hostapd/wpa_supplicant/pasn_supplicant.c

981 lines
25 KiB
C
Raw Normal View History

/*
* wpa_supplicant - PASN processing
*
* Copyright (C) 2019 Intel Corporation
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common/ieee802_11_defs.h"
#include "common/ieee802_11_common.h"
#include "common/dragonfly.h"
#include "common/ptksa_cache.h"
#include "utils/eloop.h"
#include "drivers/driver.h"
#include "crypto/crypto.h"
#include "crypto/random.h"
#include "eap_common/eap_defs.h"
#include "rsn_supp/wpa.h"
#include "rsn_supp/pmksa_cache.h"
#include "wpa_supplicant_i.h"
#include "driver_i.h"
#include "bss.h"
#include "scan.h"
#include "config.h"
static const int dot11RSNAConfigPMKLifetime = 43200;
struct wpa_pasn_auth_work {
u8 own_addr[ETH_ALEN];
u8 peer_addr[ETH_ALEN];
int akmp;
int cipher;
u16 group;
int network_id;
struct wpabuf *comeback;
};
static int wpas_pasn_send_mlme(void *ctx, const u8 *data, size_t data_len,
int noack, unsigned int freq, unsigned int wait)
{
struct wpa_supplicant *wpa_s = ctx;
return wpa_drv_send_mlme(wpa_s, data, data_len, noack, freq, wait);
}
static void wpas_pasn_free_auth_work(struct wpa_pasn_auth_work *awork)
{
wpabuf_free(awork->comeback);
awork->comeback = NULL;
os_free(awork);
}
static void wpas_pasn_auth_work_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
wpa_printf(MSG_DEBUG, "PASN: Auth work timeout - stopping auth");
wpas_pasn_auth_stop(wpa_s);
wpas_pasn_auth_work_done(wpa_s, PASN_STATUS_FAILURE);
}
static void wpas_pasn_cancel_auth_work(struct wpa_supplicant *wpa_s)
{
wpa_printf(MSG_DEBUG, "PASN: Cancel pasn-start-auth work");
/* Remove pending/started work */
radio_remove_works(wpa_s, "pasn-start-auth", 0);
}
static void wpas_pasn_auth_status(struct wpa_supplicant *wpa_s,
const u8 *peer_addr,
int akmp, int cipher, u8 status,
struct wpabuf *comeback,
u16 comeback_after)
{
if (comeback) {
size_t comeback_len = wpabuf_len(comeback);
size_t buflen = comeback_len * 2 + 1;
char *comeback_txt = os_malloc(buflen);
if (comeback_txt) {
wpa_snprintf_hex(comeback_txt, buflen,
wpabuf_head(comeback), comeback_len);
wpa_msg(wpa_s, MSG_INFO, PASN_AUTH_STATUS MACSTR
" akmp=%s, status=%u comeback_after=%u comeback=%s",
MAC2STR(peer_addr),
wpa_key_mgmt_txt(akmp, WPA_PROTO_RSN),
status, comeback_after, comeback_txt);
os_free(comeback_txt);
return;
}
}
wpa_msg(wpa_s, MSG_INFO,
PASN_AUTH_STATUS MACSTR " akmp=%s, status=%u",
MAC2STR(peer_addr), wpa_key_mgmt_txt(akmp, WPA_PROTO_RSN),
status);
}
#ifdef CONFIG_SAE
static struct sae_pt *
wpas_pasn_sae_derive_pt(struct wpa_ssid *ssid, int group)
{
const char *password = ssid->sae_password;
int groups[2] = { group, 0 };
if (!password)
password = ssid->passphrase;
if (!password) {
wpa_printf(MSG_DEBUG, "PASN: SAE without a password");
return NULL;
}
return sae_derive_pt(groups, ssid->ssid, ssid->ssid_len,
(const u8 *) password, os_strlen(password),
ssid->sae_password_id);
}
