed from int to struct vlan_description was avoided when vlan_id was also used in a way that did not depend on its type (for example, when passed to another function). Output of "VLAN ID %d" continues to refer to int vlan_id, while "VLAN %d" will refer to untagged IEEE 802.1q VID. Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
2016-01-21 14:51:56 +01:00
if (!vlan_desc->notempty || vlan_desc->untagged < 0 ||
VLAN: Separate station grouping and uplink configuration Separate uplink configuration (IEEE 802.1q VID) and grouping of stations into AP_VLAN interfaces. The int vlan_id will continue to identify the AP_VLAN interface the station should be assigned to. Each AP_VLAN interface corresponds to an instance of struct hostapd_vlan that is uniquely identified by int vlan_id within an BSS. New: Each station and struct hostapd_vlan holds a struct vlan_description vlan_desc member that describes the uplink configuration requested. Currently this is just an int untagged IEEE 802.1q VID, but can be extended to tagged VLANs and other settings easily. When the station was about to be assigned its vlan_id, vlan_desc and vlan_id will now be set simultaneously by ap_sta_set_vlan(). So sta->vlan_id can still be tested for whether the station needs to be moved to an AP_VLAN interface. To ease addition of tagged VLAN support, a member notempty is added to struct vlan_description. Is is set to 1 if an untagged or tagged VLAN assignment is requested and needs to be validated. The inverted form allows os_zalloc() to initialize an empty description. Though not depended on by the code, vlan_id assignment ensures: * vlan_id = 0 will continue to mean no AP_VLAN interface * vlan_id < 4096 will continue to mean vlan_id = untagged vlan id with no per_sta_vif and no extra tagged vlan. * vlan_id > 4096 will be used for per_sta_vif and/or tagged vlans. This way struct wpa_group and drivers API do not need to be changed in order to implement tagged VLANs or per_sta_vif support. DYNAMIC_VLAN_* will refer to (struct vlan_description).notempty only, thus grouping of the stations for per_sta_vif can be used with DYNAMIC_VLAN_DISABLED, but not with CONFIG_NO_VLAN, as struct hostapd_vlan is still used to manage AP_VLAN interfaces. MAX_VLAN_ID will be checked in hostapd_vlan_valid and during setup of VLAN interfaces and refer to IEEE 802.1q VID. VLAN_ID_WILDCARD will continue to refer to int vlan_id. Renaming vlan_id to vlan_desc when type changed from int to struct vlan_description was avoided when vlan_id was also used in a way that did not depend on its type (for example, when passed to another function). Output of "VLAN ID %d" continues to refer to int vlan_id, while "VLAN %d" will refer to untagged IEEE 802.1q VID. Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
2016-01-21 14:51:56 +01:00
vlan_desc->untagged > MAX_VLAN_ID)
return 0;
for (i = 0; i < MAX_NUM_TAGGED_VLAN; i++) {
if (vlan_desc->tagged[i] < 0 ||
vlan_desc->tagged[i] > MAX_VLAN_ID)
return 0;
}
if (!vlan_desc->untagged && !vlan_desc->tagged[0])
return 0;
VLAN: Separate station grouping and uplink configuration Separate uplink configuration (IEEE 802.1q VID) and grouping of stations into AP_VLAN interfaces. The int vlan_id will continue to identify the AP_VLAN interface the station should be assigned to. Each AP_VLAN interface corresponds to an instance of struct hostapd_vlan that is uniquely identified by int vlan_id within an BSS. New: Each station and struct hostapd_vlan holds a struct vlan_description vlan_desc member that describes the uplink configuration requested. Currently this is just an int untagged IEEE 802.1q