import time from collections import defaultdict from typing import * import numpy as np Point = NewType("point", List[float, float, float]) # noinspection PyPep8Naming def bezier_length(x0, y0, I, J, P, Q, X, Y, num_points=1000): def dx(t): return -3 * (1 - t)**2 * x0 + 3 * ((1 - t)**2 - 2 * t * (1 - t)) * (x0 + I) + 3 * (2 * t * (1 - t) - t**2) * (x0 + P) + 3 * t**2 * X def dy(t): return -3 * (1 - t)**2 * y0 + 3 * ((1 - t)**2 - 2 * t * (1 - t)) * (y0 + J) + 3 * (2 * t * (1 - t) - t**2) * (y0 + Q) + 3 * t**2 * Y t_values = np.linspace(0, 1, num_points) length = 0 for i in range(1, len(t_values)): t1, t2 = t_values[i - 1], t_values[i] dx1, dy1 = dx(t1), dy(t1) dx2, dy2 = dx(t2), dy(t2) segment_length = np.sqrt((dx1**2 + dy1**2) + (dx2**2 + dy2**2)) * (t2 - t1) / 2 length += segment_length return length # We will assume everything is up to documentation. class GCodeToMotors: # Hardcoded Values for Our Machine CONTROL = defaultdict(lambda t: False) # Figure out how to initialize this. X_STEP_PIN = 8 X_DIR_PIN = 9 X_MIN_PIN = 4 X_MAX_PIN = 2 X_ENABLE_PIN = 15 Y_STEP_PIN = 10 Y_DIR_PIN = 11 Y_MIN_PIN = 3 Y_MAX_PIN = 5 Y_ENABLE_PIN = 15 Z_STEP_PIN = 12 Z_DIR_PIN = 13 Z_MIN_PIN = 7 Z_MAX_PIN = 6 Z_ENABLE_PIN = 15 X_STEPS_PER_INCH = x_units = 4800 X_STEPS_PER_MM: float = 188.97 X_MOTOR_STEPS: float = 200 Y_STEPS_PER_INCH = y_units = 4800 Y_STEPS_PER_MM: int = 188.97 Y_MOTOR_STEPS: int = 200 Z_STEPS_PER_INCH = z_units = 4800 Z_STEPS_PER_MM: float = 188.97 Z_MOTOR_STEPS: int = 200 FAST_XY_FEEDRATE: int = 100 FAST_Z_FEEDRATE: int = 100 CURVE_SECTION_INCHES = curve_section = .019685 CURVE_SECTION_MM: float = .5 SENSORS_INVERTING: bool = False x_direction: int = 1 y_direction: int = 1 z_direction: int = 1 abs_mode: bool = False current_units: Point = [0., 0., 0.] target_units: Point = [0., 0., 0.] delta_units: Point = [0., 0., 0.] current_steps: Point = [0., 0., 0.] target_steps: Point = [0., 0., 0.] delta_steps: Point = [0., 0., 0.] feedrate: float = 0. feedrate_micros: int = 0 is_g5_block: bool = False prev_g5_p: float = 0. prev_g5_q: float = 0. @staticmethod def to_steps(steps_per_unit: float, units: float) -> float: return steps_per_unit * units def calculate_deltas(self): self.delta_units = list(map(lambda t: abs(t[0] - t[1]), zip(self.target_units, self.current_units))) self.delta_steps = list(map(lambda t: abs(t[0] - t[1]), zip(self.target_steps, self.current_steps))) self.current_steps[0] = self.to_steps(self.x_units, self.current_units[0]) self.current_steps[1] = self.to_steps(self.y_units, self.current_units[1]) self.current_steps[2] = self.to_steps(self.z_units, self.current_units[2]) self.target_steps[0] = self.to_steps(self.x_units, self.target_units[0]) self.target_steps[1] = self.to_steps(self.y_units, self.target_units[1]) self.target_steps[2] = self.to_steps(self.z_units, self.target_units[2]) self.x_direction = (self.target_units[0] >= self.current_units[0]) self.y_direction = (self.target_units[1] >= self.current_units[1]) self.z_direction = (self.target_units[2] >= self.current_units[2]) def set_position(self, x: float, y: float, z: float): self.current_units[0] = x self.current_units[1] = y self.current_units[2] = z self.calculate_deltas() def set_target(self, x: float, y: float, z: float): self.target_units[0] = x self.target_units[1] = y self.target_units[2] = z self.calculate_deltas() def calculate_feedrate_delay(self, feedrate: float) -> float: distance: float = np.linalg.norm(self.delta_units) master_steps: float = max(self.delta_steps) # Compute delay between steps in microseconds return ((distance * 600000000.) / feedrate) / master_steps def get_max_speed(self) -> float: if self.delta_steps[2] > 0: return self.calculate_feedrate_delay(self.FAST_Z_FEEDRATE) return self.calculate_feedrate_delay(self.FAST_XY_FEEDRATE) def move(self, micro_delay: float): max_delta = max(self.delta_steps) x_counter = -max_delta/2 y_counter = -max_delta/2 z_counter = -max_delta/2 if micro_delay >= 16386: milli_delay = micro_delay / 1000 else: milli_delay = 0 x_can_step = self.can_step(self.X_MIN_PIN, self.X_MAX_PIN, self.current_steps[0], self.target_steps[0], self.x_direction) y_can_step = self.can_step(self.Y_MIN_PIN, self.Y_MAX_PIN, self.current_steps[1], self.target_steps[1], self.y_direction) z_can_step = self.can_step(self.Z_MIN_PIN, self.Z_MAX_PIN, self.current_steps[2], self.target_steps[2], self.z_direction) while x_can_step or y_can_step or z_can_step: x_can_step = self.can_step( self.X_MIN_PIN, self.X_MAX_PIN, self.current_steps[0], self.target_steps[0], self.x_direction ) y_can_step = self.can_step( self.Y_MIN_PIN, self.Y_MAX_PIN, self.current_steps[1], self.target_steps[1], self.y_direction ) z_can_step = self.can_step( self.Z_MIN_PIN, self.Z_MAX_PIN, self.current_steps[2], self.target_steps[2], self.z_direction ) if x_can_step: x_counter += self.delta_steps[0] if x_counter > 0: self.step(self.X_STEP_PIN, self.X_DIR_PIN, self.x_direction) x_counter -= max_delta if self.x_direction: self.current_steps[0] += 1 else: self.current_steps[0] -= 1 if y_can_step: y_counter += self.delta_steps[1] if y_counter > 0: self.step(self.Y_STEP_PIN, self.Y_DIR_PIN, self.y_direction) y_counter -= max_delta if self.y_direction: self.current_steps[1] += 1 else: self.current_steps[1] -= 1 if z_can_step: z_counter += self.delta_steps[2] if z_counter > 0: self.step(self.Z_STEP_PIN, self.Z_DIR_PIN, self.z_direction) z_counter -= max_delta if self.z_direction: self.current_steps[2] += 1 else: self.current_steps[2] -= 1 if milli_delay > 0: time.sleep(milli_delay*1e-3) else: time.sleep(micro_delay*1e-6) self.current_units = self.target_units.copy() self.calculate_deltas() def can_step(self, min_pin: int, max_pin: int, current: float, target: float, direction: bool): if target == current: return False elif self.CONTROL[min_pin] and not direction: # TODO: IMPLEMENT CONTROL ON POSITION return False elif self.CONTROL[max_pin] and direction: return False return True def step(self, pinA: int, pinB: int, direction: bool): pinA = bytes(pinA) pinB = bytes(pinB) direction = bytes(direction) match (direction << 2 | self.CONTROL[pinA] << 1 | self.CONTROL[pinB]): # TODO: IMPLEMENT SPEED CONTROL case 0, 5: self.CONTROL[pinA] = True case 1, 7: self.CONTROL[pinB] = False case 2, 4: self.CONTROL[pinB] = True case 3, 6: self.CONTROL[pinA] = False time.sleep(5e-6) def instruction_converter(self, instruction: str) -> Optional[List[float]]: if instruction[0] == "/": return None fp: Point = [0., 0., 0.] code: int = 0 if has_command('G', instruction)\ or has_command('X', instruction)\ or has_command('Y', instruction)\ or has_command('Z', instruction): code = search_string('G', instruction) match code: case 0, 1, 2, 3: if self.abs_mode: if has_command('X', instruction): fp[0] = search_string('X', instruction) else: fp[0] = self.current_units[0] if has_command('Y', instruction): fp[1] = search_string('Y', instruction) else: fp[1] = self.current_units[1] if has_command('Z', instruction): fp[2] = search_string('Z', instruction) else: fp[2] = self.current_units[2] else: fp[0] = self.current_units[0] + search_string('X', instruction) fp[1] = self.current_units[1] + search_string('Y', instruction) fp[2] = self.current_units[2] + search_string('Z', instruction) case _: pass match code: case 0, 1: self.set_position(fp[0], fp[1], fp[2]) if has_command('G', instruction): if code == 1: self.feedrate = search_string('F', instruction) if self.feedrate > 0: self.feedrate_micros = self.calculate_feedrate_delay(self.feedrate) else: self.feedrate_micros = self.get_max_speed() else: self.feedrate_micros = self.get_max_speed() else: if self.feedrate > 0: self.feedrate_micros = self.calculate_feedrate_delay(self.feedrate) else: self.feedrate_micros = self.get_max_speed() self.move(self.feedrate_micros) case 2, 3: center = [0., 0., 0.] center[0] = search_string('I', instruction) + self.current_units[0] center[1] = search_string('J', instruction) + self.current_units[1] aX = self.current_units[0] - center[0] aY = self.current_units[1] - center[1] bX = fp[0] - center[0] bY = fp[1] - center[1] if code == 2: # If in