static int wpas_pasn_sae_setup_pt(struct wpa_ssid *ssid, int group)
{
if (!ssid->sae_password && !ssid->passphrase) {
wpa_printf(MSG_DEBUG, "PASN: SAE without a password");
return -1;
}
if (ssid->pt)
return 0; /* PT already derived */
ssid->pt = wpas_pasn_sae_derive_pt(ssid, group);
return ssid->pt ? 0 : -1;
}
#endif /* CONFIG_SAE */
static int wpas_pasn_get_params_from_bss(struct wpa_supplicant *wpa_s,
struct pasn_peer *peer)
{
int ret;
const u8 *rsne, *rsnxe;
struct wpa_bss *bss;
struct wpa_ie_data rsne_data;
int sel, key_mgmt, pairwise_cipher;
int network_id = 0, group = 19;
struct wpa_ssid *ssid = NULL;
size_t ssid_str_len = 0;
const u8 *ssid_str = NULL;
const u8 *peer_addr = peer->peer_addr;
bss = wpa_bss_get_bssid(wpa_s, peer_addr);
if (!bss) {
wpa_supplicant_update_scan_results(wpa_s, peer_addr);
bss = wpa_bss_get_bssid(wpa_s, peer_addr);
if (!bss) {
wpa_printf(MSG_DEBUG, "PASN: BSS not found");
return -1;
}
}
rsne = wpa_bss_get_ie(bss, WLAN_EID_RSN);
if (!rsne) {
wpa_printf(MSG_DEBUG, "PASN: BSS without RSNE");
return -1;
}
ret = wpa_parse_wpa_ie(rsne, *(rsne + 1) + 2, &rsne_data);
if (ret) {
wpa_printf(MSG_DEBUG, "PASN: Failed parsing RSNE data");
return -1;
}
rsnxe = wpa_bss_get_ie(bss, WLAN_EID_RSNX);
ssid_str_len = bss->ssid_len;
ssid_str = bss->ssid;
/* Get the network configuration based on the obtained SSID */
for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) {
if (!wpas_network_disabled(wpa_s, ssid) &&
ssid_str_len == ssid->ssid_len &&
os_memcmp(ssid_str, ssid->ssid, ssid_str_len) == 0)
break;
}
if (ssid)
network_id = ssid->id;
sel = rsne_data.pairwise_cipher;
if (ssid && ssid->pairwise_cipher)
sel &= ssid->pairwise_cipher;
wpa_printf(MSG_DEBUG, "PASN: peer pairwise 0x%x, select 0x%x",
rsne_data.pairwise_cipher, sel);
pairwise_cipher = wpa_pick_pairwise_cipher(sel, 1);
if (pairwise_cipher < 0) {
wpa_msg(wpa_s, MSG_WARNING,
"PASN: Failed to select pairwise cipher");
return -1;
}
sel = rsne_data.key_mgmt;
if (ssid && ssid->key_mgmt)
sel &= ssid->key_mgmt;
wpa_printf(MSG_DEBUG, "PASN: peer AKMP 0x%x, select 0x%x",
rsne_data.key_mgmt, sel);
#ifdef CONFIG_SAE
if (!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_SAE) || !ssid)
sel &= ~(WPA_KEY_MGMT_SAE | WPA_KEY_MGMT_SAE_EXT_KEY |
WPA_KEY_MGMT_FT_SAE | WPA_KEY_MGMT_FT_SAE_EXT_KEY);
#endif /* CONFIG_SAE */
#ifdef CONFIG_IEEE80211R
if (!(wpa_s->drv_flags & (WPA_DRIVER_FLAGS_SME |
WPA_DRIVER_FLAGS_UPDATE_FT_IES)))
sel &= ~WPA_KEY_MGMT_FT;
#endif /* CONFIG_IEEE80211R */
if (0) {
#ifdef CONFIG_IEEE80211R
#ifdef CONFIG_SHA384
} else if ((sel & WPA_KEY_MGMT_FT_IEEE8021X_SHA384) &&
os_strcmp(wpa_supplicant_get_eap_mode(wpa_s), "LEAP") != 0) {
key_mgmt = WPA_KEY_MGMT_FT_IEEE8021X_SHA384;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FT/802.1X-SHA384");
if (ssid && !ssid->ft_eap_pmksa_caching &&
pmksa_cache_get_current(wpa_s->wpa)) {
/* PMKSA caching with FT may have interoperability
* issues, so disable that case by default for now.
