2017-09-19 22:54:40 +02:00
|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "absl/container/fixed_array.h"
|
|
|
|
|
|
|
|
#include <stdio.h>
|
2018-08-01 13:34:12 +02:00
|
|
|
#include <cstring>
|
2017-09-19 22:54:40 +02:00
|
|
|
#include <list>
|
|
|
|
#include <memory>
|
|
|
|
#include <numeric>
|
2018-08-01 13:34:12 +02:00
|
|
|
#include <scoped_allocator>
|
2017-09-19 22:54:40 +02:00
|
|
|
#include <stdexcept>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "gmock/gmock.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "absl/base/internal/exception_testing.h"
|
2018-10-02 21:09:18 +02:00
|
|
|
#include "absl/hash/hash_testing.h"
|
2017-09-19 22:54:40 +02:00
|
|
|
#include "absl/memory/memory.h"
|
|
|
|
|
2018-01-02 17:53:02 +01:00
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
|
2017-09-19 22:54:40 +02:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Helper routine to determine if a absl::FixedArray used stack allocation.
|
|
|
|
template <typename ArrayType>
|
|
|
|
static bool IsOnStack(const ArrayType& a) {
|
|
|
|
return a.size() <= ArrayType::inline_elements;
|
|
|
|
}
|
|
|
|
|
|
|
|
class ConstructionTester {
|
|
|
|
public:
|
|
|
|
ConstructionTester()
|
|
|
|
: self_ptr_(this),
|
|
|
|
value_(0) {
|
|
|
|
constructions++;
|
|
|
|
}
|
|
|
|
~ConstructionTester() {
|
|
|
|
assert(self_ptr_ == this);
|
|
|
|
self_ptr_ = nullptr;
|
|
|
|
destructions++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These are incremented as elements are constructed and destructed so we can
|
|
|
|
// be sure all elements are properly cleaned up.
|
|
|
|
static int constructions;
|
|
|
|
static int destructions;
|
|
|
|
|
|
|
|
void CheckConstructed() {
|
|
|
|
assert(self_ptr_ == this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void set(int value) { value_ = value; }
|
|
|
|
int get() { return value_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
// self_ptr_ should always point to 'this' -- that's how we can be sure the
|
|
|
|
// constructor has been called.
|
|
|
|
ConstructionTester* self_ptr_;
|
|
|
|
int value_;
|
|
|
|
};
|
|
|
|
|
|
|
|
int ConstructionTester::constructions = 0;
|
|
|
|
int ConstructionTester::destructions = 0;
|
|
|
|
|
|
|
|
// ThreeInts will initialize its three ints to the value stored in
|
|
|
|
// ThreeInts::counter. The constructor increments counter so that each object
|
|
|
|
// in an array of ThreeInts will have different values.
|
|
|
|
class ThreeInts {
|
|
|
|
public:
|
|
|
|
ThreeInts() {
|
|
|
|
x_ = counter;
|
|
|
|
y_ = counter;
|
|
|
|
z_ = counter;
|
|
|
|
++counter;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int counter;
|
|
|
|
|
|
|
|
int x_, y_, z_;
|
|
|
|
};
|
|
|
|
|
|
|
|
int ThreeInts::counter = 0;
|
|
|
|
|
2018-01-02 17:53:02 +01:00
|
|
|
TEST(FixedArrayTest, CopyCtor) {
|
|
|
|
absl::FixedArray<int, 10> on_stack(5);
|
|
|
|
std::iota(on_stack.begin(), on_stack.end(), 0);
|
|
|
|
absl::FixedArray<int, 10> stack_copy = on_stack;
|
|
|
|
EXPECT_THAT(stack_copy, ElementsAreArray(on_stack));
|
|
|
|
EXPECT_TRUE(IsOnStack(stack_copy));
|
|
|
|
|
|
|
|
absl::FixedArray<int, 10> allocated(15);
|
|
|
|
std::iota(allocated.begin(), allocated.end(), 0);
|
|
|
|
absl::FixedArray<int, 10> alloced_copy = allocated;
|
|
|
|
EXPECT_THAT(alloced_copy, ElementsAreArray(allocated));
|
|
|
|
EXPECT_FALSE(IsOnStack(alloced_copy));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, MoveCtor) {
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
|
|
on_stack[i] = absl::make_unique<int>(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack);
|
|
|
|
for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i);
|
|
|
|
