demarches-normaliennes/app/controllers/stats_controller.rb

452 lines
14 KiB
Ruby
Raw Normal View History

2017-03-24 18:04:37 +01:00
class StatsController < ApplicationController
before_action :authenticate_administration!, only: [:download]
MEAN_NUMBER_OF_CHAMPS_IN_A_FORM = 24.0
2017-03-24 18:04:37 +01:00
def index
stat = Stat.first
procedures = Procedure.publiees_ou_closes
2018-08-28 14:50:44 +02:00
dossiers = Dossier.state_not_brouillon
@procedures_numbers = procedures_numbers(procedures)
2020-10-02 14:14:32 +02:00
@dossiers_numbers = dossiers_numbers(
stat.dossiers_not_brouillon,
stat.dossiers_depose_avant_30_jours,
stat.dossiers_deposes_entre_60_et_30_jours
2020-10-02 14:14:32 +02:00
)
@satisfaction_usagers = satisfaction_usagers
2018-12-18 10:35:23 +01:00
@contact_percentage = contact_percentage
@dossiers_states_for_pie = {
"Brouillon" => stat.dossiers_brouillon,
"En construction" => stat.dossiers_en_construction,
"En instruction" => stat.dossiers_en_instruction,
"Terminé" => stat.dossiers_termines
}
@procedures_cumulative = cumulative_hash(procedures, :published_at)
@procedures_in_the_last_4_months = last_four_months_hash(procedures, :published_at)
@dossiers_cumulative = stat.dossiers_cumulative
@dossiers_in_the_last_4_months = stat.dossiers_in_the_last_4_months
if administration_signed_in?
@dossier_instruction_mean_time = Rails.cache.fetch("dossier_instruction_mean_time", expires_in: 1.day) do
dossier_instruction_mean_time(dossiers)
end
2017-06-01 09:44:22 +02:00
@dossier_filling_mean_time = Rails.cache.fetch("dossier_filling_mean_time", expires_in: 1.day) do
dossier_filling_mean_time(dossiers)
end
2017-05-09 17:09:35 +02:00
@avis_usage = avis_usage
@avis_average_answer_time = avis_average_answer_time
@avis_answer_percentages = avis_answer_percentages
2017-06-15 14:42:48 +02:00
@motivation_usage_dossier = motivation_usage_dossier
@motivation_usage_procedure = motivation_usage_procedure
@cloned_from_library_procedures_ratio = cloned_from_library_procedures_ratio
end
2017-03-24 18:04:37 +01:00
end
def download
headers = [
'ID du dossier',
2018-09-05 14:48:42 +02:00
'ID de la démarche',
'Nom de la démarche',
'ID utilisateur',
'Etat du fichier',
'Durée en brouillon',
'Durée en construction',
'Durée en instruction'
]
data = Dossier
.includes(:procedure, :user)
.in_batches
.flat_map do |dossiers|
dossiers
.pluck(
"dossiers.id",
"procedures.id",
"procedures.libelle",
"users.id",
"dossiers.state",
"dossiers.en_construction_at - dossiers.created_at",
"dossiers.en_instruction_at - dossiers.en_construction_at",
"dossiers.processed_at - dossiers.en_instruction_at"
)
end
respond_to do |format|
format.csv { send_data(SpreadsheetArchitect.to_xlsx(headers: headers, data: data), filename: "statistiques.csv") }
end
end
2017-03-24 18:04:37 +01:00
private
def procedures_numbers(procedures)
total = procedures.count
2018-10-25 15:11:12 +02:00
last_30_days_count = procedures.where(published_at: 1.month.ago..Time.zone.now).count
previous_count = procedures.where(published_at: 2.months.ago..1.month.ago).count
if previous_count != 0
evolution = (((last_30_days_count.to_f / previous_count) - 1) * 100).round(0)
else
evolution = 0
end
2018-12-18 21:55:45 +01:00
formatted_evolution = format("%+d", evolution)
{
total: total.to_s,
last_30_days_count: last_30_days_count.to_s,
evolution: formatted_evolution
}
end
2020-10-02 14:14:32 +02:00
def dossiers_numbers(total, last_30_days_count, previous_count)
if previous_count != 0
