// SPDX-License-Identifier: (GPL-2.0 OR Apache-2.0 OR MIT OR BSD-1-Clause OR CC0-1.0) /* * Copyright (C) 2022 Jason A. Donenfeld . All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef LOCALSTATEDIR #define LOCALSTATEDIR "/var/lib" #endif #define SEED_DIR LOCALSTATEDIR "/seedrng" #define CREDITABLE_SEED "seed.credit" #define NON_CREDITABLE_SEED "seed.no-credit" enum blake2s_lengths { BLAKE2S_BLOCK_LEN = 64, BLAKE2S_HASH_LEN = 32, BLAKE2S_KEY_LEN = 32 }; enum seedrng_lengths { MAX_SEED_LEN = 512, MIN_SEED_LEN = BLAKE2S_HASH_LEN }; struct blake2s_state { uint32_t h[8]; uint32_t t[2]; uint32_t f[2]; uint8_t buf[BLAKE2S_BLOCK_LEN]; unsigned int buflen; unsigned int outlen; }; #define le32_to_cpup(a) le32toh(*(a)) #define cpu_to_le32(a) htole32(a) #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #endif #ifndef DIV_ROUND_UP #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #endif static inline void cpu_to_le32_array(uint32_t *buf, unsigned int words) { while (words--) { *buf = cpu_to_le32(*buf); ++buf; } } static inline void le32_to_cpu_array(uint32_t *buf, unsigned int words) { while (words--) { *buf = le32_to_cpup(buf); ++buf; } } static inline uint32_t ror32(uint32_t word, unsigned int shift) { return (word >> (shift & 31)) | (word << ((-shift) & 31)); } static const uint32_t blake2s_iv[8] = { 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL }; static const uint8_t blake2s_sigma[10][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, }; static void blake2s_set_lastblock(struct blake2s_state *state) { state->f[0] = -1; } static void blake2s_increment_counter(struct blake2s_state *state, const uint32_t inc) { state->t[0] += inc; state->t[1] += (state->t[0] < inc); } static void blake2s_init_param(struct blake2s_state *state, const uint32_t param) { int i; memset(state, 0, sizeof(*state)); for (i = 0; i < 8; ++i) state->h[i] = blake2s_iv[i]; state->h[0] ^= param; } static void blake2s_init(struct blake2s_state *state, const size_t outlen) { blake2s_init_param(state, 0x01010000 | outlen); state->outlen = outlen; } static void blake2s_compress(struct blake2s_state *state, const uint8_t *block, size_t nblocks, const uint32_t inc) { uint32_t m[16]; uint32_t v[16]; int i; while (nblocks > 0) { blake2s_increment_counter(state, inc); memcpy(m, block, BLAKE2S_BLOCK_LEN); le32_to_cpu_array(m, ARRAY_SIZE(m)); memcpy(v, state->h, 32); v[ 8] = blake2s_iv[0]; v[ 9] = blake2s_iv[1]; v[10] = blake2s_iv[2]; v[11] = blake2s_iv[3]; v[12] = blake2s_iv[4] ^ state->t[0]; v[13] = blake2s_iv[5] ^ state->t[1]; v[14] = blake2s_iv[6] ^ state->f[0]; v[15] = blake2s_iv[7] ^ state->f[1]; #define G(r, i, a, b, c, d) do { \ a += b + m[blake2s_sigma[r][2 * i + 0]]; \ d = ror32(d ^ a, 16); \ c += d; \ b = ror32(b ^ c, 12); \ a += b + m[blake2s_sigma[r][2 * i + 1]]; \ d = ror32(d ^ a, 8); \ c += d; \ b = ror32(b ^ c, 7); \ } while (0) #define ROUND(r) do { \ G(r, 0, v[0], v[ 4], v[ 8], v[12]); \ G(r, 1, v[1], v[ 5], v[ 9], v[13]); \ G(r, 2, v[2], v[ 6], v[10], v[14]); \ G(r, 3, v[3], v[ 7], v[11], v[15]); \ G(r, 4, v[0], v[ 5], v[10], v[15]); \ G(r, 5, v[1], v[ 6], v[11], v[12]); \ G(r, 6, v[2], v[ 7], v[ 8], v[13]); \ G(r, 7, v[3], v[ 4], v[ 9], v[14]); \ } while (0) ROUND(0); ROUND(1); ROUND(2); ROUND(3); ROUND(4); ROUND(5); ROUND(6); ROUND(7); ROUND(8); ROUND(9); #undef G #undef ROUND for (i = 0; i < 8; ++i) state->h[i] ^= v[i] ^ v[i + 8]; block += BLAKE2S_BLOCK_LEN; --nblocks; } } static void blake2s_update(struct blake2s_state *state, const void *inp, size_t inlen) { const size_t fill = BLAKE2S_BLOCK_LEN - state->buflen; const