EXPECT_EQ(stack_copy.size(), on_stack.size());
|
|
|
|
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> allocated(15);
|
|
|
|
for (int i = 0; i < 15; ++i) {
|
|
|
|
allocated[i] = absl::make_unique<int>(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy =
|
|
|
|
std::move(allocated);
|
|
|
|
for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i);
|
|
|
|
EXPECT_EQ(allocated.size(), alloced_copy.size());
|
|
|
|
}
|
|
|
|
|
2017-09-19 22:54:40 +02:00
|
|
|
TEST(FixedArrayTest, SmallObjects) {
|
|
|
|
// Small object arrays
|
|
|
|
{
|
|
|
|
// Short arrays should be on the stack
|
|
|
|
absl::FixedArray<int> array(4);
|
|
|
|
EXPECT_TRUE(IsOnStack(array));
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Large arrays should be on the heap
|
|
|
|
absl::FixedArray<int> array(1048576);
|
|
|
|
EXPECT_FALSE(IsOnStack(array));
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Arrays of <= default size should be on the stack
|
|
|
|
absl::FixedArray<int, 100> array(100);
|
|
|
|
EXPECT_TRUE(IsOnStack(array));
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Arrays of > default size should be on the stack
|
|
|
|
absl::FixedArray<int, 100> array(101);
|
|
|
|
EXPECT_FALSE(IsOnStack(array));
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Arrays with different size elements should use approximately
|
|
|
|
// same amount of stack space
|
|
|
|
absl::FixedArray<int> array1(0);
|
|
|
|
absl::FixedArray<char> array2(0);
|
|
|
|
EXPECT_LE(sizeof(array1), sizeof(array2)+100);
|
|
|
|
EXPECT_LE(sizeof(array2), sizeof(array1)+100);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Ensure that vectors are properly constructed inside a fixed array.
|
|
|
|
absl::FixedArray<std::vector<int> > array(2);
|
|
|
|
EXPECT_EQ(0, array[0].size());
|
|
|
|
EXPECT_EQ(0, array[1].size());
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Regardless of absl::FixedArray implementation, check that a type with a
|
|
|
|
// low alignment requirement and a non power-of-two size is initialized
|
|
|
|
// correctly.
|
|
|
|
ThreeInts::counter = 1;
|
|
|
|
absl::FixedArray<ThreeInts> array(2);
|
|
|
|
EXPECT_EQ(1, array[0].x_);
|
|
|
|
EXPECT_EQ(1, array[0].y_);
|
|
|
|
EXPECT_EQ(1, array[0].z_);
|
|
|
|
EXPECT_EQ(2, array[1].x_);
|
|
|
|
EXPECT_EQ(2, array[1].y_);
|
|
|
|
EXPECT_EQ(2, array[1].z_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, AtThrows) {
|
|
|
|
absl::FixedArray<int> a = {1, 2, 3};
|
|
|
|
EXPECT_EQ(a.at(2), 3);
|
|
|
|
ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range,
|
|
|
|
"failed bounds check");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayRelationalsTest, EqualArrays) {
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
|
|
absl::FixedArray<int, 5> a1(i);
|
|
|
|
std::iota(a1.begin(), a1.end(), 0);
|
|
|
|
absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
|
|
|
|
|
|
|
|
EXPECT_TRUE(a1 == a2);
|
|
|
|
EXPECT_FALSE(a1 != a2);
|
|
|
|
EXPECT_TRUE(a2 == a1);
|
|
|
|
EXPECT_FALSE(a2 != a1);
|
|
|
|
EXPECT_FALSE(a1 < a2);
|
|
|
|
EXPECT_FALSE(a1 > a2);
|
|
|
|
EXPECT_FALSE(a2 < a1);
|
|
|
|
EXPECT_FALSE(a2 > a1);
|
|
|
|
EXPECT_TRUE(a1 <= a2);
|
|
|
|
EXPECT_TRUE(a1 >= a2);
|
|
|
|
EXPECT_TRUE(a2 <= a1);
|
|
|
|
EXPECT_TRUE(a2 >= a1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayRelationalsTest, UnequalArrays) {
|
|
|
|
for (int i = 1; i < 10; ++i) {
|
|
|
|
absl::FixedArray<int, 5> a1(i);
|
|
|
|
std::iota(a1.begin(), a1.end(), 0);
|
|
|
|
absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
|
|
|
|
--a2[i / 2];
|
|
|
|
|
|
|
|
EXPECT_FALSE(a1 == a2);
|
|
|
|
EXPECT_TRUE(a1 != a2);
|
|
|
|
EXPECT_FALSE(a2 == a1);
|
|
|
|
EXPECT_TRUE(a2 != a1);
|
|
|
|
EXPECT_FALSE(a1 < a2);
