8033a7abae
For now, do not distinguish between closing and non-closing thunks, it will make the initial implementation easier. See Knuth etc. Change-Id: I0bd51e0f89f2c77e90bac63b507e5027b649e3d8 Reviewed-on: https://cl.tvl.fyi/c/depot/+/6346 Tested-by: BuildkiteCI Reviewed-by: sterni <sternenseemann@systemli.org>
1264 lines
47 KiB
Rust
1264 lines
47 KiB
Rust
//! This module implements a compiler for compiling the rnix AST
|
|
//! representation to Tvix bytecode.
|
|
//!
|
|
//! A note on `unwrap()`: This module contains a lot of calls to
|
|
//! `unwrap()` or `expect(...)` on data structures returned by `rnix`.
|
|
//! The reason for this is that rnix uses the same data structures to
|
|
//! represent broken and correct ASTs, so all typed AST variants have
|
|
//! the ability to represent an incorrect node.
|
|
//!
|
|
//! However, at the time that the AST is passed to the compiler we
|
|
//! have verified that `rnix` considers the code to be correct, so all
|
|
//! variants are fulfilled. In cases where the invariant is guaranteed
|
|
//! by the code in this module, `debug_assert!` has been used to catch
|
|
//! mistakes early during development.
|
|
|
|
mod scope;
|
|
|
|
use path_clean::PathClean;
|
|
use rnix::ast::{self, AstToken, HasEntry};
|
|
use rowan::ast::AstNode;
|
|
use smol_str::SmolStr;
|
|
use std::collections::HashMap;
|
|
use std::path::{Path, PathBuf};
|
|
use std::rc::Rc;
|
|
|
|
use crate::chunk::Chunk;
|
|
use crate::errors::{Error, ErrorKind, EvalResult};
|
|
use crate::opcode::{CodeIdx, Count, JumpOffset, OpCode, UpvalueIdx};
|
|
use crate::value::{Closure, Lambda, Thunk, Value};
|
|
use crate::warnings::{EvalWarning, WarningKind};
|
|
|
|
use self::scope::{Local, LocalIdx, LocalPosition, Scope, Upvalue};
|
|
|
|
/// Represents the result of compiling a piece of Nix code. If
|
|
/// compilation was successful, the resulting bytecode can be passed
|
|
/// to the VM.
|
|
pub struct CompilationOutput {
|
|
pub lambda: Lambda,
|
|
pub warnings: Vec<EvalWarning>,
|
|
pub errors: Vec<Error>,
|
|
}
|
|
|
|
/// Represents the lambda currently being compiled.
|
|
struct LambdaCtx {
|
|
lambda: Lambda,
|
|
scope: Scope,
|
|
}
|
|
|
|
impl LambdaCtx {
|
|
fn new() -> Self {
|
|
LambdaCtx {
|
|
lambda: Lambda::new_anonymous(),
|
|
scope: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Alias for the map of globally available functions that should
|
|
/// implicitly be resolvable in the global scope.
|
|
type GlobalsMap = HashMap<&'static str, Rc<dyn Fn(&mut Compiler)>>;
|
|
|
|
struct Compiler {
|
|
contexts: Vec<LambdaCtx>,
|
|
warnings: Vec<EvalWarning>,
|
|
errors: Vec<Error>,
|
|
root_dir: PathBuf,
|
|
|
|
/// Carries all known global tokens; the full set of which is
|
|
/// created when the compiler is invoked.
|
|
///
|
|
/// Each global has an associated token, which when encountered as
|
|
/// an identifier is resolved against the scope poisoning logic,
|
|
/// and a function that should emit code for the token.
|
|
globals: GlobalsMap,
|
|
}
|
|
|
|
// Helper functions for emitting code and metadata to the internal
|
|
// structures of the compiler.
|
|
impl Compiler {
|
|
fn context(&self) -> &LambdaCtx {
|
|
&self.contexts[self.contexts.len() - 1]
|
|
}
|
|
|
|
fn context_mut(&mut self) -> &mut LambdaCtx {
|
|
let idx = self.contexts.len() - 1;
|
|
&mut self.contexts[idx]
|
|
}
|
|
|
|
fn chunk(&mut self) -> &mut Chunk {
|
|
&mut self.context_mut().lambda.chunk
|
|
}
|
|
|
|
fn scope(&self) -> &Scope {
|
|
&self.context().scope
|
|
}
|
|
|
|
fn scope_mut(&mut self) -> &mut Scope {
|
|
&mut self.context_mut().scope
|
|
}
|
|
|
|
fn emit_constant(&mut self, value: Value) {
|
|
let idx = self.chunk().push_constant(value);
|
|
self.chunk().push_op(OpCode::OpConstant(idx));
|
|
}
|
|
}
|
|
|
|
// Actual code-emitting AST traversal methods.
|
|
impl Compiler {
|
|
fn compile(&mut self, slot: Option<LocalIdx>, expr: ast::Expr) {
|
|
match expr {
|
|
ast::Expr::Literal(literal) => self.compile_literal(literal),
|
|
ast::Expr::Path(path) => self.compile_path(path),
|
|
ast::Expr::Str(s) => self.compile_str(s),
|
|
ast::Expr::UnaryOp(op) => self.compile_unary_op(op),
|
|
ast::Expr::BinOp(op) => self.compile_binop(op),
|
|
ast::Expr::HasAttr(has_attr) => self.compile_has_attr(has_attr),
|
|
ast::Expr::List(list) => self.compile_list(list),
|
|
ast::Expr::AttrSet(attrs) => self.compile_attr_set(attrs),
|
|
ast::Expr::Select(select) => self.compile_select(select),
|
|
ast::Expr::Assert(assert) => self.compile_assert(assert),
|
|
ast::Expr::IfElse(if_else) => self.compile_if_else(if_else),
|
|
ast::Expr::LetIn(let_in) => self.compile_let_in(let_in),
|
|
ast::Expr::Ident(ident) => self.compile_ident(slot, ident),
|
|
ast::Expr::With(with) => self.compile_with(with),
|
|
ast::Expr::Lambda(lambda) => self.compile_lambda(slot, lambda),
|
|
ast::Expr::Apply(apply) => self.compile_apply(apply),
|
|
|
|
// Parenthesized expressions are simply unwrapped, leaving
|
|
// their value on the stack.