*/
wpa_printf(MSG_DEBUG,
"PASN: Disable PMKSA caching for FT/802.1X connection");
pmksa_cache_clear_current(wpa_s->wpa);
}
#endif /* CONFIG_SHA384 */
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_SAE
} else if ((sel & WPA_KEY_MGMT_SAE_EXT_KEY) &&
(ieee802_11_rsnx_capab(rsnxe,
WLAN_RSNX_CAPAB_SAE_H2E)) &&
(wpas_pasn_sae_setup_pt(ssid, group) == 0)) {
key_mgmt = WPA_KEY_MGMT_SAE_EXT_KEY;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT SAE (ext key)");
} else if ((sel & WPA_KEY_MGMT_SAE) &&
(ieee802_11_rsnx_capab(rsnxe,
WLAN_RSNX_CAPAB_SAE_H2E)) &&
(wpas_pasn_sae_setup_pt(ssid, group) == 0)) {
key_mgmt = WPA_KEY_MGMT_SAE;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT SAE");
#endif /* CONFIG_SAE */
#ifdef CONFIG_FILS
} else if (sel & WPA_KEY_MGMT_FILS_SHA384) {
key_mgmt = WPA_KEY_MGMT_FILS_SHA384;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FILS-SHA384");
} else if (sel & WPA_KEY_MGMT_FILS_SHA256) {
key_mgmt = WPA_KEY_MGMT_FILS_SHA256;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FILS-SHA256");
#endif /* CONFIG_FILS */
#ifdef CONFIG_IEEE80211R
} else if ((sel & WPA_KEY_MGMT_FT_IEEE8021X) &&
os_strcmp(wpa_supplicant_get_eap_mode(wpa_s), "LEAP") != 0) {
key_mgmt = WPA_KEY_MGMT_FT_IEEE8021X;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FT/802.1X");
if (ssid && !ssid->ft_eap_pmksa_caching &&
pmksa_cache_get_current(wpa_s->wpa)) {
/* PMKSA caching with FT may have interoperability
* issues, so disable that case by default for now.
*/
wpa_printf(MSG_DEBUG,
"PASN: Disable PMKSA caching for FT/802.1X connection");
pmksa_cache_clear_current(wpa_s->wpa);
}
} else if (sel & WPA_KEY_MGMT_FT_PSK) {
key_mgmt = WPA_KEY_MGMT_FT_PSK;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FT/PSK");
#endif /* CONFIG_IEEE80211R */
} else if (sel & WPA_KEY_MGMT_PASN) {
key_mgmt = WPA_KEY_MGMT_PASN;
wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT PASN");
} else {
wpa_printf(MSG_DEBUG, "PASN: invalid AKMP");
return -1;
}
peer->akmp = key_mgmt;
peer->cipher = pairwise_cipher;
peer->network_id = network_id;
peer->group = group;
return 0;
}
static int wpas_pasn_set_keys_from_cache(struct wpa_supplicant *wpa_s,
const u8 *own_addr,
const u8 *peer_addr,
int cipher, int akmp)
{
struct ptksa_cache_entry *entry;
entry = ptksa_cache_get(wpa_s->ptksa, peer_addr, cipher);
if (!entry) {
wpa_printf(MSG_DEBUG, "PASN: peer " MACSTR
" not present in PTKSA cache", MAC2STR(peer_addr));
return -1;
}
if (!ether_addr_equal(entry->own_addr, own_addr)) {
wpa_printf(MSG_DEBUG,
"PASN: own addr " MACSTR " and PTKSA entry own addr "
MACSTR " differ",
MAC2STR(own_addr), MAC2STR(entry->own_addr));
return -1;
}
wpa_printf(MSG_DEBUG, "PASN: " MACSTR " present in PTKSA cache",
MAC2STR(peer_addr));
wpa_drv_set_secure_ranging_ctx(wpa_s, own_addr, peer_addr, cipher,
entry->ptk.tk_len,
entry->ptk.tk,
entry->ptk.ltf_keyseed_len,
entry->ptk.ltf_keyseed, 0);
return 0;
}
static void wpas_pasn_configure_next_peer(struct wpa_supplicant *wpa_s,
struct pasn_auth *pasn_params)
{
struct pasn_peer *peer;
u8 comeback_len = 0;
const u8 *comeback = NULL;
if (!pasn_params)
return;
while (wpa_s->pasn_count < pasn_params->num_peers) {
peer = &pasn_params->peer[wpa_s->pasn_count];
if (ether_addr_equal(wpa_s->bssid, peer->peer_addr)) {
wpa_printf(MSG_DEBUG,
"PASN: Associated peer is not expected");
peer->status = PASN_STATUS_FAILURE;
wpa_s->pasn_count++;
continue;
}
if (wpas_pasn_set_keys_from_cache(wpa_s, peer->own_addr,
peer->peer_addr,
peer->cipher,
peer->akmp) == 0) {
peer->status = PASN_STATUS_SUCCESS;
wpa_s->pasn_count++;
continue;
}
if (wpas_pasn_get_params_from_bss(wpa_s, peer)) {