|
|
|
|
EXPECT_TRUE(a1 > a2);
|
|
|
|
EXPECT_TRUE(a2 < a1);
|
|
|
|
EXPECT_FALSE(a2 > a1);
|
|
|
|
EXPECT_FALSE(a1 <= a2);
|
|
|
|
EXPECT_TRUE(a1 >= a2);
|
|
|
|
EXPECT_TRUE(a2 <= a1);
|
|
|
|
EXPECT_FALSE(a2 >= a1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int stack_elements>
|
|
|
|
static void TestArray(int n) {
|
|
|
|
SCOPED_TRACE(n);
|
|
|
|
SCOPED_TRACE(stack_elements);
|
|
|
|
ConstructionTester::constructions = 0;
|
|
|
|
ConstructionTester::destructions = 0;
|
|
|
|
{
|
|
|
|
absl::FixedArray<ConstructionTester, stack_elements> array(n);
|
|
|
|
|
|
|
|
EXPECT_THAT(array.size(), n);
|
|
|
|
EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n);
|
|
|
|
EXPECT_THAT(array.begin() + n, array.end());
|
|
|
|
|
|
|
|
// Check that all elements were constructed
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
array[i].CheckConstructed();
|
|
|
|
}
|
|
|
|
// Check that no other elements were constructed
|
|
|
|
EXPECT_THAT(ConstructionTester::constructions, n);
|
|
|
|
|
|
|
|
// Test operator[]
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
array[i].set(i);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
EXPECT_THAT(array[i].get(), i);
|
|
|
|
EXPECT_THAT(array.data()[i].get(), i);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test data()
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
array.data()[i].set(i + 1);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
EXPECT_THAT(array[i].get(), i+1);
|
|
|
|
EXPECT_THAT(array.data()[i].get(), i+1);
|
|
|
|
}
|
|
|
|
} // Close scope containing 'array'.
|
|
|
|
|
|
|
|
// Check that all constructed elements were destructed.
|
|
|
|
EXPECT_EQ(ConstructionTester::constructions,
|
|
|
|
ConstructionTester::destructions);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int elements_per_inner_array, int inline_elements>
|
|
|
|
static void TestArrayOfArrays(int n) {
|
|
|
|
SCOPED_TRACE(n);
|
|
|
|
SCOPED_TRACE(inline_elements);
|
|
|
|
SCOPED_TRACE(elements_per_inner_array);
|
|
|
|
ConstructionTester::constructions = 0;
|
|
|
|
ConstructionTester::destructions = 0;
|
|
|
|
{
|
|
|
|
using InnerArray = ConstructionTester[elements_per_inner_array];
|
|
|
|
// Heap-allocate the FixedArray to avoid blowing the stack frame.
|
|
|
|
auto array_ptr =
|
|
|
|
absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n);
|
|
|
|
auto& array = *array_ptr;
|
|
|
|
|
|
|
|
ASSERT_EQ(array.size(), n);
|
|
|
|
ASSERT_EQ(array.memsize(),
|
|
|
|
sizeof(ConstructionTester) * elements_per_inner_array * n);
|
|
|
|
ASSERT_EQ(array.begin() + n, array.end());
|
|
|
|
|
|
|
|
// Check that all elements were constructed
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
|
|
(array[i])[j].CheckConstructed();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Check that no other elements were constructed
|
|
|
|
ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array);
|
|
|
|
|
|
|
|
// Test operator[]
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
|
|
(array[i])[j].set(i * elements_per_inner_array + j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
|
|
ASSERT_EQ((array[i])[j].get(), i * elements_per_inner_array + j);
|
|
|
|
ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test data()
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
|
|
(array.data()[i])[j].set((i + 1) * elements_per_inner_array + j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
|
|
ASSERT_EQ((array[i])[j].get(),
|
|
|
|
(i + 1) * elements_per_inner_array + j);
|
|
|
|
ASSERT_EQ((array.data()[i])[j].get(),
|
|
|
|
(i + 1) * elements_per_inner_array + j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // Close scope containing 'array'.