|
|
ast::Expr::Paren(paren) => self.compile(slot, paren.expr().unwrap()),
|
|
|
|
ast::Expr::LegacyLet(_) => todo!("legacy let"),
|
|
|
|
ast::Expr::Root(_) => unreachable!("there cannot be more than one root"),
|
|
ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"),
|
|
}
|
|
}
|
|
|
|
fn compile_literal(&mut self, node: ast::Literal) {
|
|
match node.kind() {
|
|
ast::LiteralKind::Float(f) => {
|
|
self.emit_constant(Value::Float(f.value().unwrap()));
|
|
}
|
|
|
|
ast::LiteralKind::Integer(i) => {
|
|
self.emit_constant(Value::Integer(i.value().unwrap()));
|
|
}
|
|
ast::LiteralKind::Uri(u) => {
|
|
self.emit_warning(node.syntax().clone(), WarningKind::DeprecatedLiteralURL);
|
|
self.emit_constant(Value::String(u.syntax().text().into()));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn compile_path(&mut self, node: ast::Path) {
|
|
// TODO(tazjin): placeholder implementation while waiting for
|
|
// https://github.com/nix-community/rnix-parser/pull/96
|
|
|
|
let raw_path = node.to_string();
|
|
let path = if raw_path.starts_with('/') {
|
|
Path::new(&raw_path).to_owned()
|
|
} else if raw_path.starts_with('~') {
|
|
let mut buf = match dirs::home_dir() {
|
|
Some(buf) => buf,
|
|
None => {
|
|
self.emit_error(
|
|
node.syntax().clone(),
|
|
ErrorKind::PathResolution("failed to determine home directory".into()),
|
|
);
|
|
return;
|
|
}
|
|
};
|
|
|
|
buf.push(&raw_path);
|
|
buf
|
|
} else if raw_path.starts_with('.') {
|
|
let mut buf = self.root_dir.clone();
|
|
buf.push(&raw_path);
|
|
buf
|
|
} else {
|
|
// TODO: decide what to do with findFile
|
|
todo!("other path types (e.g. <...> lookups) not yet implemented")
|
|
};
|
|
|
|
// TODO: Use https://github.com/rust-lang/rfcs/issues/2208
|
|
// once it is available
|
|
let value = Value::Path(path.clean());
|
|
self.emit_constant(value);
|
|
}
|
|
|
|
fn compile_str(&mut self, node: ast::Str) {
|
|
let mut count = 0;
|
|
|
|
// The string parts are produced in literal order, however
|
|
// they need to be reversed on the stack in order to
|
|
// efficiently create the real string in case of
|
|
// interpolation.
|
|
for part in node.normalized_parts().into_iter().rev() {
|
|
count += 1;
|
|
|
|
match part {
|
|
// Interpolated expressions are compiled as normal and
|
|
// dealt with by the VM before being assembled into
|
|
// the final string.
|
|
ast::InterpolPart::Interpolation(node) => self.compile(None, node.expr().unwrap()),
|
|
|
|
ast::InterpolPart::Literal(lit) => {
|
|
self.emit_constant(Value::String(lit.into()));
|
|
}
|
|
}
|
|
}
|
|
|
|
if count != 1 {
|
|
self.chunk().push_op(OpCode::OpInterpolate(Count(count)));
|
|
}
|
|
}
|
|
|
|
fn compile_unary_op(&mut self, op: ast::UnaryOp) {
|
|
self.compile(None, op.expr().unwrap());
|
|
|
|
let opcode = match op.operator().unwrap() {
|
|
ast::UnaryOpKind::Invert => OpCode::OpInvert,
|
|
ast::UnaryOpKind::Negate => OpCode::OpNegate,
|
|
};
|
|
|
|
self.chunk().push_op(opcode);
|
|
}
|
|
|
|
fn compile_binop(&mut self, op: ast::BinOp) {
|
|
use ast::BinOpKind;
|
|
|
|
// Short-circuiting and other strange operators, which are
|
|
// under the same node type as NODE_BIN_OP, but need to be
|
|
// handled separately (i.e. before compiling the expressions
|
|
// used for standard binary operators).
|
|
|
|
match op.operator().unwrap() {
|
|
BinOpKind::And => return self.compile_and(op),
|
|
BinOpKind::Or => return self.compile_or(op),
|
|
BinOpKind::Implication => return self.compile_implication(op),
|
|
_ => {}
|
|
};
|
|
|
|
// For all other operators, the two values need to be left on
|
|
// the stack in the correct order before pushing the
|
|
// instruction for the operation itself.
|
|
self.compile(None, op.lhs().unwrap());
|
|
self.compile(None, op.rhs().unwrap());
|
|
|
|
match op.operator().unwrap() {
|
|
BinOpKind::Add => self.chunk().push_op(OpCode::OpAdd),
|
|
BinOpKind::Sub => self.chunk().push_op(OpCode::OpSub),
|
|
BinOpKind::Mul => self.chunk().push_op(OpCode::OpMul),
|
|
BinOpKind::Div => self.chunk().push_op(OpCode::OpDiv),
|
|
BinOpKind::Update => self.chunk().push_op(OpCode::OpAttrsUpdate),
|
|
BinOpKind::Equal => self.chunk().push_op(OpCode::OpEqual),
|
|
BinOpKind::Less => self.chunk().push_op(OpCode::OpLess),
|
|
BinOpKind::LessOrEq => self.chunk().push_op(OpCode::OpLessOrEq),
|
|
BinOpKind::More => self.chunk().push_op(OpCode::OpMore),
|
|
BinOpKind::MoreOrEq => self.chunk().push_op(OpCode::OpMoreOrEq),
|
|
BinOpKind::Concat => self.chunk().push_op(OpCode::OpConcat),
|
|
|
|
BinOpKind::NotEqual => {
|
|
self.chunk().push_op(OpCode::OpEqual);
|
|
self.chunk().push_op(OpCode::OpInvert)
|
|
}
|
|
|
|
// Handled by separate branch above.
|
|
BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => {
|
|
unreachable!()
|
|
}
|
|
};
|
|
}
|
|
|
|
fn compile_and(&mut self, node: ast::BinOp) {
|
|
debug_assert!(
|
|
matches!(node.operator(), Some(ast::BinOpKind::And)),
|
|
"compile_and called with wrong operator kind: {:?}",
|
|
node.operator(),
|
|
);
|
|
|
|
// Leave left-hand side value on the stack.
|
|
self.compile(None, node.lhs().unwrap());
|
|
|
|
// If this value is false, jump over the right-hand side - the
|
|
// whole expression is false.
|
|
let end_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(JumpOffset(0)));
|
|
|
|
// Otherwise, remove the previous value and leave the
|
|
// right-hand side on the stack. Its result is now the value
|
|
// of the whole expression.