peer->status = PASN_STATUS_FAILURE;
wpa_s->pasn_count++;
continue;
}
if (wpas_pasn_auth_start(wpa_s, peer->own_addr,
peer->peer_addr, peer->akmp,
peer->cipher, peer->group,
peer->network_id,
comeback, comeback_len)) {
peer->status = PASN_STATUS_FAILURE;
wpa_s->pasn_count++;
continue;
}
wpa_printf(MSG_DEBUG, "PASN: Sent PASN auth start for " MACSTR,
MAC2STR(peer->peer_addr));
return;
}
if (wpa_s->pasn_count == pasn_params->num_peers) {
wpa_drv_send_pasn_resp(wpa_s, pasn_params);
wpa_printf(MSG_DEBUG, "PASN: Response sent");
os_free(wpa_s->pasn_params);
wpa_s->pasn_params = NULL;
}
}
void wpas_pasn_auth_work_done(struct wpa_supplicant *wpa_s, int status)
{
if (!wpa_s->pasn_params)
return;
wpa_s->pasn_params->peer[wpa_s->pasn_count].status = status;
wpa_s->pasn_count++;
wpas_pasn_configure_next_peer(wpa_s, wpa_s->pasn_params);
}
static void wpas_pasn_delete_peers(struct wpa_supplicant *wpa_s,
struct pasn_auth *pasn_params)
{
struct pasn_peer *peer;
unsigned int i;
if (!pasn_params)
return;
for (i = 0; i < pasn_params->num_peers; i++) {
peer = &pasn_params->peer[i];
ptksa_cache_flush(wpa_s->ptksa, peer->peer_addr,
WPA_CIPHER_NONE);
}
}
#ifdef CONFIG_FILS
static void wpas_pasn_initiate_eapol(struct pasn_data *pasn,
struct wpa_ssid *ssid)
{
struct eapol_config eapol_conf;
wpa_printf(MSG_DEBUG, "PASN: FILS: Initiating EAPOL");
eapol_sm_notify_eap_success(pasn->eapol, false);
eapol_sm_notify_eap_fail(pasn->eapol, false);
eapol_sm_notify_portControl(pasn->eapol, Auto);
os_memset(&eapol_conf, 0, sizeof(eapol_conf));
eapol_conf.fast_reauth = pasn->fast_reauth;
eapol_conf.workaround = ssid->eap_workaround;
eapol_sm_notify_config(pasn->eapol, &ssid->eap, &eapol_conf);
}
#endif /* CONFIG_FILS */
static void wpas_pasn_reset(struct wpa_supplicant *wpa_s)
{
struct pasn_data *pasn = &wpa_s->pasn;
wpas_pasn_cancel_auth_work(wpa_s);
wpa_s->pasn_auth_work = NULL;
eloop_cancel_timeout(wpas_pasn_auth_work_timeout, wpa_s, NULL);
wpa_pasn_reset(pasn);
}
static struct wpa_bss * wpas_pasn_allowed(struct wpa_supplicant *wpa_s,
const u8 *peer_addr, int akmp,
int cipher)
{
struct wpa_bss *bss;
const u8 *rsne;
struct wpa_ie_data rsne_data;
int ret;
if (ether_addr_equal(wpa_s->bssid, peer_addr)) {
wpa_printf(MSG_DEBUG,
"PASN: Not doing authentication with current BSS");
return NULL;
}
bss = wpa_bss_get_bssid_latest(wpa_s, peer_addr);
if (!bss) {
wpa_printf(MSG_DEBUG, "PASN: BSS not found");
return NULL;
}
rsne = wpa_bss_get_ie(bss, WLAN_EID_RSN);
if (!rsne) {
wpa_printf(MSG_DEBUG, "PASN: BSS without RSNE");
return NULL;
}
ret = wpa_parse_wpa_ie(rsne, *(rsne + 1) + 2, &rsne_data);
if (ret) {
wpa_printf(MSG_DEBUG, "PASN: Failed parsing RSNE data");
return NULL;
}
if (!(rsne_data.key_mgmt & akmp) ||
!(rsne_data.pairwise_cipher & cipher)) {
wpa_printf(MSG_DEBUG,
"PASN: AP does not support requested AKMP or cipher");
return NULL;
}
return bss;
}
static void wpas_pasn_auth_start_cb(struct wpa_radio_work *work, int deinit)
{
struct wpa_supplicant *wpa_s = work->wpa_s;
struct wpa_pasn_auth_work *awork = work->ctx;
struct pasn_data *pasn = &wpa_s->pasn;
struct wpa_ssid *ssid;
struct wpa_bss *bss;
const u8 *rsne, *rsnxe;
#ifdef CONFIG_FILS
const u8 *indic;
u16 fils_info;
#endif /* CONFIG_FILS */
u16 capab = 0;
bool derive_kdk;
int ret;
wpa_printf(MSG_DEBUG, "PASN: auth_start_cb: deinit=%d", deinit);
if (deinit) {
if (work->started) {
eloop_cancel_timeout(wpas_pasn_auth_work_timeout,
wpa_s, NULL);
wpa_s->pasn_auth_work = NULL;
}
wpas_pasn_free_auth_work(awork);
return;
}
/*
* It is possible that by the time the callback is called, the PASN
* authentication is not allowed, e.g., a connection with the AP was
* established.