fucked up anti-trigonometric direction angleA = np.atan2(bY, bX) angleB = np.atan2(aY, aX) else: angleA = np.atan2(aY, aX) angleB = np.atan2(bY, bX) if angleB <= angleA: angleB += 2 * np.pi angle = angleB - angleA radius = np.linalg.norm([aX, aY]) length = radius * angle steps = np.ceil(length/self.curve_section) newPoint = [0., 0., 0.] for step in range(1, steps + 1): step = step if (code == 3) else steps - step newPoint[0] = center[0] + radius * np.cos(angleA + angle * (step / steps)) newPoint[1] = center[1] + radius * np.sin(angleA + angle * (step / steps)) self.set_target(newPoint[0], newPoint[1], fp[2]) if self.feedrate > 0: self.feedrate_micros = self.calculate_feedrate_delay(self.feedrate) else: self.feedrate_micros = self.get_max_speed() self.move(self.feedrate_micros) case 4: time.sleep(search_string('P', instruction) * 1e-3) case 5: if not self.is_g5_block: control_1 = [0., 0., 0.] control_1[0] = search_string('I', instruction) + self.current_units[0] control_1[1] = search_string('J', instruction) + self.current_units[1] else: control_1 = [0., 0., 0.] control_1[0] = -self.prev_g5_p + self.current_units[0] control_1[1] = -self.prev_g5_q + self.current_units[1] control_2 = [0., 0., 0.] self.prev_g5_p = search_string('P', instruction) self.prev_g5_q = search_string('Q', instruction) control_2[0] = self.prev_g5_p + self.current_units[0] control_2[1] = self.prev_g5_q + self.current_units[1] length = bezier_length(self.current_units[0], self.current_units[1], *control_1, *control_2, fp[0], fp[1]) steps = np.ceil(length/self.curve_section) newPoint = [0., 0., 0.] for t in [i / steps for i in range(1, steps + 1)]: newPoint[0] = (1 - t) ** 3 * self.current_units[0] + 3 * (1 - t) ** 2 * t * control_1[0] + 3 * ( 1 - t) * t ** 2 * control_2[0] + t ** 3 * fp[0] newPoint[1] = (1 - t) ** 3 * self.current_units[1] + 3 * (1 - t) ** 2 * t * control_1[1] + 3 * ( 1 - t) * t ** 2 * control_2[1] + t ** 3 * fp[1] self.set_target(newPoint[0], newPoint[1], fp[2]) if self.feedrate > 0: self.feedrate_micros = self.calculate_feedrate_delay(self.feedrate) else: self.feedrate_micros = self.get_max_speed() self.move(self.feedrate_micros) case 5.1: raise NotImplementedError("PAS DE SPLINE QUADRATIQUE J'AI LA FLEMME") case 5.2, 5.3: raise NotImplementedError("Experimental") case 6: # Not canonical, but parabolas maybe pass case 7: # Not canonical, but ellipses case 20: self.x_units = self.X_STEPS_PER_INCH self.y_units = self.Y_STEPS_PER_INCH self.z_units = self.Z_STEPS_PER_INCH self.curve_section = self.CURVE_SECTION_INCHES self.calculate_deltas() case 21: self.x_units = self.X_STEPS_PER_MM self.y_units = self.Y_STEPS_PER_MM self.z_units = self.Z_STEPS_PER_MM self.curve_section = self.CURVE_SECTION_MM self.calculate_deltas() case 28: self.set_target(0., 0., 0.) self.move(self.get_max_speed()) case 30: fp = [0., 0., 0.] fp[0] = search_string('X', instruction) fp[1] = search_string('Y', instruction) fp[2] = search_string('Z', instruction) if self.abs_mode: if not has_command('X', instruction): fp[0] = self.current_units[0] if not has_command('Y', instruction): fp[1] = self.current_units[1] if not has_command('Z', instruction): fp[2] = self.current_units[2] self.set_target(fp[0], fp[1], fp[2]) else: self.set_target(self.current_units[0] + fp[0], self.current_units[1] + fp[1], self.current_units[2] + fp[2]) self.move(self.get_max_speed()) self.set_target(0., 0., 0.) self.move(self.get_max_speed()) case _: raise ValueError("No Associated GCode Implemented/Known") return def execute(self, gcode): velocities = [] for instruction in gcode: velocities.append(self.instruction_converter(instruction)) return velocities def draw(self, file_path: str): with open(file_path, "r") as gcode_file: gcode = gcode_file.readlines() self.execute(gcode) def velocities_to_positions(self, velocities): return def has_command(key: str, instruction: str) -> bool: return key in instruction def search_string(key: str, instruction: str) -> int: index = instruction.find(key) tmp = instruction[index+1:].split(' ')[0] return int(tmp)