|
|
self.chunk().push_op(OpCode::OpPop);
|
|
self.compile(None, node.rhs().unwrap());
|
|
|
|
self.patch_jump(end_idx);
|
|
self.chunk().push_op(OpCode::OpAssertBool);
|
|
}
|
|
|
|
fn compile_or(&mut self, node: ast::BinOp) {
|
|
debug_assert!(
|
|
matches!(node.operator(), Some(ast::BinOpKind::Or)),
|
|
"compile_or called with wrong operator kind: {:?}",
|
|
node.operator(),
|
|
);
|
|
|
|
// Leave left-hand side value on the stack
|
|
self.compile(None, node.lhs().unwrap());
|
|
|
|
// Opposite of above: If this value is **true**, we can
|
|
// short-circuit the right-hand side.
|
|
let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(JumpOffset(0)));
|
|
self.chunk().push_op(OpCode::OpPop);
|
|
self.compile(None, node.rhs().unwrap());
|
|
self.patch_jump(end_idx);
|
|
self.chunk().push_op(OpCode::OpAssertBool);
|
|
}
|
|
|
|
fn compile_implication(&mut self, node: ast::BinOp) {
|
|
debug_assert!(
|
|
matches!(node.operator(), Some(ast::BinOpKind::Implication)),
|
|
"compile_implication called with wrong operator kind: {:?}",
|
|
node.operator(),
|
|
);
|
|
|
|
// Leave left-hand side value on the stack and invert it.
|
|
self.compile(None, node.lhs().unwrap());
|
|
self.chunk().push_op(OpCode::OpInvert);
|
|
|
|
// Exactly as `||` (because `a -> b` = `!a || b`).
|
|
let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(JumpOffset(0)));
|
|
self.chunk().push_op(OpCode::OpPop);
|
|
self.compile(None, node.rhs().unwrap());
|
|
self.patch_jump(end_idx);
|
|
self.chunk().push_op(OpCode::OpAssertBool);
|
|
}
|
|
|
|
fn compile_has_attr(&mut self, node: ast::HasAttr) {
|
|
// Put the attribute set on the stack.
|
|
self.compile(None, node.expr().unwrap());
|
|
|
|
// Push all path fragments with an operation for fetching the
|
|
// next nested element, for all fragments except the last one.
|
|
for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() {
|
|
if count > 0 {
|
|
self.chunk().push_op(OpCode::OpAttrsTrySelect);
|
|
}
|
|
|
|
self.compile_attr(fragment);
|
|
}
|
|
|
|
// After the last fragment, emit the actual instruction that
|
|
// leaves a boolean on the stack.
|
|
self.chunk().push_op(OpCode::OpAttrsIsSet);
|
|
}
|
|
|
|
fn compile_attr(&mut self, node: ast::Attr) {
|
|
match node {
|
|
ast::Attr::Dynamic(dynamic) => self.compile(None, dynamic.expr().unwrap()),
|
|
ast::Attr::Str(s) => self.compile_str(s),
|
|
ast::Attr::Ident(ident) => self.emit_literal_ident(&ident),
|
|
}
|
|
}
|
|
|
|
// Compile list literals into equivalent bytecode. List
|
|
// construction is fairly simple, consisting of pushing code for
|
|
// each literal element and an instruction with the element count.
|
|
//
|
|
// The VM, after evaluating the code for each element, simply
|
|
// constructs the list from the given number of elements.
|
|
fn compile_list(&mut self, node: ast::List) {
|
|
let mut count = 0;
|
|
|
|
for item in node.items() {
|
|
count += 1;
|
|
self.compile(None, item);
|
|
}
|
|
|
|
self.chunk().push_op(OpCode::OpList(Count(count)));
|
|
}
|
|
|
|
// Compile attribute set literals into equivalent bytecode.
|
|
//
|
|
// This is complicated by a number of features specific to Nix
|
|
// attribute sets, most importantly:
|
|
//
|
|
// 1. Keys can be dynamically constructed through interpolation.
|
|
// 2. Keys can refer to nested attribute sets.
|
|
// 3. Attribute sets can (optionally) be recursive.
|
|
fn compile_attr_set(&mut self, node: ast::AttrSet) {
|
|
if node.rec_token().is_some() {
|
|
todo!("recursive attribute sets are not yet implemented")
|
|
}
|
|
|
|
let mut count = 0;
|
|
|
|
// Inherits have to be evaluated before entering the scope of
|
|
// a potentially recursive attribute sets (i.e. we always
|
|
// inherit "from the outside").
|
|
for inherit in node.inherits() {
|
|
match inherit.from() {
|
|
Some(from) => {
|
|
for ident in inherit.idents() {
|
|
count += 1;
|
|
|
|
// First emit the identifier itself
|
|
self.emit_literal_ident(&ident);
|
|
|
|
// Then emit the node that we're inheriting
|
|
// from.
|
|
//
|
|
// TODO: Likely significant optimisation
|
|
// potential in having a multi-select
|
|
// instruction followed by a merge, rather
|
|
// than pushing/popping the same attrs
|
|
// potentially a lot of times.
|
|
self.compile(None, from.expr().unwrap());
|
|
self.emit_literal_ident(&ident);
|
|
self.chunk().push_op(OpCode::OpAttrsSelect);
|
|
}
|
|
}
|
|
|
|
None => {
|
|
for ident in inherit.idents() {
|
|
count += 1;
|
|
self.emit_literal_ident(&ident);
|
|
|
|
match self
|
|
.scope_mut()
|
|
.resolve_local(ident.ident_token().unwrap().text())
|
|
{
|
|
LocalPosition::Unknown => {
|
|
self.emit_error(
|
|
ident.syntax().clone(),
|
|
ErrorKind::UnknownStaticVariable,
|
|
);
|
|
continue;
|
|
}
|
|
|
|
LocalPosition::Known(idx) => {
|
|
let stack_idx = self.scope().stack_index(idx);
|
|
self.chunk().push_op(OpCode::OpGetLocal(stack_idx))
|
|
}
|
|
|
|
LocalPosition::Recursive(_) => {
|
|
todo!("TODO: should be unreachable in inherits, check")
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for kv in node.attrpath_values() {
|
|
count += 1;
|
|
|
|
// Because attribute set literals can contain nested keys,
|
|
// there is potentially more than one key fragment. If
|
|
// this is the case, a special operation to construct a
|
|
// runtime value representing the attribute path is
|
|
// emitted.