*/
bss = wpas_pasn_allowed(wpa_s, awork->peer_addr, awork->akmp,
awork->cipher);
if (!bss) {
wpa_printf(MSG_DEBUG, "PASN: auth_start_cb: Not allowed");
goto fail;
}
rsne = wpa_bss_get_ie(bss, WLAN_EID_RSN);
if (!rsne) {
wpa_printf(MSG_DEBUG, "PASN: BSS without RSNE");
goto fail;
}
rsnxe = wpa_bss_get_ie(bss, WLAN_EID_RSNX);
derive_kdk = (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA) &&
ieee802_11_rsnx_capab(rsnxe,
WLAN_RSNX_CAPAB_SECURE_LTF);
#ifdef CONFIG_TESTING_OPTIONS
if (!derive_kdk)
derive_kdk = wpa_s->conf->force_kdk_derivation;
#endif /* CONFIG_TESTING_OPTIONS */
if (derive_kdk)
pasn_enable_kdk_derivation(pasn);
else
pasn_disable_kdk_derivation(pasn);
wpa_printf(MSG_DEBUG, "PASN: kdk_len=%zu", pasn->kdk_len);
if ((wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA) &&
ieee802_11_rsnx_capab(rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF))
pasn->secure_ltf = true;
else
pasn->secure_ltf = false;
#ifdef CONFIG_TESTING_OPTIONS
pasn->corrupt_mic = wpa_s->conf->pasn_corrupt_mic;
#endif /* CONFIG_TESTING_OPTIONS */
capab |= BIT(WLAN_RSNX_CAPAB_SAE_H2E);
if (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA)
capab |= BIT(WLAN_RSNX_CAPAB_SECURE_LTF);
if (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_RTT_STA)
capab |= BIT(WLAN_RSNX_CAPAB_SECURE_RTT);
if (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_PROT_RANGE_NEG_STA)
capab |= BIT(WLAN_RSNX_CAPAB_URNM_MFPR);
pasn_set_rsnxe_caps(pasn, capab);
pasn_register_callbacks(pasn, wpa_s, wpas_pasn_send_mlme, NULL);
ssid = wpa_config_get_network(wpa_s->conf, awork->network_id);
#ifdef CONFIG_SAE
if (awork->akmp == WPA_KEY_MGMT_SAE) {
if (!ssid) {
wpa_printf(MSG_DEBUG,
"PASN: No network profile found for SAE");
goto fail;
}
pasn_set_pt(pasn, wpas_pasn_sae_derive_pt(ssid, awork->group));
if (!pasn->pt) {
wpa_printf(MSG_DEBUG, "PASN: Failed to derive PT");
goto fail;
}
pasn->network_id = ssid->id;
}
#endif /* CONFIG_SAE */
#ifdef CONFIG_FILS
/* Prepare needed information for wpas_pasn_wd_fils_auth(). */
if (awork->akmp == WPA_KEY_MGMT_FILS_SHA256 ||
awork->akmp == WPA_KEY_MGMT_FILS_SHA384) {
indic = wpa_bss_get_ie(bss, WLAN_EID_FILS_INDICATION);
if (!ssid) {
wpa_printf(MSG_DEBUG, "PASN: FILS: No network block");
} else if (!indic || indic[1] < 2) {
wpa_printf(MSG_DEBUG,
"PASN: Missing FILS Indication IE");
} else {
fils_info = WPA_GET_LE16(indic + 2);
if ((fils_info & BIT(9)) && ssid) {
pasn->eapol = wpa_s->eapol;
pasn->network_id = ssid->id;
wpas_pasn_initiate_eapol(pasn, ssid);
pasn->fils_eapol = true;
} else {
wpa_printf(MSG_DEBUG,
"PASN: FILS auth without PFS not supported");
}
}
pasn->fast_reauth = wpa_s->conf->fast_reauth;
}
#endif /* CONFIG_FILS */
pasn_set_initiator_pmksa(pasn, wpa_sm_get_pmksa_cache(wpa_s->wpa));
if (wpa_key_mgmt_ft(awork->akmp)) {
#ifdef CONFIG_IEEE80211R