VID, but can be extended to tagged VLANs and other settings easily. When the station was about to be assigned its vlan_id, vlan_desc and vlan_id will now be set simultaneously by ap_sta_set_vlan(). So sta->vlan_id can still be tested for whether the station needs to be moved to an AP_VLAN interface. To ease addition of tagged VLAN support, a member notempty is added to struct vlan_description. Is is set to 1 if an untagged or tagged VLAN assignment is requested and needs to be validated. The inverted form allows os_zalloc() to initialize an empty description. Though not depended on by the code, vlan_id assignment ensures: * vlan_id = 0 will continue to mean no AP_VLAN interface * vlan_id < 4096 will continue to mean vlan_id = untagged vlan id with no per_sta_vif and no extra tagged vlan. * vlan_id > 4096 will be used for per_sta_vif and/or tagged vlans. This way struct wpa_group and drivers API do not need to be changed in order to implement tagged VLANs or per_sta_vif support. DYNAMIC_VLAN_* will refer to (struct vlan_description).notempty only, thus grouping of the stations for per_sta_vif can be used with DYNAMIC_VLAN_DISABLED, but not with CONFIG_NO_VLAN, as struct hostapd_vlan is still used to manage AP_VLAN interfaces. MAX_VLAN_ID will be checked in hostapd_vlan_valid and during setup of VLAN interfaces and refer to IEEE 802.1q VID. VLAN_ID_WILDCARD will continue to refer to int vlan_id. Renaming vlan_id to vlan_desc when type changed from int to struct vlan_description was avoided when vlan_id was also used in a way that did not depend on its type (for example, when passed to another function). Output of "VLAN ID %d" continues to refer to int vlan_id, while "VLAN %d" will refer to untagged IEEE 802.1q VID. Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
2016-01-21 14:51:56 +01:00
while (v) {
VLAN: Separate station grouping and uplink configuration Separate uplink configuration (IEEE 802.1q VID) and grouping of stations into AP_VLAN interfaces. The int vlan_id will continue to identify the AP_VLAN interface the station should be assigned to. Each AP_VLAN interface corresponds to an instance of struct hostapd_vlan that is uniquely identified by int vlan_id within an BSS. New: Each station and struct hostapd_vlan holds a struct vlan_description vlan_desc member that describes the uplink configuration requested. Currently this is just an int untagged IEEE 802.1q VID, but can be extended to tagged VLANs and other settings easily. When the station was about to be assigned its vlan_id, vlan_desc and vlan_id will now be set simultaneously by ap_sta_set_vlan(). So sta->vlan_id can still be tested for whether the station needs to be moved to an AP_VLAN interface. To ease addition of tagged VLAN support, a member notempty is added to struct vlan_description. Is is set to 1 if an untagged or tagged VLAN assignment is requested and needs to be validated. The inverted form allows os_zalloc() to initialize an empty description. Though not depended on by the code, vlan_id assignment ensures: * vlan_id = 0 will continue to mean no AP_VLAN interface * vlan_id < 4096 will continue to mean vlan_id = untagged vlan id with no per_sta_vif and no extra tagged vlan. * vlan_id > 4096 will be used for per_sta_vif and/or tagged vlans. This way struct wpa_group and drivers API do not need to be changed in order to implement tagged VLANs or per_sta_vif support. DYNAMIC_VLAN_* will refer to (struct vlan_description).notempty only, thus grouping of the stations for per_sta_vif can be used with DYNAMIC_VLAN_DISABLED, but not with CONFIG_NO_VLAN, as struct hostapd_vlan is still used to manage AP_VLAN interfaces. MAX_VLAN_ID will be checked in hostapd_vlan_valid and during setup of VLAN interfaces and refer to IEEE 802.1q VID. VLAN_ID_WILDCARD will continue to refer to int vlan_id. Renaming vlan_id to vlan_desc when type changed from int to struct vlan_description was avoided when vlan_id was also used in a way that did not depend on its type (for example, when passed to another function). Output of "VLAN ID %d" continues to refer to int vlan_id, while "VLAN %d" will refer to untagged IEEE 802.1q VID. Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
2016-01-21 14:51:56 +01:00
if (!vlan_compare(&v->vlan_desc, vlan_desc) ||
v->vlan_id == VLAN_ID_WILDCARD)
return 1;
v = v->next;
}
return 0;
}
const char * hostapd_get_vlan_id_ifname(struct hostapd_vlan *vlan, int vlan_id)
{
struct hostapd_vlan *v = vlan;
while (v) {
if (v->vlan_id == vlan_id)
return v->ifname;
v = v->next;
}
return NULL;
}
const u8 * hostapd_get_psk(const struct hostapd_bss_config *conf,
const u8 *addr, const u8 *p2p_dev_addr,
const u8 *prev_psk, int *vlan_id)
{
struct hostapd_wpa_psk *psk;
int next_ok = prev_psk == NULL;
if (vlan_id)
*vlan_id = 0;
if (p2p_dev_addr && !is_zero_ether_addr(p2p_dev_addr)) {
wpa_printf(MSG_DEBUG, "Searching a PSK for " MACSTR
" p2p_dev_addr=" MACSTR " prev_psk=%p",
MAC2STR(addr), MAC2STR(p2p_dev_addr), prev_psk);
addr = NULL; /* Use P2P Device Address for matching */
} else {
wpa_printf(MSG_DEBUG, "Searching a PSK for " MACSTR
" prev_psk=%p",
MAC2STR(addr), prev_psk);
}
for (psk = conf->ssid.wpa_psk; psk != NULL; psk = psk->next) {
if (next_ok &&
(psk->group ||
(addr && os_memcmp(psk->addr, addr, ETH_ALEN) == 0) ||
(!addr && p2p_dev_addr &&
os_memcmp(psk->p2p_dev_addr, p2p_dev_addr, ETH_ALEN) ==
0))) {
if (vlan_id)
*vlan_id = psk->vlan_id;
return psk->psk;
}
if (psk->psk == prev_psk)
next_ok = 1;
}
return NULL;
}
static int hostapd_config_check_bss(struct hostapd_bss_config *bss,
struct hostapd_config *conf,
int full_config)
{
if (full_config && bss->ieee802_1x && !bss->eap_server &&
!bss->radius->auth_servers) {
wpa_printf(MSG_ERROR, "Invalid IEEE 802.1X configuration (no "
"EAP authenticator configured).");
return -1;
}
if (bss->wpa) {
int wep, i;
wep = bss->default_wep_key_len > 0 ||
bss->individual_wep_key_len > 0;
for (i = 0; i < NUM_WEP_KEYS; i++) {
if (bss->ssid.wep.keys_set) {
wep = 1;
break;
}
}
if (wep) {
wpa_printf(MSG_ERROR, "WEP configuration in a WPA network is not supported");
return -1;
}
}
if (full_config && bss->wpa &&
bss->wpa_psk_radius != PSK_RADIUS_IGNORED &&
bss->macaddr_acl != USE_EXTERNAL_RADIUS_AUTH) {
wpa_printf(MSG_ERROR, "WPA-PSK using RADIUS enabled, but no "
"RADIUS checking (macaddr_acl=2) enabled.");
return -1;
}
if (full_config && bss->wpa && (bss->wpa_key_mgmt & WPA_KEY_MGMT_PSK) &&
bss->ssid.wpa_psk == NULL && bss->ssid.wpa_passphrase == NULL &&
bss->ssid.wpa_psk_file == NULL &&
(bss->wpa_psk_radius != PSK_RADIUS_REQUIRED ||
bss->macaddr_acl != USE_EXTERNAL_RADIUS_AUTH)) {
wpa_printf(MSG_ERROR, "WPA-PSK enabled, but PSK or passphrase "
"is not configured.");
return -1;
}
if (full_config && !is_zero_ether_addr(bss->bssid)) {
size_t i;
for (i = 0; i < conf->num_bss; i++) {
if (conf->bss[i] != bss &&
(hostapd_mac_comp(conf->bss[i]->bssid,
bss->bssid) == 0)) {
wpa_printf(MSG_ERROR, "Duplicate BSSID " MACSTR
" on interface '%s' and '%s'.",
MAC2STR(bss->bssid),
conf->bss[i]->iface, bss->iface);
return -1;
}
}
}
#ifdef CONFIG_IEEE80211R_AP
if (full_config && wpa_key_mgmt_ft(bss->wpa_key_mgmt) &&
(bss->nas_identifier == NULL ||
os_strlen(bss->nas_identifier) < 1 ||
os_strlen(bss->nas_identifier) > FT_R0KH_ID_MAX_LEN)) {