evolution = (((last_30_days_count.to_f / previous_count) - 1) * 100).round(0)
else
evolution = 0
end
2018-12-18 21:55:45 +01:00
formatted_evolution = format("%+d", evolution)
{
total: total.to_s,
last_30_days_count: last_30_days_count.to_s,
evolution: formatted_evolution
}
end
def satisfaction_usagers
legend = {
Feedback.ratings.fetch(:unhappy) => "Mécontents",
Feedback.ratings.fetch(:neutral) => "Neutres",
Feedback.ratings.fetch(:happy) => "Satisfaits"
}
2019-04-02 14:29:00 +02:00
number_of_weeks = 12
totals = Feedback
.group_by_week(:created_at, last: number_of_weeks, current: false)
.count
legend.keys.map do |rating|
data = Feedback
.where(rating: rating)
.group_by_week(:created_at, last: number_of_weeks, current: false)
.count
.map do |week, count|
total = totals[week]
# By default a week is displayed by the first day of the week but we'd rather display the last day
label = week.next_week
if total > 0
[label, (count.to_f / total * 100).round(2)]
else
[label, 0]
end
end.to_h
{
name: legend[rating],
data: data
}
end
end
2018-12-18 10:35:23 +01:00
def contact_percentage
number_of_months = 13
from = Time.zone.today.prev_month(number_of_months)
to = Time.zone.today.prev_month
2018-12-18 10:35:23 +01:00
adapter = Helpscout::UserConversationsAdapter.new(from, to)
if !adapter.can_fetch_reports?
return nil
end
adapter
2018-12-18 10:35:23 +01:00
.reports
.map do |monthly_report|
start_date = monthly_report[:start_date].to_time.localtime
end_date = monthly_report[:end_date].to_time.localtime
replies_count = monthly_report[:replies_sent]
2018-12-18 10:35:23 +01:00
dossiers_count = Dossier.where(en_construction_at: start_date..end_date).count
monthly_contact_percentage = replies_count.fdiv(dossiers_count || 1) * 100
[I18n.l(start_date, format: '%b %y'), monthly_contact_percentage.round(1)]
end
end
def cloned_from_library_procedures_ratio
[3.weeks.ago, 2.weeks.ago, 1.week.ago].map do |date|
min_date = date.beginning_of_week
max_date = min_date.end_of_week
all_procedures = Procedure.created_during(min_date..max_date)
cloned_from_library_procedures = all_procedures.cloned_from_library
denominator = [1, all_procedures.count].max
ratio = percentage(cloned_from_library_procedures.count, denominator)
[l(max_date, format: '%d/%m/%Y'), ratio]
end
end
def max_date
if administration_signed_in?
Time.zone.now
else
2018-10-25 15:11:12 +02:00
Time.zone.now.beginning_of_month - 1.second
end
end
def last_four_months_hash(association, date_attribute)
min_date = 3.months.ago.beginning_of_month.to_date
association
.where(date_attribute => min_date..max_date)
.group("DATE_TRUNC('month', #{date_attribute})")
.count
.to_a
2017-11-20 18:55:59 +01:00
.sort_by { |a| a[0] }
.map { |e| [I18n.l(e.first, format: "%B %Y"), e.last] }
end
def cumulative_hash(association, date_attribute)
sum = 0
association
.where("#{date_attribute} < ?", max_date)
.group("DATE_TRUNC('month', #{date_attribute})")
.count
.to_a
2017-11-20 18:55:59 +01:00
.sort_by { |a| a[0] }
.map { |x, y| { x => (sum += y) } }
.reduce({}, :merge)
end
def mean(collection)
(collection.sum.to_f / collection.size).round(2)
end
2017-06-19 17:29:20 +02:00
def percentage(numerator, denominator)
((numerator.to_f / denominator) * 100).round(2)
end
def dossier_instruction_mean_time(dossiers)
# In the 12 last months, we compute for each month
# the average time it took to instruct a dossier
# We compute monthly averages by first making an average per procedure
# and then computing the average for all the procedures
min_date = 11.months.ago