|
|
|
|
|
|
|
|
// Check that all constructed elements were destructed.
|
|
|
|
EXPECT_EQ(ConstructionTester::constructions,
|
|
|
|
ConstructionTester::destructions);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IteratorConstructorTest, NonInline) {
|
|
|
|
int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
|
|
|
|
absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed(
|
|
|
|
kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
|
|
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
|
|
|
|
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
|
|
|
|
ASSERT_EQ(kInput[i], fixed[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IteratorConstructorTest, Inline) {
|
|
|
|
int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
|
|
|
|
absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed(
|
|
|
|
kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
|
|
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
|
|
|
|
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
|
|
|
|
ASSERT_EQ(kInput[i], fixed[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IteratorConstructorTest, NonPod) {
|
|
|
|
char const* kInput[] =
|
|
|
|
{ "red", "orange", "yellow", "green", "blue", "indigo", "violet" };
|
|
|
|
absl::FixedArray<std::string> const fixed(kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
|
|
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
|
|
|
|
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
|
|
|
|
ASSERT_EQ(kInput[i], fixed[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IteratorConstructorTest, FromEmptyVector) {
|
|
|
|
std::vector<int> const empty;
|
|
|
|
absl::FixedArray<int> const fixed(empty.begin(), empty.end());
|
|
|
|
EXPECT_EQ(0, fixed.size());
|
|
|
|
EXPECT_EQ(empty.size(), fixed.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IteratorConstructorTest, FromNonEmptyVector) {
|
|
|
|
int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
|
|
|
|
std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
|
|
absl::FixedArray<int> const fixed(items.begin(), items.end());
|
|
|
|
ASSERT_EQ(items.size(), fixed.size());
|
|
|
|
for (size_t i = 0; i < items.size(); ++i) {
|
|
|
|
ASSERT_EQ(items[i], fixed[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) {
|
|
|
|
int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
|
|
|
|
std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
|
|
absl::FixedArray<int> const fixed(items.begin(), items.end());
|
|
|
|
EXPECT_THAT(fixed, testing::ElementsAreArray(kInput));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(InitListConstructorTest, InitListConstruction) {
|
|
|
|
absl::FixedArray<int> fixed = {1, 2, 3};
|
|
|
|
EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3}));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FillConstructorTest, NonEmptyArrays) {
|
|
|
|
absl::FixedArray<int> stack_array(4, 1);
|
|
|
|
EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
|
|
|
|
|
|
|
|
absl::FixedArray<int, 0> heap_array(4, 1);
|
|
|
|
EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FillConstructorTest, EmptyArray) {
|
|
|
|
absl::FixedArray<int> empty_fill(0, 1);
|
|
|
|
absl::FixedArray<int> empty_size(0);
|
|
|
|
EXPECT_EQ(empty_fill, empty_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FillConstructorTest, NotTriviallyCopyable) {
|
|
|
|
std::string str = "abcd";
|
|
|
|
absl::FixedArray<std::string> strings = {str, str, str, str};
|
|
|
|
|
|
|
|
absl::FixedArray<std::string> array(4, str);
|
|
|
|
EXPECT_EQ(array, strings);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FillConstructorTest, Disambiguation) {
|
|
|
|
absl::FixedArray<size_t> a(1, 2);
|
|
|
|
EXPECT_THAT(a, testing::ElementsAre(2));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, ManySizedArrays) {
|
|
|
|
std::vector<int> sizes;
|
|
|
|
for (int i = 1; i < 100; i++) sizes.push_back(i);
|
|
|
|
for (int i = 100; i <= 1000; i += 100) sizes.push_back(i);
|
|
|
|
for (int n : sizes) {
|
|
|
|
TestArray<0>(n);
|
|
|
|
TestArray<1>(n);
|
|
|
|
TestArray<64>(n);
|
|
|
|
TestArray<1000>(n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) {
|
|
|
|
for (int n = 1; n < 1000; n++) {
|
|
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n)));
|
|
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n)));
|
|
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n)));
|
|
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) {
|
|
|
|
for (int n = 1; n < 1000; n++) {
|
|
|
|
TestArrayOfArrays<2, 0>(n);
|
|
|
|
TestArrayOfArrays<2, 1>(n);
|
|
|
|
TestArrayOfArrays<2, 64>(n);
|
|
|
|
TestArrayOfArrays<2, 1000>(n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If value_type is put inside of a struct container,
|
|
|
|
// we might evoke this error in a hardened build unless data() is carefully
|
|
|
|
// written, so check on that.