|
|
let mut key_count = 0;
|
|
for fragment in kv.attrpath().unwrap().attrs() {
|
|
key_count += 1;
|
|
self.compile_attr(fragment);
|
|
}
|
|
|
|
// We're done with the key if there was only one fragment,
|
|
// otherwise we need to emit an instruction to construct
|
|
// the attribute path.
|
|
if key_count > 1 {
|
|
self.chunk().push_op(OpCode::OpAttrPath(Count(key_count)));
|
|
}
|
|
|
|
// The value is just compiled as normal so that its
|
|
// resulting value is on the stack when the attribute set
|
|
// is constructed at runtime.
|
|
self.compile(None, kv.value().unwrap());
|
|
}
|
|
|
|
self.chunk().push_op(OpCode::OpAttrs(Count(count)));
|
|
}
|
|
|
|
fn compile_select(&mut self, node: ast::Select) {
|
|
let set = node.expr().unwrap();
|
|
let path = node.attrpath().unwrap();
|
|
|
|
if node.or_token().is_some() {
|
|
self.compile_select_or(set, path, node.default_expr().unwrap());
|
|
return;
|
|
}
|
|
|
|
// Push the set onto the stack
|
|
self.compile(None, set);
|
|
|
|
// Compile each key fragment and emit access instructions.
|
|
//
|
|
// TODO: multi-select instruction to avoid re-pushing attrs on
|
|
// nested selects.
|
|
for fragment in path.attrs() {
|
|
self.compile_attr(fragment);
|
|
self.chunk().push_op(OpCode::OpAttrsSelect);
|
|
}
|
|
}
|
|
|
|
/// Compile an `or` expression into a chunk of conditional jumps.
|
|
///
|
|
/// If at any point during attribute set traversal a key is
|
|
/// missing, the `OpAttrOrNotFound` instruction will leave a
|
|
/// special sentinel value on the stack.
|
|
///
|
|
/// After each access, a conditional jump evaluates the top of the
|
|
/// stack and short-circuits to the default value if it sees the
|
|
/// sentinel.
|
|
///
|
|
/// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
|
|
/// runtime stack:
|
|
///
|
|
/// ```notrust
|
|
/// Bytecode Runtime stack
|
|
/// ┌────────────────────────────┐ ┌─────────────────────────┐
|
|
/// │ ... │ │ ... │
|
|
/// │ 5 OP_ATTRS(1) │ → │ 5 [ { a.b = 1; } ] │
|
|
/// │ 6 OP_CONSTANT("a") │ → │ 6 [ { a.b = 1; } "a" ] │
|
|
/// │ 7 OP_ATTR_OR_NOT_FOUND │ → │ 7 [ { b = 1; } ] │
|
|
/// │ 8 JUMP_IF_NOT_FOUND(13) │ → │ 8 [ { b = 1; } ] │
|
|
/// │ 9 OP_CONSTANT("C") │ → │ 9 [ { b = 1; } "c" ] │
|
|
/// │ 10 OP_ATTR_OR_NOT_FOUND │ → │ 10 [ NOT_FOUND ] │
|
|
/// │ 11 JUMP_IF_NOT_FOUND(13) │ → │ 11 [ ] │
|
|
/// │ 12 JUMP(14) │ │ .. jumped over │
|
|
/// │ 13 CONSTANT(42) │ → │ 12 [ 42 ] │
|
|
/// │ 14 ... │ │ .. .... │
|
|
/// └────────────────────────────┘ └─────────────────────────┘
|
|
/// ```
|
|
fn compile_select_or(&mut self, set: ast::Expr, path: ast::Attrpath, default: ast::Expr) {
|
|
self.compile(None, set);
|
|
let mut jumps = vec![];
|
|
|
|
for fragment in path.attrs() {
|
|
self.compile_attr(fragment);
|
|
self.chunk().push_op(OpCode::OpAttrsTrySelect);
|
|
jumps.push(
|
|
self.chunk()
|
|
.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0))),
|
|
);
|
|
}
|
|
|
|
let final_jump = self.chunk().push_op(OpCode::OpJump(JumpOffset(0)));
|
|
|
|
for jump in jumps {
|
|
self.patch_jump(jump);
|
|
}
|
|
|
|
// Compile the default value expression and patch the final
|
|
// jump to point *beyond* it.
|
|
self.compile(None, default);
|
|
self.patch_jump(final_jump);
|
|
}
|
|
|
|
fn compile_assert(&mut self, node: ast::Assert) {
|
|
// Compile the assertion condition to leave its value on the stack.
|
|
self.compile(None, node.condition().unwrap());
|
|
self.chunk().push_op(OpCode::OpAssert);
|
|
|
|
// The runtime will abort evaluation at this point if the
|
|
// assertion failed, if not the body simply continues on like
|
|
// normal.
|
|
self.compile(None, node.body().unwrap());
|
|
}
|
|
|
|
// Compile conditional expressions using jumping instructions in the VM.
|
|
//
|
|
// ┌────────────────────┐
|
|
// │ 0 [ conditional ] │
|
|
// │ 1 JUMP_IF_FALSE →┼─┐
|
|
// │ 2 [ main body ] │ │ Jump to else body if
|
|
// ┌┼─3─← JUMP │ │ condition is false.
|
|
// Jump over else body ││ 4 [ else body ]←┼─┘
|
|
// if condition is true.└┼─5─→ ... │
|
|
// └────────────────────┘
|
|
fn compile_if_else(&mut self, node: ast::IfElse) {
|
|
self.compile(None, node.condition().unwrap());
|
|
|
|
let then_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(JumpOffset(0)));
|
|
|
|
self.chunk().push_op(OpCode::OpPop); // discard condition value
|
|
self.compile(None, node.body().unwrap());
|
|
|
|
let else_idx = self.chunk().push_op(OpCode::OpJump(JumpOffset(0)));
|
|
|
|
self.patch_jump(then_idx); // patch jump *to* else_body
|
|
self.chunk().push_op(OpCode::OpPop); // discard condition value
|
|
self.compile(None, node.else_body().unwrap());
|
|
|
|
self.patch_jump(else_idx); // patch jump *over* else body
|
|
}
|
|
|
|
// Compile an `inherit` node of a `let`-expression.
|
|
fn compile_let_inherit<I: Iterator<Item = ast::Inherit>>(&mut self, inherits: I) {
|
|
for inherit in inherits {
|
|
match inherit.from() {
|
|
// Within a `let` binding, inheriting from the outer
|
|
// scope is a no-op *if* the identifier can be
|
|
// statically resolved.