2018-10-25 15:11:12 +02:00
max_date = Time.zone.now.to_date
2020-07-06 18:42:21 +02:00
processed_dossiers = Traitement.includes(:dossier)
.where(dossier_id: dossiers)
.where('dossiers.state' => Dossier::TERMINE)
.where(:processed_at => min_date..max_date)
2020-07-06 18:42:21 +02:00
.pluck('dossiers.groupe_instructeur_id', 'dossiers.en_construction_at', :processed_at)
# Group dossiers by month
processed_dossiers_by_month = processed_dossiers
.group_by do |dossier|
dossier[2].beginning_of_month.to_s
end
processed_dossiers_by_month.map do |month, value|
# Group the dossiers for this month by procedure
dossiers_grouped_by_groupe_instructeur = value.group_by { |dossier| dossier[0] }
# Compute the mean time for this procedure
procedure_processing_times = dossiers_grouped_by_groupe_instructeur.map do |_procedure_id, procedure_dossiers|
procedure_dossiers_processing_time = procedure_dossiers.map do |dossier|
(dossier[2] - dossier[1]).to_f / (3600 * 24)
end
mean(procedure_dossiers_processing_time)
end
# Compute the average mean time for all the procedures of this month
month_average = mean(procedure_processing_times)
[month, month_average]
end.to_h
end
def dossier_filling_mean_time(dossiers)
# In the 12 last months, we compute for each month
# the average time it took to fill a dossier
# We compute monthly averages by first making an average per procedure
# and then computing the average for all the procedures
# For each procedure, we normalize the data: the time is calculated
# for a 24 champs form (the current form mean length)
min_date = 11.months.ago
2018-10-25 15:11:12 +02:00
max_date = Time.zone.now.to_date
2020-07-06 18:42:21 +02:00
processed_dossiers = Traitement.includes(:dossier)
.where(dossier: dossiers)
.where('dossiers.state' => Dossier::TERMINE)
.where(:processed_at => min_date..max_date)
2018-10-12 23:32:59 +02:00
.pluck(
2020-07-06 18:42:21 +02:00
'dossiers.groupe_instructeur_id',
Arel.sql('EXTRACT(EPOCH FROM (dossiers.en_construction_at - dossiers.created_at)) / 60 AS processing_time'),
2018-10-12 23:32:59 +02:00
:processed_at
)
# Group dossiers by month
processed_dossiers_by_month = processed_dossiers
2018-10-12 21:55:20 +02:00
.group_by do |(*_, processed_at)|
processed_at.beginning_of_month.to_s
end
groupe_instructeur_ids = processed_dossiers.map { |gid, _, _| gid }.uniq
groupe_instructeurs = GroupeInstructeur.where(id: groupe_instructeur_ids).pluck(:id, :procedure_id)
2018-10-12 22:09:59 +02:00
procedure_id_type_de_champs_count = TypeDeChamp
.where(private: false)
2020-08-27 19:55:10 +02:00
.joins(:revision)
.group('procedure_revisions.procedure_id')
2018-10-12 22:09:59 +02:00
.count
groupe_instructeur_id_type_de_champs_count = groupe_instructeurs.reduce({}) do |acc, (gi_id, procedure_id)|
acc[gi_id] = procedure_id_type_de_champs_count[procedure_id]
acc
end
2018-10-12 21:55:20 +02:00
processed_dossiers_by_month.map do |month, dossier_plucks|
# Group the dossiers for this month by procedure
dossiers_grouped_by_groupe_instructeur = dossier_plucks.group_by { |(groupe_instructeur_id, *_)| groupe_instructeur_id }
# Compute the mean time for this procedure
procedure_processing_times = dossiers_grouped_by_groupe_instructeur.map do |groupe_instructeur_id, procedure_dossiers|
procedure_fields_count = groupe_instructeur_id_type_de_champs_count[groupe_instructeur_id]
2018-10-16 18:02:00 +02:00
if (procedure_fields_count == 0 || procedure_fields_count.nil?)