|
|
|
|
// error: call to int __builtin___sprintf_chk(etc...)
|
|
|
|
// will always overflow destination buffer [-Werror]
|
|
|
|
TEST(FixedArrayTest, AvoidParanoidDiagnostics) {
|
|
|
|
absl::FixedArray<char, 32> buf(32);
|
|
|
|
sprintf(buf.data(), "foo"); // NOLINT(runtime/printf)
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, TooBigInlinedSpace) {
|
|
|
|
struct TooBig {
|
|
|
|
char c[1 << 20];
|
|
|
|
}; // too big for even one on the stack
|
|
|
|
|
|
|
|
// Simulate the data members of absl::FixedArray, a pointer and a size_t.
|
|
|
|
struct Data {
|
|
|
|
TooBig* p;
|
|
|
|
size_t size;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Make sure TooBig objects are not inlined for 0 or default size.
|
|
|
|
static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data),
|
|
|
|
"0-sized absl::FixedArray should have same size as Data.");
|
|
|
|
static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data),
|
|
|
|
"0-sized absl::FixedArray should have same alignment as Data.");
|
|
|
|
static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data),
|
|
|
|
"default-sized absl::FixedArray should have same size as Data");
|
|
|
|
static_assert(
|
|
|
|
alignof(absl::FixedArray<TooBig>) == alignof(Data),
|
|
|
|
"default-sized absl::FixedArray should have same alignment as Data.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// PickyDelete EXPECTs its class-scope deallocation funcs are unused.
|
|
|
|
struct PickyDelete {
|
|
|
|
PickyDelete() {}
|
|
|
|
~PickyDelete() {}
|
|
|
|
void operator delete(void* p) {
|
|
|
|
EXPECT_TRUE(false) << __FUNCTION__;
|
|
|
|
::operator delete(p);
|
|
|
|
}
|
|
|
|
void operator delete[](void* p) {
|
|
|
|
EXPECT_TRUE(false) << __FUNCTION__;
|
|
|
|
::operator delete[](p);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); }
|
|
|
|
|
2018-01-25 19:52:02 +01:00
|
|
|
|
2017-09-19 22:54:40 +02:00
|
|
|
TEST(FixedArrayTest, Data) {
|
|
|
|
static const int kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
|
|
|
|
absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput));
|
|
|
|
EXPECT_EQ(fa.data(), &*fa.begin());
|
|
|
|
EXPECT_EQ(fa.data(), &fa[0]);
|
|
|
|
|
|
|
|
const absl::FixedArray<int>& cfa = fa;
|
|
|
|
EXPECT_EQ(cfa.data(), &*cfa.begin());
|
|
|
|
EXPECT_EQ(cfa.data(), &cfa[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, Empty) {
|
|
|
|
absl::FixedArray<int> empty(0);
|
|
|
|
absl::FixedArray<int> inline_filled(1);
|
|
|
|
absl::FixedArray<int, 0> heap_filled(1);
|
|
|
|
EXPECT_TRUE(empty.empty());
|
|
|
|
EXPECT_FALSE(inline_filled.empty());
|
|
|
|
EXPECT_FALSE(heap_filled.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, FrontAndBack) {
|
|
|
|
absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3};
|
|
|
|
EXPECT_EQ(inlined.front(), 1);
|
|
|
|
EXPECT_EQ(inlined.back(), 3);
|
|
|
|
|
|
|
|
absl::FixedArray<int, 0> allocated = {1, 2, 3};
|
|
|
|
EXPECT_EQ(allocated.front(), 1);
|
|
|
|
EXPECT_EQ(allocated.back(), 3);
|
|
|
|
|
|
|
|
absl::FixedArray<int> one_element = {1};
|
|
|
|
EXPECT_EQ(one_element.front(), one_element.back());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, ReverseIteratorInlined) {
|
|
|
|
absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4};
|
|
|
|
|
|
|
|
int counter = 5;
|
|
|
|
for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
|
|
|
|
iter != a.rend(); ++iter) {
|
|
|
|
counter--;
|
|
|
|
EXPECT_EQ(counter, *iter);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
|
|
|
|
counter = 5;
|
|
|
|
for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
|
|
|
|
iter != a.rend(); ++iter) {
|
|
|
|
counter--;
|
|
|
|
EXPECT_EQ(counter, *iter);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
|
|
|
|
counter = 5;
|
|
|
|
for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
|
|
|
|
counter--;
|
|
|
|
EXPECT_EQ(counter, *iter);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, ReverseIteratorAllocated) {
|
|
|
|
absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4};
|
|
|
|
|
|
|
|
int counter = 5;
|
|
|
|
for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
|
|
|
|
iter != a.rend(); ++iter) {
|
|
|
|
counter--;
|
|
|
|
EXPECT_EQ(counter, *iter);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
|
|
|
|
counter = 5;
|
|
|
|
for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
|
|
|
|
iter != a.rend(); ++iter) {
|
|
|
|
counter--;
|
|
|
|
EXPECT_EQ(counter, *iter);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
|
|
|
|
counter = 5;
|
|
|
|
for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
|
|
|
|
counter--;
|
|
|
|
EXPECT_EQ(counter, *iter);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, Fill) {
|
|
|
|
absl::FixedArray<int, 5 * sizeof(int)> inlined(5);
|
|
|
|
int fill_val = 42;
|
|
|
|
inlined.fill(fill_val);
|
|
|
|
for (int i : inlined) EXPECT_EQ(i, fill_val);
|
|
|
|
|
|
|
|
absl::FixedArray<int, 0> allocated(5);
|
|
|
|
allocated.fill(fill_val);
|
|
|
|
for (int i : allocated) EXPECT_EQ(i, fill_val);
|
|
|
|
|
|
|
|
// It doesn't do anything, just make sure this compiles.
|
|
|
|
absl::FixedArray<int> empty(0);
|
|
|
|
empty.fill(fill_val);
|
|
|
|
}
|
|
|
|
|
2018-08-01 13:34:12 +02:00
|
|
|
// TODO(johnsoncj): Investigate InlinedStorage default initialization in GCC 4.x
|
|
|
|
#ifndef __GNUC__
|
|
|
|
TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) {
|
|
|
|
using T = char;
|
|
|
|
constexpr auto capacity = 10;
|
|
|
|
using FixedArrType = absl::FixedArray<T, capacity>;
|
|
|
|
using FixedArrBuffType =
|
|
|
|
absl::aligned_storage_t<sizeof(FixedArrType), alignof(FixedArrType)>;
|
|
|
|
constexpr auto scrubbed_bits = 0x95;
|
|
|
|
constexpr auto length = capacity / 2;
|
|
|
|
|
|
|
|
FixedArrBuffType buff;
|
|
|
|
std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrBuffType));
|
|
|
|
|
|
|
|
FixedArrType* arr =
|
|
|
|
::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length);
|
|
|
|
EXPECT_THAT(*arr, testing::Each(scrubbed_bits));
|
|
|
|
arr->~FixedArrType();
|
|
|
|
}
|
|
|
|
#endif // __GNUC__
|
|
|
|
|
|
|
|
// This is a stateful allocator, but the state lives outside of the
|
|
|
|
// allocator (in whatever test is using the allocator). This is odd
|
|
|
|
// but helps in tests where the allocator is propagated into nested
|
|
|
|
// containers - that chain of allocators uses the same state and is
|
|
|
|
// thus easier to query for aggregate allocation information.