wpa_printf(MSG_ERROR, "FT (IEEE 802.11r) requires "
"nas_identifier to be configured as a 1..48 octet "
"string");
return -1;
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_IEEE80211N
if (full_config && conf->ieee80211n &&
conf->hw_mode == HOSTAPD_MODE_IEEE80211B) {
bss->disable_11n = 1;
wpa_printf(MSG_ERROR, "HT (IEEE 802.11n) in 11b mode is not "
"allowed, disabling HT capabilities");
}
if (full_config && conf->ieee80211n &&
bss->ssid.security_policy == SECURITY_STATIC_WEP) {
bss->disable_11n = 1;
wpa_printf(MSG_ERROR, "HT (IEEE 802.11n) with WEP is not "
"allowed, disabling HT capabilities");
}
if (full_config && conf->ieee80211n && bss->wpa &&
!(bss->wpa_pairwise & WPA_CIPHER_CCMP) &&
!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP |
WPA_CIPHER_CCMP_256 | WPA_CIPHER_GCMP_256)))
{
bss->disable_11n = 1;
wpa_printf(MSG_ERROR, "HT (IEEE 802.11n) with WPA/WPA2 "
"requires CCMP/GCMP to be enabled, disabling HT "
"capabilities");
}
#endif /* CONFIG_IEEE80211N */
#ifdef CONFIG_IEEE80211AC
if (full_config && conf->ieee80211ac &&
bss->ssid.security_policy == SECURITY_STATIC_WEP) {
bss->disable_11ac = 1;
wpa_printf(MSG_ERROR,
"VHT (IEEE 802.11ac) with WEP is not allowed, disabling VHT capabilities");
}
if (full_config && conf->ieee80211ac && bss->wpa &&
!(bss->wpa_pairwise & WPA_CIPHER_CCMP) &&
!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP |
WPA_CIPHER_CCMP_256 | WPA_CIPHER_GCMP_256)))
{
bss->disable_11ac = 1;
wpa_printf(MSG_ERROR,
"VHT (IEEE 802.11ac) with WPA/WPA2 requires CCMP/GCMP to be enabled, disabling VHT capabilities");
}
#endif /* CONFIG_IEEE80211AC */
#ifdef CONFIG_WPS
if (full_config && bss->wps_state && bss->ignore_broadcast_ssid) {
wpa_printf(MSG_INFO, "WPS: ignore_broadcast_ssid "
"configuration forced WPS to be disabled");
bss->wps_state = 0;
}
if (full_config && bss->wps_state &&
bss->ssid.wep.keys_set && bss->wpa == 0) {
wpa_printf(MSG_INFO, "WPS: WEP configuration forced WPS to be "
"disabled");
bss->wps_state = 0;
}
if (full_config && bss->wps_state && bss->wpa &&
(!(bss->wpa & 2) ||
!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP |
WPA_CIPHER_CCMP_256 |
WPA_CIPHER_GCMP_256)))) {
wpa_printf(MSG_INFO, "WPS: WPA/TKIP configuration without "
"WPA2/CCMP/GCMP forced WPS to be disabled");
bss->wps_state = 0;
}
#endif /* CONFIG_WPS */
#ifdef CONFIG_HS20
if (full_config && bss->hs20 &&
(!(bss->wpa & 2) ||
!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP |
WPA_CIPHER_CCMP_256 |
WPA_CIPHER_GCMP_256)))) {
wpa_printf(MSG_ERROR, "HS 2.0: WPA2-Enterprise/CCMP "
"configuration is required for Hotspot 2.0 "
"functionality");
return -1;
}
#endif /* CONFIG_HS20 */
#ifdef CONFIG_MBO
if (full_config && bss->mbo_enabled && (bss->wpa & 2) &&
bss->ieee80211w == NO_MGMT_FRAME_PROTECTION) {
wpa_printf(MSG_ERROR,
"MBO: PMF needs to be enabled whenever using WPA2 with MBO");
return -1;
}
#endif /* CONFIG_MBO */
#ifdef CONFIG_OCV
if (full_config && bss->ieee80211w == NO_MGMT_FRAME_PROTECTION &&
bss->ocv) {
wpa_printf(MSG_ERROR,
"OCV: PMF needs to be enabled whenever using OCV");
return -1;
}
#endif /* CONFIG_OCV */
return 0;
}
static int hostapd_config_check_cw(struct hostapd_config *conf, int queue)
{
int tx_cwmin = conf->tx_queue[queue].cwmin;
int tx_cwmax = conf->tx_queue[queue].cwmax;
int ac_cwmin = conf->wmm_ac_params[queue].cwmin;
int ac_cwmax = conf->wmm_ac_params[queue].cwmax;
if (tx_cwmin > tx_cwmax) {
wpa_printf(MSG_ERROR,
"Invalid TX queue cwMin/cwMax values. cwMin(%d) greater than cwMax(%d)",
tx_cwmin, tx_cwmax);
return -1;
}
if (ac_cwmin > ac_cwmax) {
wpa_printf(MSG_ERROR,
"Invalid WMM AC cwMin/cwMax values. cwMin(%d) greater than cwMax(%d)",