|
|
None if !self.scope().has_with() => {
|
|
self.emit_warning(inherit.syntax().clone(), WarningKind::UselessInherit);
|
|
continue;
|
|
}
|
|
|
|
None => {
|
|
for ident in inherit.idents() {
|
|
// If the identifier resolves statically, it
|
|
// has precedence over dynamic bindings, and
|
|
// the inherit is useless.
|
|
if matches!(
|
|
self.scope_mut()
|
|
.resolve_local(ident.ident_token().unwrap().text()),
|
|
LocalPosition::Known(_)
|
|
) {
|
|
self.emit_warning(ident.syntax().clone(), WarningKind::UselessInherit);
|
|
continue;
|
|
}
|
|
|
|
self.compile_ident(None, ident.clone());
|
|
let idx = self.declare_local(
|
|
ident.syntax().clone(),
|
|
ident.ident_token().unwrap().text(),
|
|
);
|
|
self.scope_mut().mark_initialised(idx);
|
|
}
|
|
}
|
|
|
|
Some(from) => {
|
|
for ident in inherit.idents() {
|
|
self.compile(None, from.expr().unwrap());
|
|
self.emit_literal_ident(&ident);
|
|
self.chunk().push_op(OpCode::OpAttrsSelect);
|
|
let idx = self.declare_local(
|
|
ident.syntax().clone(),
|
|
ident.ident_token().unwrap().text(),
|
|
);
|
|
self.scope_mut().mark_initialised(idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compile a standard `let ...; in ...` statement.
|
|
//
|
|
// Unless in a non-standard scope, the encountered values are
|
|
// simply pushed on the stack and their indices noted in the
|
|
// entries vector.
|
|
fn compile_let_in(&mut self, node: ast::LetIn) {
|
|
self.begin_scope();
|
|
|
|
self.compile_let_inherit(node.inherits());
|
|
|
|
// First pass to ensure that all identifiers are known;
|
|
// required for resolving recursion.
|
|
let mut entries: Vec<(LocalIdx, ast::Expr)> = vec![];
|
|
for entry in node.attrpath_values() {
|
|
let mut path = match normalise_ident_path(entry.attrpath().unwrap().attrs()) {
|
|
Ok(p) => p,
|
|
Err(err) => {
|
|
self.errors.push(err);
|
|
continue;
|
|
}
|
|
};
|
|
|
|
if path.len() != 1 {
|
|
todo!("nested bindings in let expressions :(")
|
|
}
|
|
|
|
let idx = self.declare_local(
|
|
entry.attrpath().unwrap().syntax().clone(),
|
|
path.pop().unwrap(),
|
|
);
|
|
|
|
entries.push((idx, entry.value().unwrap()));
|
|
}
|
|
|
|
// Second pass to place the values in the correct stack slots.
|
|
let indices: Vec<LocalIdx> = entries.iter().map(|(idx, _)| *idx).collect();
|
|
for (idx, value) in entries.into_iter() {
|
|
self.compile(Some(idx), value);
|
|
|
|
// Any code after this point will observe the value in the
|
|
// right stack slot, so mark it as initialised.
|
|
self.scope_mut().mark_initialised(idx);
|
|
}
|
|
|
|
// Third pass to emit finaliser instructions if necessary.
|
|
for idx in indices {
|
|
if self.scope()[idx].needs_finaliser {
|
|
let stack_idx = self.scope().stack_index(idx);
|
|
self.chunk().push_op(OpCode::OpFinalise(stack_idx));
|
|
}
|
|
}
|
|
|
|
// Deal with the body, then clean up the locals afterwards.
|
|
self.compile(None, node.body().unwrap());
|
|
self.end_scope();
|
|
}
|
|
|
|
fn compile_ident(&mut self, slot: Option<LocalIdx>, node: ast::Ident) {
|
|
let ident = node.ident_token().unwrap();
|
|
|
|
// If the identifier is a global, and it is not poisoned, emit
|
|
// the global directly.
|
|
if let Some(global) = self.globals.get(ident.text()) {
|
|
if !self.scope().is_poisoned(ident.text()) {
|
|
global.clone()(self);
|
|
return;
|
|
}
|
|
}
|
|
|
|
match self.scope_mut().resolve_local(ident.text()) {
|
|
LocalPosition::Unknown => {
|
|
// Are we possibly dealing with an upvalue?
|
|
if let Some(idx) = self.resolve_upvalue(self.contexts.len() - 1, ident.text()) {
|
|
self.chunk().push_op(OpCode::OpGetUpvalue(idx));
|
|
return;
|
|
}
|
|
|
|
// Even worse - are we dealing with a dynamic upvalue?
|
|
if let Some(idx) =
|
|
self.resolve_dynamic_upvalue(self.contexts.len() - 1, ident.text())
|
|
{
|
|
// Edge case: Current scope *also* has a non-empty
|
|
// `with`-stack. This means we need to resolve
|
|
// both in this scope, and in the upvalues.
|
|
if self.scope().has_with() {
|
|
self.emit_constant(Value::String(ident.text().into()));
|
|
self.chunk().push_op(OpCode::OpResolveWithOrUpvalue(idx));
|
|
return;
|
|
}
|
|
|
|
self.chunk().push_op(OpCode::OpGetUpvalue(idx));
|
|
return;
|
|
}
|
|
|
|
if !self.scope().has_with() {
|
|
self.emit_error(node.syntax().clone(), ErrorKind::UnknownStaticVariable);
|
|
return;
|
|
}
|
|
|
|
// Variable needs to be dynamically resolved at
|
|
// runtime.
|
|
self.emit_constant(Value::String(ident.text().into()));
|
|
self.chunk().push_op(OpCode::OpResolveWith);
|
|
}
|
|
|
|
LocalPosition::Known(idx) => {
|
|
let stack_idx = self.scope().stack_index(idx);
|
|
self.chunk().push_op(OpCode::OpGetLocal(stack_idx));
|
|
}
|
|
|
|
// This identifier is referring to a value from the same
|
|
// scope which is not yet defined. This identifier access
|
|
// must be thunked.
|
|
LocalPosition::Recursive(idx) => self.thunk(slot, move |compiler, _| {
|
|
let upvalue_idx =
|
|
compiler.add_upvalue(compiler.contexts.len() - 1, Upvalue::Local(idx));
|
|
compiler.chunk().push_op(OpCode::OpGetUpvalue(upvalue_idx));
|
|
}),
|
|
};
|
|
}
|
|
|
|
// Compile `with` expressions by emitting instructions that
|
|
// pop/remove the indices of attribute sets that are implicitly in
|
|
// scope through `with` on the "with-stack".
