import numpy as np class Controller: def __init__(self): pass def __call__(self, gtm, *args, **kwargs): return None # We control position, but the output of the controller is a set speed. # Therefore, we have proportional, differential and second differential terms. class PIDController(Controller): err_x, err_y, err_z = 0., 0., 0. derr_x, derr_y, derr_z = 0., 0., 0. d2err_x, d2err_y, d2err_z = 0., 0., 0. def __init__(self, p, i, d): super().__init__() self.p, self.i, self.d = p, i, d def __call__(self, gtm, *args, **kwargs): err_x_new, err_y_new, err_z_new = gtm.delta_steps derr_x_new, derr_y_new, derr_z_new = err_x_new - self.err_x, err_y_new - self.err_y, err_z_new - self.err_z d2err_x_new, d2err_y_new, d2err_z_new = derr_x_new - self.derr_x, derr_y_new - self.derr_y, derr_z_new - self.derr_z self.err_x, self.err_y, self.err_z = err_x_new, err_y_new, err_z_new self.derr_x, self.derr_y, self.derr_z = derr_x_new, derr_y_new, derr_z_new self.d2err_x, self.d2err_y, self.d2err_z = d2err_x_new, d2err_y_new, d2err_z_new speed_cmd_x = self.p * self.derr_x + self.i * self.err_x + self.d * self.d2err_x speed_cmd_y = self.p * self.derr_y + self.i * self.err_y + self.d * self.d2err_y speed_cmd_z = self.p * self.derr_z + self.i * self.err_z + self.d * self.d2err_z # It is the responsability of the coefficients to make sure this results in the desired feedrate gtm.x_throttle = gtm.target_feedrate / abs(speed_cmd_x) gtm.x_direction = 1 if (speed_cmd_x > 0) else 0 gtm.y_throttle = gtm.target_feedrate / abs(speed_cmd_y) gtm.y_direction = 1 if (speed_cmd_y > 0) else 0 gtm.z_throttle = gtm.target_feedrate / abs(speed_cmd_z) gtm.z_direction = 1 if (speed_cmd_z > 0) else 0 if gtm.x_throttle > 65536: gtm.x_throttle = 0 if gtm.y_throttle > 65536: gtm.y_throttle = 0 if gtm.z_throttle > 65536: gtm.z_throttle = 0 class DummyController(Controller): last_delta = np.nan def __init__(self): super().__init__() def __call__(self, gtm, *args, **kwargs): feed = gtm.feedrate dx, dy, dz = gtm.delta_units feed_x = feed * dx/(dx**2 + dy**2 + dz**2)**0.5 feed_y = feed * dy/(dx**2 + dy**2 + dz**2)**0.5 feed_z = feed * dz/(dz**2 + dy**2 + dz**2)**0.5 print("feed (m/min) : ", feed) print("current : ", gtm.current_units) print("target : ", gtm.target_units) print("deltas: ", dx, dy, dz) gtm.x_direction = 1 if gtm.delta_steps[0] > 0 else 0 gtm.y_direction = 1 if gtm.delta_steps[1] > 0 else 0 gtm.z_direction = 1 if gtm.delta_steps[2] > 0 else 0 feed_x,feed_y,feed_z = abs(feed_x), abs(feed_y), abs(feed_z) print("Feeds (m/min) : ", feed_x, feed_y, feed_z) print("dirs : ", gtm.x_direction, gtm.y_direction, gtm.z_direction) gtm.x_throttle = 0 if feed_x == 0. else np.floor(gtm.FAST_XY_FEEDRATE/feed_x) gtm.y_throttle = 0 if feed_y == 0. else np.floor(gtm.FAST_XY_FEEDRATE/feed_y) gtm.z_throttle = 0 if feed_z == 0. else np.floor(gtm.FAST_Z_FEEDRATE/feed_z) gtm.x_throttle = 0 if gtm.x_throttle >= 65536 else gtm.x_throttle gtm.y_throttle = 0 if gtm.y_throttle >= 65536 else gtm.y_throttle gtm.z_throttle = 0 if gtm.z_throttle >= 65536 else gtm.z_throttle print("Throttles : ", gtm.x_throttle, gtm.y_throttle, gtm.z_throttle) # If we are close enough, we're good if(gtm.x_throttle == 0 and gtm.y_throttle == 0 and gtm.z_throttle == 0): last_delta = np.nan return True delta = (dx**2 + dy**2 + dz**2)**.5 if(delta > self.last_delta and self.last_delta < 2.0): self.last_delta = np.nan return True self.last_delta = delta print("Expected move (mm/call)", gtm.ctrl_step*feed*1000./60) print("Delta (mm) ", (dx**2 + dy**2 + dz**2)**.5) return False