|
|
|
|
template <typename T>
|
|
|
|
class CountingAllocator : public std::allocator<T> {
|
|
|
|
public:
|
|
|
|
using Alloc = std::allocator<T>;
|
|
|
|
using pointer = typename Alloc::pointer;
|
|
|
|
using size_type = typename Alloc::size_type;
|
|
|
|
|
|
|
|
CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {}
|
|
|
|
explicit CountingAllocator(int64_t* b)
|
|
|
|
: bytes_used_(b), instance_count_(nullptr) {}
|
|
|
|
CountingAllocator(int64_t* b, int64_t* a)
|
|
|
|
: bytes_used_(b), instance_count_(a) {}
|
|
|
|
|
|
|
|
template <typename U>
|
|
|
|
explicit CountingAllocator(const CountingAllocator<U>& x)
|
|
|
|
: Alloc(x),
|
|
|
|
bytes_used_(x.bytes_used_),
|
|
|
|
instance_count_(x.instance_count_) {}
|
|
|
|
|
|
|
|
pointer allocate(size_type n, const void* const hint = nullptr) {
|
|
|
|
assert(bytes_used_ != nullptr);
|
|
|
|
*bytes_used_ += n * sizeof(T);
|
|
|
|
return Alloc::allocate(n, hint);
|
|
|
|
}
|
|
|
|
|
|
|
|
void deallocate(pointer p, size_type n) {
|
|
|
|
Alloc::deallocate(p, n);
|
|
|
|
assert(bytes_used_ != nullptr);
|
|
|
|
*bytes_used_ -= n * sizeof(T);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename... Args>
|
|
|
|
void construct(pointer p, Args&&... args) {
|
|
|
|
Alloc::construct(p, absl::forward<Args>(args)...);
|
|
|
|
if (instance_count_) {
|
|
|
|
*instance_count_ += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void destroy(pointer p) {
|
|
|
|
Alloc::destroy(p);
|
|
|
|
if (instance_count_) {
|
|
|
|
*instance_count_ -= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename U>
|
|
|
|
class rebind {
|
|
|
|
public:
|
|
|
|
using other = CountingAllocator<U>;
|
|
|
|
};
|
|
|
|
|
|
|
|
int64_t* bytes_used_;
|
|
|
|
int64_t* instance_count_;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(AllocatorSupportTest, CountInlineAllocations) {
|
|
|
|
constexpr size_t inlined_size = 4;
|
|
|
|
using Alloc = CountingAllocator<int>;
|
|
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
|
|
|
|
int64_t allocated = 0;
|
|
|
|
int64_t active_instances = 0;
|
|
|
|
|
|
|
|
{
|
|
|
|
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
|
|
|
|
Alloc alloc(&allocated, &active_instances);
|
|
|
|
|
|
|
|
AllocFxdArr arr(ia, ia + inlined_size, alloc);
|
|
|
|
static_cast<void>(arr);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated, 0);
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorSupportTest, CountOutoflineAllocations) {
|
|
|
|
constexpr size_t inlined_size = 4;
|
|
|
|
using Alloc = CountingAllocator<int>;
|
|
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
|
|
|
|
int64_t allocated = 0;
|
|
|
|
int64_t active_instances = 0;
|
|
|
|
|
|
|
|
{
|
|
|
|
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
Alloc alloc(&allocated, &active_instances);
|
|
|
|
|
|
|
|
AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated, arr.size() * sizeof(int));
|
|
|
|
static_cast<void>(arr);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorSupportTest, CountCopyInlineAllocations) {
|
|
|
|
constexpr size_t inlined_size = 4;
|
|
|
|
using Alloc = CountingAllocator<int>;
|
|
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
|
|
|
|
int64_t allocated1 = 0;
|
|
|
|
int64_t allocated2 = 0;
|
|
|
|
int64_t active_instances = 0;
|
|
|
|
Alloc alloc(&allocated1, &active_instances);
|
|
|
|
Alloc alloc2(&allocated2, &active_instances);
|
|
|
|
|
|
|
|
{
|
|
|
|
int initial_value = 1;
|
|
|
|
|
|
|
|
AllocFxdArr arr1(inlined_size / 2, initial_value, alloc);
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated1, 0);
|
|
|
|
|
|
|
|
AllocFxdArr arr2(arr1, alloc2);
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated2, 0);
|
|
|
|
static_cast<void>(arr1);
|
|
|
|
static_cast<void>(arr2);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) {
|
|
|
|
constexpr size_t inlined_size = 4;
|
|
|
|
using Alloc = CountingAllocator<int>;
|
|
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
|
|
|
|