|
|
fn compile_with(&mut self, node: ast::With) {
|
|
self.begin_scope();
|
|
// TODO: Detect if the namespace is just an identifier, and
|
|
// resolve that directly (thus avoiding duplication on the
|
|
// stack).
|
|
self.compile(None, node.namespace().unwrap());
|
|
let local_idx = self.scope_mut().declare_phantom();
|
|
let with_idx = self.scope().stack_index(local_idx);
|
|
|
|
self.scope_mut().push_with();
|
|
|
|
self.chunk().push_op(OpCode::OpPushWith(with_idx));
|
|
|
|
self.compile(None, node.body().unwrap());
|
|
|
|
self.chunk().push_op(OpCode::OpPopWith);
|
|
self.scope_mut().pop_with();
|
|
self.end_scope();
|
|
}
|
|
|
|
fn compile_lambda(&mut self, slot: Option<LocalIdx>, node: ast::Lambda) {
|
|
// Open new lambda context in compiler, which has its own
|
|
// scope etc.
|
|
self.contexts.push(LambdaCtx::new());
|
|
self.begin_scope();
|
|
|
|
// Compile the function itself
|
|
match node.param().unwrap() {
|
|
ast::Param::Pattern(_) => todo!("formals function definitions"),
|
|
ast::Param::IdentParam(param) => {
|
|
let name = param
|
|
.ident()
|
|
.unwrap()
|
|
.ident_token()
|
|
.unwrap()
|
|
.text()
|
|
.to_string();
|
|
|
|
let idx = self.declare_local(param.syntax().clone(), &name);
|
|
self.scope_mut().mark_initialised(idx);
|
|
}
|
|
}
|
|
|
|
self.compile(None, node.body().unwrap());
|
|
self.end_scope();
|
|
|
|
// TODO: determine and insert enclosing name, if available.
|
|
|
|
// Pop the lambda context back off, and emit the finished
|
|
// lambda as a constant.
|
|
let compiled = self.contexts.pop().unwrap();
|
|
|
|
#[cfg(feature = "disassembler")]
|
|
{
|
|
crate::disassembler::disassemble_chunk(&compiled.lambda.chunk);
|
|
}
|
|
|
|
// If the function is not a closure, just emit it directly and
|
|
// move on.
|
|
if compiled.lambda.upvalue_count == 0 {
|
|
self.emit_constant(Value::Closure(Closure::new(Rc::new(compiled.lambda))));
|
|
return;
|
|
}
|
|
|
|
// If the function is a closure, we need to emit the variable
|
|
// number of operands that allow the runtime to close over the
|
|
// upvalues and leave a blueprint in the constant index from
|
|
// which the runtime closure can be constructed.
|
|
let blueprint_idx = self
|
|
.chunk()
|
|
.push_constant(Value::Blueprint(Rc::new(compiled.lambda)));
|
|
|
|
self.chunk().push_op(OpCode::OpClosure(blueprint_idx));
|
|
self.emit_upvalue_data(slot, compiled.scope.upvalues);
|
|
}
|
|
|
|
fn compile_apply(&mut self, node: ast::Apply) {
|
|
// To call a function, we leave its arguments on the stack,
|
|
// followed by the function expression itself, and then emit a
|
|
// call instruction. This way, the stack is perfectly laid out
|
|
// to enter the function call straight away.
|
|
self.compile(None, node.argument().unwrap());
|
|
self.compile(None, node.lambda().unwrap());
|
|
self.chunk().push_op(OpCode::OpCall);
|
|
}
|
|
|
|
/// Compile an expression into a runtime thunk which should be
|
|
/// lazily evaluated when accessed.
|
|
// TODO: almost the same as Compiler::compile_lambda; unify?
|
|
fn thunk<F>(&mut self, slot: Option<LocalIdx>, content: F)
|
|
where
|
|
F: FnOnce(&mut Compiler, Option<LocalIdx>),
|
|
{
|
|
self.contexts.push(LambdaCtx::new());
|
|
self.begin_scope();
|
|
content(self, slot);
|
|
self.end_scope();
|
|
|
|
let thunk = self.contexts.pop().unwrap();
|
|
|
|
#[cfg(feature = "disassembler")]
|
|
{
|
|
crate::disassembler::disassemble_chunk(&thunk.lambda.chunk);
|
|
}
|
|
|
|
// Emit the thunk directly if it does not close over the
|
|
// environment.
|
|
if thunk.lambda.upvalue_count == 0 {
|
|
self.emit_constant(Value::Thunk(Thunk::new(Rc::new(thunk.lambda))));
|
|
return;
|
|
}
|
|
|
|
// Otherwise prepare for runtime construction of the thunk.
|
|
let blueprint_idx = self
|
|
.chunk()
|
|
.push_constant(Value::Blueprint(Rc::new(thunk.lambda)));
|
|
|
|
self.chunk().push_op(OpCode::OpThunk(blueprint_idx));
|
|
self.emit_upvalue_data(slot, thunk.scope.upvalues);
|
|
}
|
|
|
|
/// Emit the data instructions that the runtime needs to correctly
|
|
/// assemble the provided upvalues array.
|
|
fn emit_upvalue_data(&mut self, slot: Option<LocalIdx>, upvalues: Vec<Upvalue>) {
|
|
for upvalue in upvalues {
|
|
match upvalue {
|
|
Upvalue::Local(idx) if slot.is_none() => {
|
|
let stack_idx = self.scope().stack_index(idx);
|
|
self.chunk().push_op(OpCode::DataLocalIdx(stack_idx));
|
|
}
|
|
|
|
Upvalue::Local(idx) => {
|
|
let stack_idx = self.scope().stack_index(idx);
|
|
|
|
// If the upvalue slot is located *after* the
|
|
// closure, the upvalue resolution must be
|
|
// deferred until the scope is fully initialised
|
|
// and can be finalised.
|
|
if slot.unwrap() < idx {
|
|
self.chunk().push_op(OpCode::DataDeferredLocal(stack_idx));
|
|
self.scope_mut().mark_needs_finaliser(slot.unwrap());
|
|
} else {
|
|
self.chunk().push_op(OpCode::DataLocalIdx(stack_idx));
|
|
}
|
|
}
|
|
|
|
Upvalue::Upvalue(idx) => {
|
|
self.chunk().push_op(OpCode::DataUpvalueIdx(idx));
|
|
}
|
|
Upvalue::Dynamic { name, up } => {
|
|
let idx = self.chunk().push_constant(Value::String(name.into()));
|
|
self.chunk().push_op(OpCode::DataDynamicIdx(idx));
|
|
if let Some(up) = up {
|
|
self.chunk().push_op(OpCode::DataDynamicAncestor(up));
|
|
}
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Emit the literal string value of an identifier. Required for
|
|
/// several operations related to attribute sets, where
|
|
/// identifiers are used as string keys.