ac_cwmin, ac_cwmax);
return -1;
}
return 0;
}
int hostapd_config_check(struct hostapd_config *conf, int full_config)
{
size_t i;
if (full_config && conf->ieee80211d &&
(!conf->country[0] || !conf->country[1])) {
wpa_printf(MSG_ERROR, "Cannot enable IEEE 802.11d without "
"setting the country_code");
return -1;
}
if (full_config && conf->ieee80211h && !conf->ieee80211d) {
wpa_printf(MSG_ERROR, "Cannot enable IEEE 802.11h without "
"IEEE 802.11d enabled");
return -1;
}
if (full_config && conf->local_pwr_constraint != -1 &&
!conf->ieee80211d) {
wpa_printf(MSG_ERROR, "Cannot add Power Constraint element without Country element");
return -1;
}
if (full_config && conf->spectrum_mgmt_required &&
conf->local_pwr_constraint == -1) {
wpa_printf(MSG_ERROR, "Cannot set Spectrum Management bit without Country and Power Constraint elements");
return -1;
}
for (i = 0; i < NUM_TX_QUEUES; i++) {
if (hostapd_config_check_cw(conf, i))
return -1;
}
for (i = 0; i < conf->num_bss; i++) {
if (hostapd_config_check_bss(conf->bss[i], conf, full_config))
return -1;
}
return 0;
}
void hostapd_set_security_params(struct hostapd_bss_config *bss,
int full_config)
{
if (bss->individual_wep_key_len == 0) {
/* individual keys are not use; can use key idx0 for
* broadcast keys */
bss->broadcast_key_idx_min = 0;
}
if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
bss->rsn_pairwise = bss->wpa_pairwise;
if (bss->group_cipher)
bss->wpa_group = bss->group_cipher;
else
bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa,
bss->wpa_pairwise,
bss->rsn_pairwise);
if (!bss->wpa_group_rekey_set)
bss->wpa_group_rekey = bss->wpa_group == WPA_CIPHER_TKIP ?
600 : 86400;
if (full_config) {
bss->radius->auth_server = bss->radius->auth_servers;
bss->radius->acct_server = bss->radius->acct_servers;
}
if (bss->wpa && bss->ieee802_1x) {
bss->ssid.security_policy = SECURITY_WPA;
} else if (bss->wpa) {
bss->ssid.security_policy = SECURITY_WPA_PSK;
} else if (bss->ieee802_1x) {
int cipher = WPA_CIPHER_NONE;
bss->ssid.security_policy = SECURITY_IEEE_802_1X;
bss->ssid.wep.default_len = bss->default_wep_key_len;
if (full_config && bss->default_wep_key_len) {
cipher = bss->default_wep_key_len >= 13 ?
WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
} else if (full_config && bss->ssid.wep.keys_set) {
if (bss->ssid.wep.len[0] >= 13)
cipher = WPA_CIPHER_WEP104;
else
cipher = WPA_CIPHER_WEP40;
}
bss->wpa_group = cipher;
bss->wpa_pairwise = cipher;
bss->rsn_pairwise = cipher;
if (full_config)
bss->wpa_key_mgmt = WPA_KEY_MGMT_IEEE8021X_NO_WPA;
} else if (bss->ssid.wep.keys_set) {
int cipher = WPA_CIPHER_WEP40;
if (bss->ssid.wep.len[0] >= 13)
cipher = WPA_CIPHER_WEP104;
bss->ssid.security_policy = SECURITY_STATIC_WEP;
bss->wpa_group = cipher;
bss->wpa_pairwise = cipher;
bss->rsn_pairwise = cipher;
if (full_config)
bss->wpa_key_mgmt = WPA_KEY_MGMT_NONE;
} else if (bss->osen) {
bss->ssid.security_policy = SECURITY_OSEN;
bss->wpa_group = WPA_CIPHER_CCMP;
bss->wpa_pairwise = 0;
bss->rsn_pairwise = WPA_CIPHER_CCMP;
} else {
bss->ssid.security_policy = SECURITY_PLAINTEXT;
if (full_config) {
bss->wpa_group = WPA_CIPHER_NONE;
bss->wpa_pairwise = WPA_CIPHER_NONE;
bss->rsn_pairwise = WPA_CIPHER_NONE;
bss->wpa_key_mgmt = WPA_KEY_MGMT_NONE;
}
}
}
int hostapd_sae_pw_id_in_use(struct hostapd_bss_config *conf)
{
int with_id = 0, without_id = 0;
struct sae_password_entry *pw;
if (conf->ssid.wpa_passphrase)
without_id = 1;
for (pw = conf->sae_passwords; pw; pw = pw->next) {
if (pw->identifier)
with_id = 1;
else
without_id = 1;
if (with_id && without_id)
break;
}
if (with_id && !without_id)
return 2;
return with_id;
}