next
end
2018-10-12 23:32:59 +02:00
procedure_dossiers_processing_time = procedure_dossiers.map { |_, processing_time, _| processing_time }
procedure_mean = mean(procedure_dossiers_processing_time)
# We normalize the data for 24 fields
procedure_mean * (MEAN_NUMBER_OF_CHAMPS_IN_A_FORM / procedure_fields_count)
end
2018-10-16 18:02:00 +02:00
.compact
# Compute the average mean time for all the procedures of this month
month_average = mean(procedure_processing_times)
[month, month_average]
end.to_h
end
2017-05-09 17:09:35 +02:00
def avis_usage
2018-03-06 13:44:29 +01:00
[3.weeks.ago, 2.weeks.ago, 1.week.ago].map do |min_date|
2017-05-09 17:09:35 +02:00
max_date = min_date + 1.week
weekly_dossiers = Dossier.includes(:avis).where(created_at: min_date..max_date).to_a
weekly_dossiers_count = weekly_dossiers.count
if weekly_dossiers_count == 0
result = 0
else
2020-09-24 15:14:23 +02:00
weekly_dossier_with_avis_count = weekly_dossiers.count { |dossier| dossier.avis.present? }
2017-06-19 17:29:20 +02:00
result = percentage(weekly_dossier_with_avis_count, weekly_dossiers_count)
2017-05-09 17:09:35 +02:00
end
[min_date.to_i, result]
end
end
def avis_average_answer_time
2018-03-06 13:44:29 +01:00
[3.weeks.ago, 2.weeks.ago, 1.week.ago].map do |min_date|
max_date = min_date + 1.week
average = Avis.with_answer
.where(created_at: min_date..max_date)
.average("EXTRACT(EPOCH FROM avis.updated_at - avis.created_at) / 86400")
result = average ? average.to_f.round(2) : 0
[min_date.to_i, result]
end
end
def avis_answer_percentages
2018-03-06 13:44:29 +01:00
[3.weeks.ago, 2.weeks.ago, 1.week.ago].map do |min_date|
max_date = min_date + 1.week
weekly_avis = Avis.where(created_at: min_date..max_date)
weekly_avis_count = weekly_avis.count
if weekly_avis_count == 0
[min_date.to_i, 0]
else
answered_weekly_avis_count = weekly_avis.with_answer.count
2017-06-19 17:29:20 +02:00
result = percentage(answered_weekly_avis_count, weekly_avis_count)
[min_date.to_i, result]
end
end
end
2017-06-15 14:42:48 +02:00
def motivation_usage_dossier
2018-03-06 13:44:29 +01:00
[3.weeks.ago, 2.weeks.ago, 1.week.ago].map do |date|
2017-06-15 14:42:48 +02:00
min_date = date.beginning_of_week
max_date = date.end_of_week
weekly_termine_dossiers = Dossier.where(processed_at: min_date..max_date)
weekly_termine_dossiers_count = weekly_termine_dossiers.count
weekly_termine_dossiers_with_motivation_count = weekly_termine_dossiers.where.not(motivation: nil).count
if weekly_termine_dossiers_count == 0
result = 0
else
result = percentage(weekly_termine_dossiers_with_motivation_count, weekly_termine_dossiers_count)
end
[l(max_date, format: '%d/%m/%Y'), result]
end
end
def motivation_usage_procedure
2018-03-06 13:44:29 +01:00
[3.weeks.ago, 2.weeks.ago, 1.week.ago].map do |date|
2017-06-15 14:42:48 +02:00
min_date = date.beginning_of_week
max_date = date.end_of_week
procedures_with_dossier_processed_this_week = Procedure
.joins(:dossiers)
.where(dossiers: { processed_at: min_date..max_date })
procedures_with_dossier_processed_this_week_count = procedures_with_dossier_processed_this_week
.uniq
.count
procedures_with_dossier_processed_this_week_and_with_motivation_count = procedures_with_dossier_processed_this_week
.where
.not(dossiers: { motivation: nil })
.uniq
.count
if procedures_with_dossier_processed_this_week_count == 0
result = 0
else
result = percentage(procedures_with_dossier_processed_this_week_and_with_motivation_count, procedures_with_dossier_processed_this_week_count)
end
[l(max_date, format: '%d/%m/%Y'), result]
end
end
2017-03-24 18:04:37 +01:00
end