|
|
fn emit_literal_ident(&mut self, ident: &ast::Ident) {
|
|
self.emit_constant(Value::String(ident.ident_token().unwrap().text().into()));
|
|
}
|
|
|
|
/// Patch the jump instruction at the given index, setting its
|
|
/// jump offset from the placeholder to the current code position.
|
|
///
|
|
/// This is required because the actual target offset of jumps is
|
|
/// not known at the time when the jump operation itself is
|
|
/// emitted.
|
|
fn patch_jump(&mut self, idx: CodeIdx) {
|
|
let offset = JumpOffset(self.chunk().code.len() - 1 - idx.0);
|
|
|
|
match &mut self.chunk().code[idx.0] {
|
|
OpCode::OpJump(n)
|
|
| OpCode::OpJumpIfFalse(n)
|
|
| OpCode::OpJumpIfTrue(n)
|
|
| OpCode::OpJumpIfNotFound(n) => {
|
|
*n = offset;
|
|
}
|
|
|
|
op => panic!("attempted to patch unsupported op: {:?}", op),
|
|
}
|
|
}
|
|
|
|
fn begin_scope(&mut self) {
|
|
self.scope_mut().scope_depth += 1;
|
|
}
|
|
|
|
fn end_scope(&mut self) {
|
|
debug_assert!(self.scope().scope_depth != 0, "can not end top scope");
|
|
|
|
// If this scope poisoned any builtins or special identifiers,
|
|
// they need to be reset.
|
|
let depth = self.scope().scope_depth;
|
|
self.scope_mut().unpoison(depth);
|
|
|
|
self.scope_mut().scope_depth -= 1;
|
|
|
|
// When ending a scope, all corresponding locals need to be
|
|
// removed, but the value of the body needs to remain on the
|
|
// stack. This is implemented by a separate instruction.
|
|
let mut pops = 0;
|
|
|
|
// TL;DR - iterate from the back while things belonging to the
|
|
// ended scope still exist.
|
|
while !self.scope().locals.is_empty()
|
|
&& self.scope().locals[self.scope().locals.len() - 1].above(self.scope().scope_depth)
|
|
{
|
|
pops += 1;
|
|
|
|
// While removing the local, analyse whether it has been
|
|
// accessed while it existed and emit a warning to the
|
|
// user otherwise.
|
|
if let Some(Local {
|
|
node: Some(node),
|
|
used,
|
|
name,
|
|
..
|
|
}) = self.scope_mut().locals.pop()
|
|
{
|
|
if !used && !name.starts_with('_') {
|
|
self.emit_warning(node, WarningKind::UnusedBinding);
|
|
}
|
|
}
|
|
}
|
|
|
|
if pops > 0 {
|
|
self.chunk().push_op(OpCode::OpCloseScope(Count(pops)));
|
|
}
|
|
}
|
|
|
|
/// Declare a local variable known in the scope that is being
|
|
/// compiled by pushing it to the locals. This is used to
|
|
/// determine the stack offset of variables.
|
|
fn declare_local<S: Into<String>>(&mut self, node: rnix::SyntaxNode, name: S) -> LocalIdx {
|
|
let name = name.into();
|
|
let depth = self.scope().scope_depth;
|
|
|
|
// Do this little dance to get ahold of the *static* key and
|
|
// use it for poisoning if required.
|
|
let key: Option<&'static str> = match self.globals.get_key_value(name.as_str()) {
|
|
Some((key, _)) => Some(*key),
|
|
None => None,
|
|
};
|
|
|
|
if let Some(global_ident) = key {
|
|
self.emit_warning(node.clone(), WarningKind::ShadowedGlobal(global_ident));
|
|
self.scope_mut().poison(global_ident, depth);
|
|
}
|
|
|
|
let mut shadowed = false;
|
|
for other in self.scope().locals.iter().rev() {
|
|
if other.name == name && other.depth == depth {
|
|
shadowed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if shadowed {
|
|
self.emit_error(
|
|
node.clone(),
|
|
ErrorKind::VariableAlreadyDefined(name.clone()),
|
|
);
|
|
}
|
|
|
|
self.scope_mut().declare_local(name, node)
|
|
}
|
|
|
|
fn resolve_upvalue(&mut self, ctx_idx: usize, name: &str) -> Option<UpvalueIdx> {
|
|
if ctx_idx == 0 {
|
|
// There can not be any upvalue at the outermost context.
|
|
return None;
|
|
}
|
|
|
|
// Determine whether the upvalue is a local in the enclosing context.
|
|
match self.contexts[ctx_idx - 1].scope.resolve_local(name) {
|
|
// recursive upvalues are dealt with the same way as
|
|
// standard known ones, as thunks and closures are
|
|
// guaranteed to be placed on the stack (i.e. in the right
|
|
// position) *during* their runtime construction
|
|
LocalPosition::Known(idx) | LocalPosition::Recursive(idx) => {
|
|
return Some(self.add_upvalue(ctx_idx, Upvalue::Local(idx)))
|
|
}
|
|
|
|
LocalPosition::Unknown => { /* continue below */ }
|
|
};
|
|
|
|
// If the upvalue comes from even further up, we need to
|
|
// recurse to make sure that the upvalues are created at each
|
|
// level.
|
|
if let Some(idx) = self.resolve_upvalue(ctx_idx - 1, name) {
|
|
return Some(self.add_upvalue(ctx_idx, Upvalue::Upvalue(idx)));
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// If no static resolution for a potential upvalue was found,
|
|
/// finds the lowest lambda context that has a `with`-stack and
|
|
/// thread dynamic upvalues all the way through.
|
|
///
|
|
/// At runtime, as closures are being constructed they either
|
|
/// capture a dynamically available upvalue, take an upvalue from
|
|
/// their "ancestor" or leave a sentinel value on the stack.
|
|
///
|
|
/// As such an upvalue is actually accessed, an error is produced
|
|
/// when the sentinel is found. See the runtime's handling of
|
|
/// dynamic upvalues for details.
|
|
fn resolve_dynamic_upvalue(&mut self, at: usize, name: &str) -> Option<UpvalueIdx> {
|
|
if at == 0 {
|
|
// There can not be any upvalue at the outermost context.