ret = wpa_pasn_ft_derive_pmk_r1(wpa_s->wpa, awork->akmp,
awork->peer_addr,
pasn->pmk_r1,
&pasn->pmk_r1_len,
pasn->pmk_r1_name);
if (ret) {
wpa_printf(MSG_DEBUG,
"PASN: FT: Failed to derive keys");
goto fail;
}
#else /* CONFIG_IEEE80211R */
goto fail;
#endif /* CONFIG_IEEE80211R */
}
ret = wpas_pasn_start(pasn, awork->own_addr, awork->peer_addr,
awork->peer_addr, awork->akmp, awork->cipher,
awork->group, bss->freq, rsne, *(rsne + 1) + 2,
rsnxe, rsnxe ? *(rsnxe + 1) + 2 : 0,
awork->comeback);
if (ret) {
wpa_printf(MSG_DEBUG,
"PASN: Failed to start PASN authentication");
goto fail;
}
eloop_register_timeout(2, 0, wpas_pasn_auth_work_timeout, wpa_s, NULL);
/* comeback token is no longer needed at this stage */
wpabuf_free(awork->comeback);
awork->comeback = NULL;
wpa_s->pasn_auth_work = work;
return;
fail:
wpas_pasn_free_auth_work(awork);
work->ctx = NULL;
radio_work_done(work);
}
int wpas_pasn_auth_start(struct wpa_supplicant *wpa_s,
const u8 *own_addr, const u8 *peer_addr,
int akmp, int cipher, u16 group, int network_id,
const u8 *comeback, size_t comeback_len)
{
struct wpa_pasn_auth_work *awork;
struct wpa_bss *bss;
wpa_printf(MSG_DEBUG, "PASN: Start: " MACSTR " akmp=0x%x, cipher=0x%x",
MAC2STR(peer_addr), akmp, cipher);
/*
* TODO: Consider modifying the offchannel logic to handle additional
* Management frames other then Action frames. For now allow PASN only
* with drivers that support off-channel TX.
*/
if (!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_OFFCHANNEL_TX)) {
wpa_printf(MSG_DEBUG,
"PASN: Driver does not support offchannel TX");
return -1;
}
if (radio_work_pending(wpa_s, "pasn-start-auth")) {
wpa_printf(MSG_DEBUG,
"PASN: send_auth: Work is already pending");
return -1;
}
if (wpa_s->pasn_auth_work) {
wpa_printf(MSG_DEBUG, "PASN: send_auth: Already in progress");
return -1;
}
bss = wpas_pasn_allowed(wpa_s, peer_addr, akmp, cipher);
if (!bss)
return -1;
wpas_pasn_reset(wpa_s);
awork = os_zalloc(sizeof(*awork));
if (!awork)
return -1;
os_memcpy(awork->own_addr, own_addr, ETH_ALEN);
os_memcpy(awork->peer_addr, peer_addr, ETH_ALEN);
awork->akmp = akmp;
awork->cipher = cipher;
awork->group = group;
awork->network_id = network_id;
if (comeback && comeback_len) {
awork->comeback = wpabuf_alloc_copy(comeback, comeback_len);
if (!awork->comeback) {
wpas_pasn_free_auth_work(awork);
return -1;
}
}
if (radio_add_work(wpa_s, bss->freq, "pasn-start-auth", 1,
wpas_pasn_auth_start_cb, awork) < 0) {
wpas_pasn_free_auth_work(awork);
return -1;
}
wpa_printf(MSG_DEBUG, "PASN: Auth work successfully added");
return 0;
}
void wpas_pasn_auth_stop(struct wpa_supplicant *wpa_s)
{
struct pasn_data *pasn = &wpa_s->pasn;
if (!wpa_s->pasn.ecdh)
return;
wpa_printf(MSG_DEBUG, "PASN: Stopping authentication");
wpas_pasn_auth_status(wpa_s, pasn->peer_addr, pasn_get_akmp(pasn),