int64_t allocated1 = 0;
|
|
|
|
int64_t allocated2 = 0;
|
|
|
|
int64_t active_instances = 0;
|
|
|
|
Alloc alloc(&allocated1, &active_instances);
|
|
|
|
Alloc alloc2(&allocated2, &active_instances);
|
|
|
|
|
|
|
|
{
|
|
|
|
int initial_value = 1;
|
|
|
|
|
|
|
|
AllocFxdArr arr1(inlined_size * 2, initial_value, alloc);
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated1, arr1.size() * sizeof(int));
|
|
|
|
|
|
|
|
AllocFxdArr arr2(arr1, alloc2);
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int));
|
|
|
|
static_cast<void>(arr1);
|
|
|
|
static_cast<void>(arr2);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorSupportTest, SizeValAllocConstructor) {
|
|
|
|
using testing::AllOf;
|
|
|
|
using testing::Each;
|
|
|
|
using testing::SizeIs;
|
|
|
|
|
|
|
|
constexpr size_t inlined_size = 4;
|
|
|
|
using Alloc = CountingAllocator<int>;
|
|
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
|
|
|
|
{
|
|
|
|
auto len = inlined_size / 2;
|
|
|
|
auto val = 0;
|
|
|
|
int64_t allocated = 0;
|
|
|
|
AllocFxdArr arr(len, val, Alloc(&allocated));
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated, 0);
|
|
|
|
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
auto len = inlined_size * 2;
|
|
|
|
auto val = 0;
|
|
|
|
int64_t allocated = 0;
|
|
|
|
AllocFxdArr arr(len, val, Alloc(&allocated));
|
|
|
|
|
|
|
|
EXPECT_EQ(allocated, len * sizeof(int));
|
|
|
|
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-09-19 22:54:40 +02:00
|
|
|
#ifdef ADDRESS_SANITIZER
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations1) {
|
|
|
|
absl::FixedArray<int, 32> a(10);
|
|
|
|
int *raw = a.data();
|
|
|
|
raw[0] = 0;
|
|
|
|
raw[9] = 0;
|
|
|
|
EXPECT_DEATH(raw[-2] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[10] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[31] = 0, "container-overflow");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations2) {
|
|
|
|
absl::FixedArray<char, 17> a(12);
|
|
|
|
char *raw = a.data();
|
|
|
|
raw[0] = 0;
|
|
|
|
raw[11] = 0;
|
|
|
|
EXPECT_DEATH(raw[-7] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[12] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[17] = 0, "container-overflow");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations3) {
|
|
|
|
absl::FixedArray<uint64_t, 20> a(20);
|
|
|
|
uint64_t *raw = a.data();
|
|
|
|
raw[0] = 0;
|
|
|
|
raw[19] = 0;
|
|
|
|
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[20] = 0, "container-overflow");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations4) {
|
|
|
|
absl::FixedArray<ThreeInts> a(10);
|
|
|
|
ThreeInts *raw = a.data();
|
|
|
|
raw[0] = ThreeInts();
|
|
|
|
raw[9] = ThreeInts();
|
|
|
|
// Note: raw[-1] is pointing to 12 bytes before the container range. However,
|
|
|
|
// there is only a 8-byte red zone before the container range, so we only
|
|
|
|
// access the last 4 bytes of the struct to make sure it stays within the red
|
|
|
|
// zone.
|
|
|
|
EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow");
|
|
|
|
EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow");
|
|
|
|
// The actual size of storage is kDefaultBytes=256, 21*12 = 252,
|
|
|
|
// so reading raw[21] should still trigger the correct warning.
|
|
|
|
EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow");
|
|
|
|
}
|
|
|
|
#endif // ADDRESS_SANITIZER
|
2018-10-02 21:09:18 +02:00
|
|
|
|
2019-02-07 23:13:06 +01:00
|
|
|
TEST(FixedArrayTest, AbslHashValueWorks) {
|
|
|
|
using V = absl::FixedArray<int>;
|
|
|
|
std::vector<V> cases;
|
|
|
|
|
|
|
|
// Generate a variety of vectors some of these are small enough for the inline
|
|
|
|
// space but are stored out of line.
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
|
|
V v(i);
|
|
|
|
for (int j = 0; j < i; ++j) {
|
|
|
|
v[j] = j;
|
|
|
|
}
|
|
|
|
cases.push_back(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));
|
|
|
|
}
|
|
|
|
|
2017-09-19 22:54:40 +02:00
|
|
|
} // namespace
|