|
|
return None;
|
|
}
|
|
|
|
if let Some((lowest_idx, _)) = self
|
|
.contexts
|
|
.iter()
|
|
.enumerate()
|
|
.find(|(_, c)| c.scope.has_with())
|
|
{
|
|
// An enclosing lambda context has dynamic values. Each
|
|
// context in the chain from that point on now needs to
|
|
// capture dynamic upvalues because we can not statically
|
|
// know at which level the correct one is located.
|
|
let name = SmolStr::new(name);
|
|
let mut upvalue_idx = None;
|
|
|
|
for idx in lowest_idx..=at {
|
|
upvalue_idx = Some(self.add_upvalue(
|
|
idx,
|
|
Upvalue::Dynamic {
|
|
name: name.clone(),
|
|
up: upvalue_idx,
|
|
},
|
|
));
|
|
}
|
|
|
|
// Return the outermost upvalue index (i.e. the one of the
|
|
// current context).
|
|
return upvalue_idx;
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
fn add_upvalue(&mut self, ctx_idx: usize, upvalue: Upvalue) -> UpvalueIdx {
|
|
// If there is already an upvalue closing over the specified
|
|
// index, retrieve that instead.
|
|
for (idx, existing) in self.contexts[ctx_idx].scope.upvalues.iter().enumerate() {
|
|
if *existing == upvalue {
|
|
return UpvalueIdx(idx);
|
|
}
|
|
}
|
|
|
|
self.contexts[ctx_idx].scope.upvalues.push(upvalue);
|
|
|
|
let idx = UpvalueIdx(self.contexts[ctx_idx].lambda.upvalue_count);
|
|
self.contexts[ctx_idx].lambda.upvalue_count += 1;
|
|
idx
|
|
}
|
|
|
|
fn emit_warning(&mut self, node: rnix::SyntaxNode, kind: WarningKind) {
|
|
self.warnings.push(EvalWarning { node, kind })
|
|
}
|
|
|
|
fn emit_error(&mut self, node: rnix::SyntaxNode, kind: ErrorKind) {
|
|
self.errors.push(Error {
|
|
node: Some(node),
|
|
kind,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Convert a non-dynamic string expression to a string if possible,
|
|
/// or raise an error.
|
|
fn expr_str_to_string(expr: ast::Str) -> EvalResult<String> {
|
|
if expr.normalized_parts().len() == 1 {
|
|
if let ast::InterpolPart::Literal(s) = expr.normalized_parts().pop().unwrap() {
|
|
return Ok(s);
|
|
}
|
|
}
|
|
|
|
return Err(Error {
|
|
node: Some(expr.syntax().clone()),
|
|
kind: ErrorKind::DynamicKeyInLet(expr.syntax().clone()),
|
|
});
|
|
}
|
|
|
|
/// Convert a single identifier path fragment to a string if possible,
|
|
/// or raise an error about the node being dynamic.
|
|
fn attr_to_string(node: ast::Attr) -> EvalResult<String> {
|
|
match node {
|
|
ast::Attr::Ident(ident) => Ok(ident.ident_token().unwrap().text().into()),
|
|
ast::Attr::Str(s) => expr_str_to_string(s),
|
|
|
|
// The dynamic node type is just a wrapper. C++ Nix does not
|
|
// care about the dynamic wrapper when determining whether the
|
|
// node itself is dynamic, it depends solely on the expression
|
|
// inside (i.e. `let ${"a"} = 1; in a` is valid).
|
|
ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
|
|
ast::Expr::Str(s) => expr_str_to_string(s),
|
|
_ => Err(ErrorKind::DynamicKeyInLet(node.syntax().clone()).into()),
|
|
},
|
|
}
|
|
}
|
|
|
|
// Normalises identifier fragments into a single string vector for
|
|
// `let`-expressions; fails if fragments requiring dynamic computation
|
|
// are encountered.
|
|
fn normalise_ident_path<I: Iterator<Item = ast::Attr>>(path: I) -> EvalResult<Vec<String>> {
|
|
path.map(attr_to_string).collect()
|
|
}
|
|
|
|
/// Prepare the full set of globals from additional globals supplied
|
|
/// by the caller of the compiler, as well as the built-in globals
|
|
/// that are always part of the language.
|
|
///
|
|
/// Note that all builtin functions are *not* considered part of the
|
|
/// language in this sense and MUST be supplied as additional global
|
|
/// values, including the `builtins` set itself.
|
|
fn prepare_globals(additional: HashMap<&'static str, Value>) -> GlobalsMap {
|
|
let mut globals: GlobalsMap = HashMap::new();
|
|
|
|
globals.insert(
|
|
"true",
|
|
Rc::new(|compiler| {
|
|
compiler.chunk().push_op(OpCode::OpTrue);
|
|
}),
|
|
);
|
|
|
|
globals.insert(
|
|
"false",
|
|
Rc::new(|compiler| {
|
|
compiler.chunk().push_op(OpCode::OpFalse);
|
|
}),
|
|
);
|
|
|
|
globals.insert(
|
|
"null",
|
|
Rc::new(|compiler| {
|
|
compiler.chunk().push_op(OpCode::OpNull);
|
|
}),
|
|
);
|
|
|
|
for (ident, value) in additional.into_iter() {
|
|
globals.insert(
|
|
ident,
|
|
Rc::new(move |compiler| compiler.emit_constant(value.clone())),
|
|
);
|
|
}
|
|
|
|
globals
|
|
}
|
|
|
|
pub fn compile(
|
|
expr: ast::Expr,
|
|
location: Option<PathBuf>,
|
|
globals: HashMap<&'static str, Value>,
|
|
) -> EvalResult<CompilationOutput> {
|
|
let mut root_dir = match location {
|
|
Some(dir) => Ok(dir),
|
|
None => std::env::current_dir().map_err(|e| {
|
|
ErrorKind::PathResolution(format!("could not determine current directory: {}", e))
|
|
}),
|
|
}?;
|
|
|
|
// If the path passed from the caller points to a file, the
|
|
// filename itself needs to be truncated as this must point to a
|
|
// directory.
|
|
if root_dir.is_file() {
|
|
root_dir.pop();
|
|
}
|
|
|
|
let mut c = Compiler {
|
|
root_dir,
|
|
globals: prepare_globals(globals),
|
|
contexts: vec![LambdaCtx::new()],
|
|
warnings: vec![],
|
|
errors: vec![],
|
|
};
|
|
|
|
c.compile(None, expr);
|
|
|
|
Ok(CompilationOutput {
|
|
lambda: c.contexts.pop().unwrap().lambda,
|
|
warnings: c.warnings,
|
|
errors: c.errors,
|
|
})
|
|
}
|