pasn_get_cipher(pasn),
pasn->status, pasn->comeback,
pasn->comeback_after);
wpas_pasn_reset(wpa_s);
}
static int wpas_pasn_immediate_retry(struct wpa_supplicant *wpa_s,
struct pasn_data *pasn,
struct wpa_pasn_params_data *params)
{
int akmp = pasn_get_akmp(pasn);
int cipher = pasn_get_cipher(pasn);
u16 group = pasn->group;
u8 own_addr[ETH_ALEN];
u8 peer_addr[ETH_ALEN];
wpa_printf(MSG_DEBUG, "PASN: Immediate retry");
os_memcpy(own_addr, pasn->own_addr, ETH_ALEN);
os_memcpy(peer_addr, pasn->peer_addr, ETH_ALEN);
wpas_pasn_reset(wpa_s);
return wpas_pasn_auth_start(wpa_s, own_addr, peer_addr, akmp, cipher,
group, pasn->network_id,
params->comeback, params->comeback_len);
}
static void wpas_pasn_deauth_cb(struct ptksa_cache_entry *entry)
{
struct wpa_supplicant *wpa_s = entry->ctx;
u8 own_addr[ETH_ALEN];
u8 peer_addr[ETH_ALEN];
/* Use a copy of the addresses from the entry to avoid issues with the
* entry getting freed during deauthentication processing. */
os_memcpy(own_addr, entry->own_addr, ETH_ALEN);
os_memcpy(peer_addr, entry->addr, ETH_ALEN);
wpas_pasn_deauthenticate(wpa_s, own_addr, peer_addr);
}
int wpas_pasn_auth_rx(struct wpa_supplicant *wpa_s,
const struct ieee80211_mgmt *mgmt, size_t len)
{
struct pasn_data *pasn = &wpa_s->pasn;
struct wpa_pasn_params_data pasn_data;
int ret;
if (!wpa_s->pasn_auth_work)
return -2;
pasn_register_callbacks(pasn, wpa_s, wpas_pasn_send_mlme, NULL);
ret = wpa_pasn_auth_rx(pasn, (const u8 *) mgmt, len, &pasn_data);
if (ret == 0) {
ptksa_cache_add(wpa_s->ptksa, pasn->own_addr, pasn->peer_addr,
pasn_get_cipher(pasn),
dot11RSNAConfigPMKLifetime,
pasn_get_ptk(pasn),
wpa_s->pasn_params ? wpas_pasn_deauth_cb : NULL,
wpa_s->pasn_params ? wpa_s : NULL,
pasn_get_akmp(pasn));
if (pasn->pmksa_entry)
wpa_sm_set_cur_pmksa(wpa_s->wpa, pasn->pmksa_entry);
}
forced_memzero(pasn_get_ptk(pasn), sizeof(pasn->ptk));
if (ret == -1) {
wpas_pasn_auth_stop(wpa_s);
wpas_pasn_auth_work_done(wpa_s, PASN_STATUS_FAILURE);
}
if (ret == 1)
ret = wpas_pasn_immediate_retry(wpa_s, pasn, &pasn_data);
return ret;
}
void wpas_pasn_auth_trigger(struct wpa_supplicant *wpa_s,
struct pasn_auth *pasn_auth)
{
struct pasn_peer *src, *dst;
unsigned int i, num_peers = pasn_auth->num_peers;
if (wpa_s->pasn_params) {
wpa_printf(MSG_DEBUG,
"PASN: auth_trigger: Already in progress");
return;
}
if (!num_peers || num_peers > WPAS_MAX_PASN_PEERS) {
wpa_printf(MSG_DEBUG,
"PASN: auth trigger: Invalid number of peers");
return;
}
wpa_s->pasn_params = os_zalloc(sizeof(struct pasn_auth));
if (!wpa_s->pasn_params) {
wpa_printf(MSG_DEBUG,
"PASN: auth trigger: Failed to allocate a buffer");
return;
}
wpa_s->pasn_count = 0;
wpa_s->pasn_params->num_peers = num_peers;
for (i = 0; i < num_peers; i++) {
dst = &wpa_s->pasn_params->peer[i];
src = &pasn_auth->peer[i];