uint8_t *in = inp; if (!inlen) return; if (inlen > fill) { memcpy(state->buf + state->buflen, in, fill); blake2s_compress(state, state->buf, 1, BLAKE2S_BLOCK_LEN); state->buflen = 0; in += fill; inlen -= fill; } if (inlen > BLAKE2S_BLOCK_LEN) { const size_t nblocks = DIV_ROUND_UP(inlen, BLAKE2S_BLOCK_LEN); blake2s_compress(state, in, nblocks - 1, BLAKE2S_BLOCK_LEN); in += BLAKE2S_BLOCK_LEN * (nblocks - 1); inlen -= BLAKE2S_BLOCK_LEN * (nblocks - 1); } memcpy(state->buf + state->buflen, in, inlen); state->buflen += inlen; } static void blake2s_final(struct blake2s_state *state, uint8_t *out) { blake2s_set_lastblock(state); memset(state->buf + state->buflen, 0, BLAKE2S_BLOCK_LEN - state->buflen); blake2s_compress(state, state->buf, 1, state->buflen); cpu_to_le32_array(state->h, ARRAY_SIZE(state->h)); memcpy(out, state->h, state->outlen); } static ssize_t getrandom_full(void *buf, size_t count, unsigned int flags) { ssize_t ret, total = 0; uint8_t *p = buf; do { ret = getrandom(p, count, flags); if (ret < 0 && errno == EINTR) continue; else if (ret < 0) return ret; total += ret; p += ret; count -= ret; } while (count); return total; } static ssize_t read_full(int fd, void *buf, size_t count) { ssize_t ret, total = 0; uint8_t *p = buf; do { ret = read(fd, p, count); if (ret < 0 && errno == EINTR) continue; else if (ret < 0) return ret; else if (ret == 0) break; total += ret; p += ret; count -= ret; } while (count); return total; } static ssize_t write_full(int fd, const void *buf, size_t count) { ssize_t ret, total = 0; const uint8_t *p = buf; do { ret = write(fd, p, count); if (ret < 0 && errno == EINTR) continue; else if (ret < 0) return ret; total += ret; p += ret; count -= ret; } while (count); return total; } static size_t determine_optimal_seed_len(void) { size_t ret = 0; char poolsize_str[11] = { 0 }; int fd = open("/proc/sys/kernel/random/poolsize", O_RDONLY); if (fd < 0 || read_full(fd, poolsize_str, sizeof(poolsize_str) - 1) < 0) { perror("Unable to determine pool size, falling back to 256 bits"); ret = MIN_SEED_LEN; } else ret = DIV_ROUND_UP(strtoul(poolsize_str, NULL, 10), 8); if (fd >= 0) close(fd); if (ret < MIN_SEED_LEN) ret = MIN_SEED_LEN; else if (ret > MAX_SEED_LEN) ret = MAX_SEED_LEN; return ret; } static int read_new_seed(uint8_t *seed, size_t len, bool *is_creditable) { ssize_t ret; int urandom_fd; *is_creditable = false; ret = getrandom_full(seed, len, GRND_NONBLOCK); if (ret == (ssize_t)len) { *is_creditable = true; return 0; } else if (ret < 0 && errno == ENOSYS) { struct pollfd random_fd = { .fd = open("/dev/random", O_RDONLY), .events = POLLIN }; if (random_fd.fd < 0) return -errno; *is_creditable = poll(&random_fd, 1, 0) == 1; close(random_fd.fd); } else if (getrandom_full(seed, len, GRND_INSECURE) == (ssize_t)len) return 0; urandom_fd = open("/dev/urandom", O_RDONLY); if (urandom_fd < 0) return -1; ret = read_full(urandom_fd, seed, len); if (ret == (ssize_t)len) ret = 0; else ret = -errno ? -errno : -EIO; close(urandom_fd); errno = -ret; return ret ? -1 : 0; } static int seed_rng(uint8_t *seed, size_t len, bool credit) { struct { int entropy_count; int buf_size; uint8_t buffer[MAX_SEED_LEN]; } req = { .entropy_count = credit ? len * 8 : 0, .buf_size = len }; int random_fd, ret; if (len > sizeof(req.buffer)) { errno = EFBIG; return -1; } memcpy(req.buffer, seed, len); random_fd = open("/dev/urandom", O_RDONLY); if (random_fd < 0) return -1; ret = ioctl(random_fd, RNDADDENTROPY, &req); if (ret) ret = -errno ? -errno : -EIO; close(random_fd); errno = -ret; return ret ? -1 : 0; } static