os_memcpy(dst->own_addr, wpa_s->own_addr, ETH_ALEN);
os_memcpy(dst->peer_addr, src->peer_addr, ETH_ALEN);
dst->ltf_keyseed_required = src->ltf_keyseed_required;
dst->status = PASN_STATUS_SUCCESS;
if (!is_zero_ether_addr(src->own_addr)) {
os_memcpy(dst->own_addr, src->own_addr, ETH_ALEN);
wpa_printf(MSG_DEBUG, "PASN: Own (source) MAC addr: "
MACSTR, MAC2STR(dst->own_addr));
}
}
if (pasn_auth->action == PASN_ACTION_DELETE_SECURE_RANGING_CONTEXT) {
wpas_pasn_delete_peers(wpa_s, wpa_s->pasn_params);
os_free(wpa_s->pasn_params);
wpa_s->pasn_params = NULL;
} else if (pasn_auth->action == PASN_ACTION_AUTH) {
wpas_pasn_configure_next_peer(wpa_s, wpa_s->pasn_params);
}
}
int wpas_pasn_auth_tx_status(struct wpa_supplicant *wpa_s,
const u8 *data, size_t data_len, u8 acked)
{
struct pasn_data *pasn = &wpa_s->pasn;
int ret;
if (!wpa_s->pasn_auth_work) {
wpa_printf(MSG_DEBUG,
"PASN: auth_tx_status: no work in progress");
return -1;
}
ret = wpa_pasn_auth_tx_status(pasn, data, data_len, acked);
if (ret != 1)
return ret;
if (!wpa_s->pasn_params) {
wpas_pasn_auth_stop(wpa_s);
return 0;
}
wpas_pasn_set_keys_from_cache(wpa_s, pasn->own_addr, pasn->peer_addr,
pasn_get_cipher(pasn),
pasn_get_akmp(pasn));
wpas_pasn_auth_stop(wpa_s);
wpas_pasn_auth_work_done(wpa_s, PASN_STATUS_SUCCESS);
return 0;
}
int wpas_pasn_deauthenticate(struct wpa_supplicant *wpa_s, const u8 *own_addr,
const u8 *peer_addr)
{
struct wpa_bss *bss;
struct wpabuf *buf;
struct ieee80211_mgmt *deauth;
int ret;
if (ether_addr_equal(wpa_s->bssid, peer_addr)) {
wpa_printf(MSG_DEBUG,
"PASN: Cannot deauthenticate from current BSS");
return -1;
}
wpa_drv_set_secure_ranging_ctx(wpa_s, own_addr, peer_addr, 0, 0, NULL,
0, NULL, 1);
wpa_printf(MSG_DEBUG, "PASN: deauth: Flushing all PTKSA entries for "
MACSTR, MAC2STR(peer_addr));
ptksa_cache_flush(wpa_s->ptksa, peer_addr, WPA_CIPHER_NONE);
bss = wpa_bss_get_bssid(wpa_s, peer_addr);
if (!bss) {
wpa_printf(MSG_DEBUG, "PASN: deauth: BSS not found");
return -1;
}
buf = wpabuf_alloc(64);
if (!buf) {
wpa_printf(MSG_DEBUG, "PASN: deauth: Failed wpabuf allocate");
return -1;
}
deauth = wpabuf_put(buf, offsetof(struct ieee80211_mgmt,
u.deauth.variable));
deauth->frame_control = host_to_le16((WLAN_FC_TYPE_MGMT << 2) |
(WLAN_FC_STYPE_DEAUTH << 4));
os_memcpy(deauth->da, peer_addr, ETH_ALEN);
os_memcpy(deauth->sa, own_addr, ETH_ALEN);
os_memcpy(deauth->bssid, peer_addr, ETH_ALEN);
deauth->u.deauth.reason_code =
host_to_le16(WLAN_REASON_PREV_AUTH_NOT_VALID);
/*
* Since we do not expect any response from the AP, implement the
* Deauthentication frame transmission using direct call to the driver
* without a radio work.
*/
ret = wpa_drv_send_mlme(wpa_s, wpabuf_head(buf), wpabuf_len(buf), 1,
bss->freq, 0);
wpabuf_free(buf);
wpa_printf(MSG_DEBUG, "PASN: deauth: send_mlme ret=%d", ret);
return ret;
}