int seed_from_file_if_exists(const char *filename, int dfd, bool credit, struct blake2s_state *hash) { uint8_t seed[MAX_SEED_LEN]; ssize_t seed_len; int fd = -1, ret = 0; fd = openat(dfd, filename, O_RDONLY); if (fd < 0 && errno == ENOENT) return 0; else if (fd < 0) { ret = -errno; perror("Unable to open seed file"); goto out; } seed_len = read_full(fd, seed, sizeof(seed)); if (seed_len < 0) { ret = -errno; perror("Unable to read seed file"); goto out; } if ((unlinkat(dfd, filename, 0) < 0 || fsync(dfd) < 0) && seed_len) { ret = -errno; perror("Unable to remove seed after reading, so not seeding"); goto out; } if (!seed_len) goto out; blake2s_update(hash, &seed_len, sizeof(seed_len)); blake2s_update(hash, seed, seed_len); printf("Seeding %zd bits %s crediting\n", seed_len * 8, credit ? "and" : "without"); if (seed_rng(seed, seed_len, credit) < 0) { ret = -errno; perror("Unable to seed"); } out: if (fd >= 0) close(fd); errno = -ret; return ret ? -1 : 0; } static bool skip_credit(void) { const char *skip = getenv("SEEDRNG_SKIP_CREDIT"); return skip && (!strcmp(skip, "1") || !strcasecmp(skip, "true") || !strcasecmp(skip, "yes") || !strcasecmp(skip, "y")); } int main(int argc __attribute__((unused)), char *argv[] __attribute__((unused))) { static const char seedrng_prefix[] = "SeedRNG v1 Old+New Prefix"; static const char seedrng_failure[] = "SeedRNG v1 No New Seed Failure"; int fd = -1, dfd = -1, program_ret = 0; uint8_t new_seed[MAX_SEED_LEN]; size_t new_seed_len; bool new_seed_creditable; struct timespec realtime = { 0 }, boottime = { 0 }; struct blake2s_state hash; umask(0077); if (getuid()) { errno = EACCES; perror("This program requires root"); return 1; } blake2s_init(&hash, BLAKE2S_HASH_LEN); blake2s_update(&hash, seedrng_prefix, strlen(seedrng_prefix)); clock_gettime(CLOCK_REALTIME, &realtime); clock_gettime(CLOCK_BOOTTIME, &boottime); blake2s_update(&hash, &realtime, sizeof(realtime)); blake2s_update(&hash, &boottime, sizeof(boottime)); if (mkdir(SEED_DIR, 0700) < 0 && errno != EEXIST) { perror("Unable to create seed directory"); return 1; } dfd = open(SEED_DIR, O_DIRECTORY | O_RDONLY); if (dfd < 0 || flock(dfd, LOCK_EX) < 0) { perror("Unable to lock seed directory"); program_ret = 1; goto out; } if (seed_from_file_if_exists(NON_CREDITABLE_SEED, dfd, false, &hash) < 0) program_ret |= 1 << 1; if (seed_from_file_if_exists(CREDITABLE_SEED, dfd, !skip_credit(), &hash) < 0) program_ret |= 1 << 2; new_seed_len = determine_optimal_seed_len(); if (read_new_seed(new_seed, new_seed_len, &new_seed_creditable) < 0) { perror("Unable to read new seed"); new_seed_len = BLAKE2S_HASH_LEN; strncpy((char *)new_seed, seedrng_failure, new_seed_len); program_ret |= 1 << 3; } blake2s_update(&hash, &new_seed_len, sizeof(new_seed_len)); blake2s_update(&hash, new_seed, new_seed_len); blake2s_final(&hash, new_seed + new_seed_len - BLAKE2S_HASH_LEN); printf("Saving %zu bits of %s seed for next boot\n", new_seed_len * 8, new_seed_creditable ? "creditable" : "non-creditable"); fd = openat(dfd, NON_CREDITABLE_SEED, O_WRONLY | O_CREAT | O_TRUNC, 0400); if (fd < 0) { perror("Unable to open seed file for writing"); program_ret |= 1 << 4; goto out; } if (write_full(fd, new_seed, new_seed_len) != (ssize_t)new_seed_len || fsync(fd) < 0) { perror("Unable to write seed file"); program_ret |= 1 << 5; goto out; } if (new_seed_creditable && renameat(dfd, NON_CREDITABLE_SEED, dfd, CREDITABLE_SEED) < 0) { perror("Unable to make new seed creditable"); program_ret |= 1 << 6; } out: if (fd >= 0) close(fd); if (dfd >= 0) close(dfd); return program_ret; }